JPH01176932A - Fine foreign matter inspection device - Google Patents

Fine foreign matter inspection device

Info

Publication number
JPH01176932A
JPH01176932A JP63000453A JP45388A JPH01176932A JP H01176932 A JPH01176932 A JP H01176932A JP 63000453 A JP63000453 A JP 63000453A JP 45388 A JP45388 A JP 45388A JP H01176932 A JPH01176932 A JP H01176932A
Authority
JP
Japan
Prior art keywords
light
wafer
foreign matter
scattered
flat substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63000453A
Other languages
Japanese (ja)
Other versions
JPH0795040B2 (en
Inventor
Masahiko Arai
正彦 新井
Hiroyuki Matsushiro
松代 弘之
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Priority to JP45388A priority Critical patent/JPH0795040B2/en
Publication of JPH01176932A publication Critical patent/JPH01176932A/en
Publication of JPH0795040B2 publication Critical patent/JPH0795040B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/94Investigating contamination, e.g. dust

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)
  • Wire Bonding (AREA)

Abstract

PURPOSE:To detect whether or not there is a fine foreign matter and whether or not there is an organic body by providing a 1st lighting means, an objective lens and, a photoelectric converting element, etc. CONSTITUTION:If there is a fine body 3 on the surface of a wafer 2, spot light from the 1st light source 4 is scattered and this scattered light is converged on a photometric stop 13 through the objective 7, a dichroic mirror 11, and an absorption filter 12. The stop 13 becomes conjugate to the surface of the wafer 2 at a reference position. Therefore, only the scattered light from an area on the wafer 2 conjugate to the hole of the stop 13 passes through the stop 13 and enters the incidence slit 14 of a spectroscope A. Then the incident light from the slit 14 is reflected by a total reflecting mirror 21 and a concave surface mirror 15 and then its light of (0)th order is reflected by a diffraction grating 16; and its reflected light is reflected by the concave surface mirror 15 and total reflecting mirror 22 and enters the projection slit 17. This scattered light is transmitted through the dichroic mirror 18 and converted photoelectrically by the photoelectric converting element 20.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、平面基板、例えばウェハなどの表面上の微
小異物の有無などを自動的に検査する微小異物検査装置
に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a minute foreign matter inspection device that automatically inspects the presence or absence of minute foreign matter on the surface of a flat substrate, such as a wafer.

〔従来の技術〕[Conventional technology]

ウェハ表面上の微小異物検査装置として、ウェハ表面上
に1本ないし数本の光ビームを斜め方向・から照射し、
その照射内に存在した微小異物からの散乱光を光電素子
に入射させ、微小異物の有無、大きさなどをビームとウ
ェハとを相対的に移動させ、自動的に判定できる型式の
ものがある。また、パターンからの散乱光と微小異物か
らの散乱光を偏光を利用して識別可能とし、パターン付
ウェハにおける微小異物の検出を可能とした型式のもの
もある。
As a micro foreign particle inspection device on the wafer surface, one or several light beams are irradiated on the wafer surface from an oblique direction.
There is a type that allows scattered light from minute foreign matter present in the irradiation to be incident on a photoelectric element, and automatically determines the presence or absence, size, etc. of the minute foreign matter by moving the beam and the wafer relative to each other. There is also a type that makes it possible to distinguish the scattered light from the pattern and the scattered light from the minute foreign matter by using polarized light, thereby making it possible to detect the minute foreign matter on the patterned wafer.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

ウェハ表面上の微小異物は、インプロセスにおいて存在
した場合、デバイスの性能に大きく影ツし、そのデバイ
スが不良品となる可能性が極めて高い。従来の微小異物
検査装置では、微小異物の存在の有無、大きさ、個数な
どは、検出可能であるが、その微小異物の正体までは、
判定できない。
If minute foreign matter exists on the wafer surface during in-process, it will greatly affect the performance of the device, and there is a very high possibility that the device will be defective. Conventional micro foreign object inspection equipment can detect the presence or absence, size, and number of micro foreign objects, but cannot detect the true nature of the micro foreign objects.
Cannot be determined.

そこで本発明は、微小異物の存否と有機物の存否とを検
出できる微小異物検査装置を得ることを目的とする。
Therefore, an object of the present invention is to obtain a minute foreign matter inspection device that can detect the presence or absence of minute foreign matter and the presence or absence of organic matter.

(問題点を解決する為の手段) そこで、本発明は、平面基板に斜め方向からスポット光
を投射する第1照明手段(4,24)と、前記平面基板
にその表面に垂直な方向から前記スポット光の照射位置
に重なるように、励起光を投射する第2照明手段(8,
9,10,11,7)と、前記平面基板を載置して2次
元的に移動し、前記スポット光によって前記平面基板を
2次元的に走査させる走査手段(la、1.52.54
.58)と、前記スポット光による前記平面基板からの
散乱光と前記励起光による前記平面基板からの螢光とを
受光すると共に、前記散乱光と前記螢光とを波長分離し
て各々の光電変換信号を出力する受光手段(7,11,
12,13、A、18.19.20)と、前記散乱光の
光電変換信号から前記平面基板上の微小異物の存否を、
また、前記螢光の光電変換信号から前記平面基板上の有
機物の存否をそれぞれ判定し、表示する演算表示手段(
56,57,58,60)と、を有することを特徴とす
る微小異物検査装置、によって上記目的を達成した。
(Means for Solving the Problems) Therefore, the present invention provides a first illumination means (4, 24) that projects a spot light onto a flat substrate from an oblique direction, and a first illumination means (4, 24) that projects a spot light onto a flat substrate from a direction perpendicular to the surface thereof. A second illumination unit (8,
9, 10, 11, 7), and a scanning means (la, 1.52.54) that places the flat substrate and moves it two-dimensionally, and scans the flat substrate two-dimensionally with the spot light.
.. 58), receives the scattered light from the flat substrate caused by the spot light and the fluorescent light from the flat substrate caused by the excitation light, separates the wavelengths of the scattered light and the fluorescent light, and performs photoelectric conversion of each. Light receiving means (7, 11,
12, 13, A, 18, 19, 20), and the presence or absence of minute foreign matter on the flat substrate from the photoelectric conversion signal of the scattered light,
Further, calculation and display means (
56, 57, 58, 60) The above object has been achieved by a micro foreign matter inspection device characterized by having the following.

(作 用) 本発明によれば、第1照明手段のスポット光による散乱
光と、第2照明手段の励起光による螢光とを検出してい
るので、微小異物の存否と共に、有機物の存否も知るこ
とができる。従って、微小異物の無機物か有機物かを識
別できるばかりでなく、平面基板上のレジストの残りを
検出することもできる。さらに、パターン付ウェハにお
いては、散乱光を用いて微小異物を検出する構成の場合
には、パターンでの散乱光と微小異物での散乱光とを識
別できないため、微小異物の検出ができなかっだが、励
起光による螢光検出によれば、ウェハ上にパターンがあ
っても、ウェハ上の有機物(有機物のごみ、レジスト等
)を識別することができる。
(Function) According to the present invention, since the scattered light caused by the spot light of the first illumination means and the fluorescent light caused by the excitation light of the second illumination means are detected, it is possible to detect the presence or absence of not only minute foreign matter but also organic matter. You can know. Therefore, it is not only possible to identify whether the minute foreign matter is inorganic or organic, but also to detect the remaining resist on the flat substrate. Furthermore, in the case of patterned wafers, in the case of a configuration that uses scattered light to detect minute foreign objects, it is not possible to distinguish between the light scattered by the pattern and the light scattered by the minute foreign objects, so it is not possible to detect the minute foreign objects. According to fluorescence detection using excitation light, organic matter (organic dust, resist, etc.) on the wafer can be identified even if there is a pattern on the wafer.

(実施例) 第1図は本発明の第1実施例の光学系を示す図、第2図
は照射位置近傍の斜視図、第3図は原理説明図、第4図
は電気ブロック図である。
(Example) Fig. 1 is a diagram showing the optical system of the first embodiment of the present invention, Fig. 2 is a perspective view of the vicinity of the irradiation position, Fig. 3 is a diagram explaining the principle, and Fig. 4 is an electrical block diagram. .

ステージ1の載物部材1aには平面基板としてのウェハ
2が載置されている。載物部材1aは、X方向、2方向
、φ方向(第2図参照)へ公知の機構により移動可能で
ある。
A wafer 2 as a flat substrate is placed on a mounting member 1a of the stage 1. The mounting member 1a is movable in the X direction, the two directions, and the φ direction (see FIG. 2) by a known mechanism.

レーザ、レーザダイオード、LED等から構成される第
1照明光源4からの照明光は、集光レンズ24によって
集光され、スポット光としてウェハ2に斜め方向から投
射される。このスポット光の入射角と等しい反射角方向
には集光レンズ23があり、この集光レンズ23は、ウ
ェハ2がZ方向基準位置にあるときに、ウェハ2上の光
スポットを振動スリット6上に集光する。振動スリット
6は紙面に垂直な方向へスリットが形成され、光軸に垂
直な矢印P方向へ振動する。この振動中心位置は、ウェ
ハ2が基準位置にあるときに、集光レンズ23により光
スポットが生じる位置である。
Illumination light from a first illumination light source 4 composed of a laser, a laser diode, an LED, etc. is condensed by a condenser lens 24, and is projected obliquely onto the wafer 2 as a spot light. There is a condensing lens 23 in a direction with a reflection angle equal to the incident angle of this spot light, and this condensing lens 23 directs the light spot on the wafer 2 onto the vibration slit 6 when the wafer 2 is at the reference position in the Z direction. The light is focused on. The vibration slit 6 is formed in a direction perpendicular to the plane of the paper and vibrates in the direction of arrow P perpendicular to the optical axis. This vibration center position is a position where a light spot is generated by the condenser lens 23 when the wafer 2 is at the reference position.

振動スリット6の透過光は検出器5に入射し、光電変換
される。この光電変換信号は、適当に処理された後、演
算装置に入力され、載物部材1aのZ方向位置制御に用
いられる。すなわち、第1照明光源4、集光レンズ24
.23、振動スリット6、検出器5によって、周知の合
焦検出系が構成される。
The transmitted light of the vibrating slit 6 enters the detector 5 and is photoelectrically converted. After being appropriately processed, this photoelectric conversion signal is input to a calculation device and used to control the position of the mounting member 1a in the Z direction. That is, the first illumination light source 4, the condensing lens 24
.. 23, the vibrating slit 6, and the detector 5 constitute a well-known focus detection system.

水銀ランプ、レーザ等から構成される第2照明光源8か
らの射出光は、集光レンズ9、励起フィルタ10、グイ
クロイックミラー11によって、励起波長の光が選択さ
れ、対物レンズ7の後側焦点位置に集光する。従って、
対物レンズ7によって、励起光が平行光束となり、その
光束が対物レンズにより集光されてウェハ2に入射する
。そして、対物レンズ7の光軸は、基準位置にあるウェ
ハ2の表面で交差する集光レンズ23.24の交差点を
通るように設定される。
The light emitted from the second illumination light source 8 composed of a mercury lamp, a laser, etc. is selected by a condensing lens 9, an excitation filter 10, and a gicroic mirror 11, and the light having an excitation wavelength is Focus the light on the focal point. Therefore,
The excitation light becomes a parallel light beam by the objective lens 7, and the light beam is condensed by the objective lens and enters the wafer 2. The optical axis of the objective lens 7 is set to pass through the intersection of the condenser lenses 23 and 24 that intersect with the surface of the wafer 2 at the reference position.

ウェハ2の表面にごみ等の微小異物3があると、第1照
明光源4によるスポット光の散乱光が生じ、この散乱光
は対物レンズ7、ダイクロイックミラー11、吸収フィ
ルタ12を通って測光絞り13上に集光する。測光絞り
13は、ウェハ2が基準位置にあると、ウェハ2表面と
対物レンズ7によって共役になっている。従って、測光
絞り13の孔と共役なウェハ2上の領域からの散乱光の
みが測光絞り13を通過し、不図示のリレーレンズを介
して分光器Aの入射スリット14に入る。入射スリット
からの入射光は全反射鏡21、凹面鏡15で反射した後
、回折格子16で0次光が反射され、この反射光がさら
に凹面鏡15、全反射鏡22で反射して出射スリット1
7から射出される。
When there is a minute foreign object 3 such as dust on the surface of the wafer 2, scattered light of the spot light from the first illumination light source 4 is generated, and this scattered light passes through the objective lens 7, dichroic mirror 11, and absorption filter 12, and then reaches the photometric aperture 13. Focus the light upward. The photometric aperture 13 is conjugated with the surface of the wafer 2 and the objective lens 7 when the wafer 2 is at the reference position. Therefore, only scattered light from a region on the wafer 2 that is conjugate with the hole of the photometric aperture 13 passes through the photometric aperture 13 and enters the entrance slit 14 of the spectrometer A via a relay lens (not shown). The incident light from the input slit is reflected by the total reflection mirror 21 and the concave mirror 15, and then the 0th-order light is reflected by the diffraction grating 16. This reflected light is further reflected by the concave mirror 15 and the total reflection mirror 22, and then the output slit 1.
It is ejected from 7.

出射スリット17を射出した散乱光は、ダイクロイック
ミラー18を透過して、光電変換素子20に入り、光電
変換される。
The scattered light emitted from the output slit 17 passes through the dichroic mirror 18, enters the photoelectric conversion element 20, and is photoelectrically converted.

一方、微小異物3が螢光を発生する物質であると、励起
光の照射によ゛り螢光が発生し、この螢光は、対物レン
ズ7、グイクロイックミラー11吸収フイルタ12を通
って測光絞り13上に集光する。ウェハ2が基準位置に
あれば、測光絞り13の孔と共役なウェハ2上の領域か
らの螢光のみが測光絞り13を通過し、分光器Aを通っ
てダイクロイックミラー18で反射し、光電変換素子1
9に入り、光電変換される。光電変換素子19.20の
出力信号は、演算表示装置20に入力され、演算処理、
表示が行なわれる。
On the other hand, if the minute foreign matter 3 is a substance that generates fluorescent light, the fluorescent light will be generated by irradiation with the excitation light, and this fluorescent light will pass through the objective lens 7, the glycoic mirror 11, and the absorption filter 12. The light is focused onto a photometric aperture 13. When the wafer 2 is at the reference position, only the fluorescent light from the area on the wafer 2 that is conjugate with the hole of the photometric aperture 13 passes through the photometric aperture 13, passes through the spectrometer A, is reflected by the dichroic mirror 18, and is photoelectrically converted. Element 1
9 and undergoes photoelectric conversion. The output signals of the photoelectric conversion elements 19 and 20 are input to the arithmetic display device 20, and are subjected to arithmetic processing and
Display is performed.

第3図は上述した第1照明光源4からの照明光、その異
物による散乱光、励起光、励起光により異物から生ずる
螢光を、それぞれの波長に着目して表わしたもので第1
照明光源4からの照明光の波長をλ1、異物による散乱
光は同一波長であるので同じくλ1、励起光の波長をλ
2、螢光の波長をλ、として示しである。なお、第3図
においては、第1図で示した部材を簡略化のために一部
省略しである。第3図からもわかるように、ダイクロイ
ックミラー11は励起光の波長λ2を反射し、散乱光の
波長λ1、螢光の波長λ、を透過する特性を有し、また
、ダイクロイックミラー18は散乱光の波長λ1を透過
し、螢光の波長λ、を反射する特性を有している。
FIG. 3 shows the illumination light from the first illumination light source 4 mentioned above, the light scattered by the foreign matter, the excitation light, and the fluorescence generated from the foreign matter by the excitation light, focusing on their respective wavelengths.
The wavelength of the illumination light from the illumination light source 4 is λ1, the light scattered by foreign objects has the same wavelength, so it is also λ1, and the wavelength of the excitation light is λ.
2. The wavelength of fluorescent light is shown as λ. Note that, in FIG. 3, some of the members shown in FIG. 1 are omitted for simplification. As can be seen from FIG. 3, the dichroic mirror 11 has the characteristic of reflecting the wavelength λ2 of the excitation light and transmitting the wavelength λ1 of the scattered light and the wavelength λ of the fluorescent light. It has the characteristic of transmitting the wavelength λ1 of fluorescent light and reflecting the wavelength λ1 of fluorescent light.

第4図は第1図の光学系と共に用いられる電気ブロック
図であり、検出器5を有する2方向位置検出器50から
の位置検出信号によって、演算装置58はステージ1の
2方向駆動装置51を制御し、ウェハ2を2方向基準位
置に設定する。その後、演算装置58は、ステージ1の
X方向駆動装置53、回転駆動装置55を制御し、スポ
ット光がウェハ2上をスパイラル状に走査するようにな
す。その際、X方向位置検出器52、回転位置検出器5
4からの位置信号が演算装置58に入力されているので
、演算装置は、スポット光が照射されているウェハ2上
の座標位置を演算できる。この座標位置は、曲座標によ
ってもまた、X−Y座標によっても良いことは当然のこ
とである。
FIG. 4 is an electrical block diagram used together with the optical system shown in FIG. control and set the wafer 2 at two-direction reference positions. Thereafter, the arithmetic unit 58 controls the X-direction drive device 53 and rotation drive device 55 of the stage 1 so that the spot light scans the wafer 2 in a spiral manner. At that time, the X direction position detector 52, the rotational position detector 5
Since the position signal from 4 is input to the calculation device 58, the calculation device can calculate the coordinate position on the wafer 2 that is irradiated with the spotlight. It goes without saying that this coordinate position may be based on curved coordinates or XY coordinates.

スポット光がウェハ2上をスパイラル状に走査していく
間で、スポット光がウェハ2上の異物3で散乱されると
、この散乱光は対物レンズ7、ダイクロイックミラー1
1、吸収フィルタ12、測光絞り13、入射スリット1
4、分光器A、ダイクロイックミラー18を通って光電
変換素子20へ入射する。その結果、光電変換素子20
を含む異物検出器56から異物検出信号が演算装置5日
に入る。演算装置58は、異物検出器58から異物検出
信号が入力されたときのX方向位置検出器52、一回転
位置検出器54からの位置信号を異物存在座標値として
メモリに記憶する。
While the spot light spirally scans the wafer 2, when the spot light is scattered by the foreign object 3 on the wafer 2, this scattered light is transmitted to the objective lens 7 and the dichroic mirror 1.
1, absorption filter 12, photometric aperture 13, entrance slit 1
4. The light passes through the spectrometer A and the dichroic mirror 18 and enters the photoelectric conversion element 20. As a result, the photoelectric conversion element 20
A foreign object detection signal is input to the arithmetic unit 5 from the foreign object detector 56 including the foreign object detector 56 . The arithmetic device 58 stores the position signals from the X-direction position detector 52 and the one-rotation position detector 54 in the memory as foreign object presence coordinate values when the foreign object detection signal is input from the foreign object detector 58.

上記異物3が有機物であるときには、異物3で生じた螢
光が、対物レンズ7、ダイクロイックミラー11、吸収
フィルタ12、測光絞り13、分光器A1ダイクロイッ
クミラー18によって光電変換素子19に入る。その結
果、光電変換素子19を含む有機物検出器57から有機
物検出信号が演算装置58に入る。演算装置58は、有
機物検出器57から有機物検出信号が入力されると、異
物検出器58からの異物検出信号によって認知された異
物が、有機物質である旨ラベリングを行う。
When the foreign matter 3 is an organic matter, the fluorescent light generated by the foreign matter 3 enters the photoelectric conversion element 19 through the objective lens 7, dichroic mirror 11, absorption filter 12, photometric aperture 13, and spectrometer A1 dichroic mirror 18. As a result, an organic substance detection signal is input to the arithmetic unit 58 from the organic substance detector 57 including the photoelectric conversion element 19 . When the organic matter detection signal is input from the organic matter detector 57, the arithmetic unit 58 labels the foreign matter recognized by the foreign matter detection signal from the foreign matter detector 58 as an organic substance.

なお、レジストの残りがある場合のように、有機動検出
器57から有機物検出信号が出力されても、異物検出器
58から異物検出信号が出力されない場合もある。
Note that even if the organic motion detector 57 outputs an organic substance detection signal, the foreign substance detector 58 may not output a foreign substance detection signal, such as when there is a residual resist.

載物部材1aの移動によって、スポット光2によるウェ
ハ2の走査が終了すると、演算装置5Bは、X方向位置
検出器52、回転位置検出器54からの位置信号に応じ
て(演算装置58は、X方向最大移動位置及び最大回転
数になるまで、X方向駆動装置53、回転駆動装置55
を制御する)、X方向駆動装置53によって、載物部材
1aを初期位置に戻す、また、演算装置58は、メモリ
に記憶された異物の存在する座標値を表示器60に表示
せしめる。その際、有機物のラベリングのあるものは、
異物が有機物であることを併せて表示する。
When the scanning of the wafer 2 by the spotlight 2 is completed by the movement of the mounting member 1a, the arithmetic device 5B (the arithmetic device 58, The X-direction drive device 53 and the rotation drive device 55 until the X-direction maximum movement position and maximum rotation speed are reached.
), the X-direction drive device 53 returns the mounting member 1a to the initial position, and the arithmetic device 58 causes the display 60 to display the coordinate value of the foreign object stored in the memory. At that time, those with organic labeling,
It is also indicated that the foreign matter is organic.

また、不図示のキーボード等からのオペレータの指示に
より、演算装置58は有機物の分析を行なうよう動作す
る。すなわち、演算装置58は、有機物のラベリングの
ある座標位置に載物部材1aがくるように(この位置は
、微小異物3がほぼ対物レンズ7の光軸に一致する位置
である)、メモリの内容に応じてX方向駆動装置53、
回転駆動装置55を順次制御する。具体的には、演算装
置58はまず初期座標位置から順次有機物のラベリング
のある座標位置をメモリにて検索し、有機物のラベリン
グの座標位置に載物部材1aを移動し、分光器Aの格子
駆動装置59に制御信号を出力して回折格子16を波長
スキャンさせる。その結果、光電変換素子19の出力と
格子駆動装置59の制御信号との同期を取ることで、演
算装置58は測定座標位置の有機物の波長スペクトルを
得ることができる。このデータはメモリに記憶される。
In addition, the arithmetic unit 58 operates to analyze organic substances in response to an operator's instructions from a keyboard (not shown) or the like. That is, the arithmetic unit 58 calculates the contents of the memory so that the mounting member 1a is located at the coordinate position where the organic matter is labeled (this position is the position where the minute foreign matter 3 approximately coincides with the optical axis of the objective lens 7). X-direction drive device 53 according to
The rotation drive device 55 is sequentially controlled. Specifically, the arithmetic unit 58 first searches the memory for a coordinate position where an organic substance is labeled sequentially from the initial coordinate position, moves the mounting member 1a to the coordinate position where the organic substance is labeled, and drives the grating of the spectrometer A. A control signal is output to the device 59 to cause the diffraction grating 16 to scan the wavelength. As a result, by synchronizing the output of the photoelectric conversion element 19 and the control signal of the grating drive device 59, the arithmetic device 58 can obtain the wavelength spectrum of the organic substance at the measurement coordinate position. This data is stored in memory.

このように、全ての有機物の波長スペクトルが得られる
と、演算装置58はあらかじめメモリに記憶されていた
各種の有機物の波長スペクトルとの比較対応を測定した
波長スペクトルの各々に対して行い、物質の同定を行っ
て、座標値と共に、物質名を表示器60に表示する。
When the wavelength spectra of all the organic substances are obtained in this way, the calculation device 58 compares each of the measured wavelength spectra with the wavelength spectra of various organic substances previously stored in the memory, and calculates the wavelength spectra of the substances. Identification is performed and the substance name is displayed on the display 60 along with the coordinate values.

第5図は本発明の第2実−例であり、第1図と同機能の
ものには同符号を付して説明を省略する。
FIG. 5 shows a second example of the present invention, and parts with the same functions as those in FIG. 1 are given the same reference numerals and their explanation will be omitted.

全反射鏡21より反射された光は、凹面回折格子27に
より分光され、リニアイメージセンサアレイ2日上に螢
光スペクトルが結像する。凹面回折格子27は、回折格
子を回転させず、広範囲の波長の光を一度に分光できる
特徴をもっている。28上に結像された螢光スペクトル
は、28により一度に光電変換され、データ処理部30
に送られるので、第1図の例に比べて高速化が可能とな
る。
The light reflected by the total reflection mirror 21 is separated by a concave diffraction grating 27, and a fluorescence spectrum is imaged on the linear image sensor array. The concave diffraction grating 27 has a feature that it can separate light of a wide range of wavelengths at once without rotating the diffraction grating. The fluorescence spectrum imaged on 28 is photoelectrically converted at once by 28, and then sent to a data processing section 30.
Since the data is sent to , it is possible to increase the speed compared to the example shown in FIG.

〔発明の効果〕〔Effect of the invention〕

以上のように本発明によれば、光ビームの斜め入射によ
る散乱光と垂直入射による螢光を同位置、同範囲の照野
からの微小異物のものとして、該散乱光、該螢光の波長
の差に基づいて、同時に測光することが可能となり、該
微小異物の無機、有機の判定をウェハまたはそれ以外の
検査対象物の全領域を高速で行なうことができる。
As described above, according to the present invention, scattered light caused by oblique incidence of a light beam and fluorescent light caused by vertical incidence are treated as microscopic foreign objects from the same position and same range of illumination field, and the wavelengths of the scattered light and fluorescent light are Based on the difference, it becomes possible to perform photometry simultaneously, and it is possible to quickly determine whether the minute foreign matter is inorganic or organic over the entire area of a wafer or other object to be inspected.

また、有機物からの前記螢光を分光器を用いて、高速で
定性分析を行なうことで物質の同定ができさらに、散乱
光、前記螢光をリニアイメージセンサ−アレイを用いた
マルチチャンネル型の分光器を用いて測光することによ
り、前記無機物、前記有機物の判定、及び前記有機物の
定性分析が同時に検出可能となる。
In addition, substances can be identified by qualitatively analyzing the fluorescent light from organic substances using a spectrometer at high speed. By photometry using a device, it becomes possible to simultaneously detect the inorganic substance, the organic substance, and the qualitative analysis of the organic substance.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の第1実施例の光学系を示す図、第2図
は照射位置近傍の斜視図、第3図は原理説明図、第4図
は第1実施例の電気ブロック図、第5図は本発明の第2
実施例の光学系を示す図、である。 (主要部分の符号の説明) 1・・・ステージ、 4・・・第1照明光源、8・・・
第2照明光源、 11.1日・・・グイクロイックミラー19.20・・
・光電変換素子。 出願人  日本光学工業株式会社
Fig. 1 is a diagram showing the optical system of the first embodiment of the present invention, Fig. 2 is a perspective view near the irradiation position, Fig. 3 is a diagram explaining the principle, Fig. 4 is an electrical block diagram of the first embodiment, FIG. 5 shows the second embodiment of the present invention.
It is a figure showing the optical system of an example. (Explanation of symbols of main parts) 1... Stage, 4... First illumination light source, 8...
2nd illumination light source, 11.1 day... Gikroic mirror 19.20...
・Photoelectric conversion element. Applicant Nippon Kogaku Kogyo Co., Ltd.

Claims (1)

【特許請求の範囲】  平面基板に斜め方向からスポット光を投射する第1照
明手段と、 前記平面基板にその表面に垂直な方向から前記スポット
光の照射位置に重なるように、励起光を投射する第2照
明手段と、 前記平面基板を載置して2次元的に移動し、前記スポッ
ト光によって前記平面基板を2次元的に走査させる走査
手段と、 前記スポット光による前記平面基板からの散乱光と前記
励起光による前記平面基板からのケイ螢光とを受光する
と共に、前記散乱光と前記螢光とを波長分離して各々の
光電変換信号を出力する受光手段と、 前記散乱光の光電変換信号から前記平面基板上の微小異
物の存否を、また、前記螢光の光電変換信号から前記平
面基板上の有機物の存否をそれぞれ判定し、表示する演
算表示手段と、 を有することを特徴とする微小異物検査装置。
[Scope of Claims] First illumination means for projecting a spot light onto a flat substrate from an oblique direction; and projecting excitation light onto the flat substrate from a direction perpendicular to the surface thereof so as to overlap the irradiation position of the spot light. a second illumination means; a scanning means that places the flat substrate and moves it two-dimensionally, and scans the flat substrate two-dimensionally with the spot light; light scattered from the flat substrate by the spot light; and a fluorescent light from the planar substrate caused by the excitation light, a light receiving means for wavelength-separating the scattered light and the fluorescent light, and outputting respective photoelectric conversion signals; and photoelectric conversion of the scattered light. It is characterized by comprising: calculation display means for determining and displaying the presence or absence of minute foreign matter on the flat substrate from a signal and the presence or absence of an organic matter on the flat substrate from the photoelectric conversion signal of the fluorescence, respectively. Micro foreign matter inspection device.
JP45388A 1988-01-05 1988-01-05 Micro foreign matter inspection device Expired - Fee Related JPH0795040B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP45388A JPH0795040B2 (en) 1988-01-05 1988-01-05 Micro foreign matter inspection device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP45388A JPH0795040B2 (en) 1988-01-05 1988-01-05 Micro foreign matter inspection device

Publications (2)

Publication Number Publication Date
JPH01176932A true JPH01176932A (en) 1989-07-13
JPH0795040B2 JPH0795040B2 (en) 1995-10-11

Family

ID=11474213

Family Applications (1)

Application Number Title Priority Date Filing Date
JP45388A Expired - Fee Related JPH0795040B2 (en) 1988-01-05 1988-01-05 Micro foreign matter inspection device

Country Status (1)

Country Link
JP (1) JPH0795040B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04165641A (en) * 1990-10-30 1992-06-11 Nec Corp Inspecting device for external appearance of wafer
EP0838850A2 (en) * 1996-10-24 1998-04-29 Hamamatsu Photonics K.K. Method for placing flourescent single molecules on surface of substrate and method for visualizing structural defect of surface of substrate
KR100783309B1 (en) * 2006-02-15 2007-12-10 주식회사 동진쎄미켐 System for testing a flat panel display device
JP2017203781A (en) * 2012-05-15 2017-11-16 ザ・ボーイング・カンパニーThe Boeing Company Contamination identification system

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04165641A (en) * 1990-10-30 1992-06-11 Nec Corp Inspecting device for external appearance of wafer
EP0838850A2 (en) * 1996-10-24 1998-04-29 Hamamatsu Photonics K.K. Method for placing flourescent single molecules on surface of substrate and method for visualizing structural defect of surface of substrate
EP0838850A3 (en) * 1996-10-24 1999-05-06 Hamamatsu Photonics K.K. Method for placing flourescent single molecules on surface of substrate and method for visualizing structural defect of surface of substrate
US5965446A (en) * 1996-10-24 1999-10-12 Hamamatsu Photonics K.K. Method for placing fluorescent single molecules on surface of substrate and method for visualizing structural defect of surface of substrate
KR100783309B1 (en) * 2006-02-15 2007-12-10 주식회사 동진쎄미켐 System for testing a flat panel display device
JP2017203781A (en) * 2012-05-15 2017-11-16 ザ・ボーイング・カンパニーThe Boeing Company Contamination identification system

Also Published As

Publication number Publication date
JPH0795040B2 (en) 1995-10-11

Similar Documents

Publication Publication Date Title
US5805278A (en) Particle detection method and apparatus
US5659390A (en) Method and apparatus for detecting particles on a surface of a semiconductor wafer having repetitive patterns
US6956644B2 (en) Systems and methods for a wafer inspection system using multiple angles and multiple wavelength illumination
KR920007196B1 (en) Method and apparatus for detecting foreign matter
US7023954B2 (en) Optical alignment of X-ray microanalyzers
JP2003149159A (en) System and method for simultaneous or continuous, multiple, slant-viewed specimen defect inspection
US20080068593A1 (en) Method and apparatus for detecting defects
US5861952A (en) Optical inspection method and apparatus including intensity modulation of a light beam and detection of light scattered at an inspection position
JP2008096430A (en) Method and apparatus for detecting defect
KR20020019073A (en) Optical inspection method and apparatus utilizing a variable angle design
US6208750B1 (en) Method for detecting particles using illumination with several wavelengths
JP2015537218A (en) Inspection beam shaping for improved detection sensitivity
US7924517B2 (en) Spatial filter, a system and method for collecting light from an object
US7292341B2 (en) Optical system operating with variable angle of incidence
JPS61104243A (en) Method and apparatus for detecting foreign matter
JP3185878B2 (en) Optical inspection equipment
JP2003017536A (en) Pattern inspection method and inspection apparatus
JPH01176932A (en) Fine foreign matter inspection device
JPH03189545A (en) Defect inspecting device
JPH05332934A (en) Spectroscope
JPH02183147A (en) Fine foreign matter inspecting device
JP4136891B2 (en) Fluorescence measurement device for measuring fluorescence image / spectrum
JPH08334317A (en) Measuring microscope
JP2000193434A (en) Foreign substance inspecting device
JPH0646182B2 (en) Apparatus and method for inspecting foreign matter on mask

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees