JPS61104243A - Method and apparatus for detecting foreign matter - Google Patents

Method and apparatus for detecting foreign matter

Info

Publication number
JPS61104243A
JPS61104243A JP59225714A JP22571484A JPS61104243A JP S61104243 A JPS61104243 A JP S61104243A JP 59225714 A JP59225714 A JP 59225714A JP 22571484 A JP22571484 A JP 22571484A JP S61104243 A JPS61104243 A JP S61104243A
Authority
JP
Japan
Prior art keywords
foreign object
object detection
detection device
photoelectric conversion
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59225714A
Other languages
Japanese (ja)
Other versions
JPH0435025B2 (en
Inventor
Mitsuyoshi Koizumi
小泉 光義
Yoshimasa Oshima
良正 大島
Minoru Tanaka
稔 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP59225714A priority Critical patent/JPS61104243A/en
Priority to US06/792,320 priority patent/US4740079A/en
Publication of JPS61104243A publication Critical patent/JPS61104243A/en
Publication of JPH0435025B2 publication Critical patent/JPH0435025B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/94Investigating contamination, e.g. dust
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/47Scattering, i.e. diffuse reflection
    • G01N2021/4704Angular selective
    • G01N2021/4711Multiangle measurement
    • G01N2021/4721Multiangle measurement using a PSD
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/21Polarisation-affecting properties
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/95Investigating the presence of flaws or contamination characterised by the material or shape of the object to be examined
    • G01N21/9501Semiconductor wafers

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)
  • Preparing Plates And Mask In Photomechanical Process (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)

Abstract

PURPOSE:To detect fine foreign matter stably with high sensitivity, by detecting the ratio of scattering light signals based on illumination having change in scattering effect. CONSTITUTION:A polarization beam splitter 150 has a characteristic for reflecting a P-polarized beam component and permitting the passage of an S-polarized beam component. The output ratio VP/VS of the output VP of a photoelectric converter 7L and the output VS from a photoelectric converter 7H is operated by an analogue ratio comparing circuit 100 and binarized on the basis of a threshold value (m) in a binarization circuit 101 to enable the detection of small foreign matter. If a solid image pick-up array is used in place of the photoelectric converters 7H, 7L, the enhancement of detection sensitivity is attained. In this case, a plurality of analogue comparing circuits 100 and binarization circuits 101 are used to simultaneously perform analogue comparison in parallel.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は、半導体LSIウェハまたはマスク特にLSI
製造中間工程でのパターン付ウェハ上等の微小異物を高
速、高感度で検出する異物検査に好適な検出法及びその
装置に関する。
Detailed Description of the Invention [Field of Application of the Invention] The present invention relates to semiconductor LSI wafers or masks, particularly LSI
The present invention relates to a detection method and apparatus suitable for foreign particle inspection that detects microscopic foreign particles on patterned wafers, etc. at high speed and with high sensitivity during intermediate manufacturing steps.

〔発明の背景〕[Background of the invention]

従来のウェハ上の異物検査装置では、(I)レーザ光の
一次元高速走査と試料の並進低速移動の徂み合せや(n
)試料の高速回転と並進低速移動との組合せによるら線
状走査を用いて、試料全面の走査・検出を行っていた。
Conventional foreign particle inspection equipment on wafers uses (I) a combination of one-dimensional high-speed scanning of the laser beam and low-speed translational movement of the sample;
) The entire surface of the sample was scanned and detected using linear scanning, which is a combination of high-speed rotation and low-speed translation of the sample.

又、特開昭57−80546(公知例1)では自己走査
型−次元光電変換素子アレイの電気的走査と試料低速移
動を組み合せて上記(I)と同等の走査を実現している
Furthermore, in Japanese Patent Application Laid-Open No. 57-80546 (Public Patent Application 1), scanning equivalent to the above (I) is realized by combining electrical scanning of a self-scanning type dimensional photoelectric conversion element array and low-speed movement of the sample.

更に、A、D、Gara:Automatic Mic
rocircuit andWafer In5pec
tion、Electronics Te5t、Vol
、4゜No、5.May 1981.pp、6O−70
(公知例2)は試料ウェハの半径位置に自己走査型−次
元光電変換素子アレイを配置し、これと試料の回転移動
を組み合せて上記(n)と同等の走査を実現している。
Furthermore, A, D, Gara: Automatic Mic
rocircuit and Wafer In5pec
tion, Electronics Te5t, Vol.
, 4°No, 5. May 1981. pp, 6O-70
In (Known Example 2), a self-scanning dimensional photoelectric conversion element array is arranged at a radial position of the sample wafer, and this is combined with rotational movement of the sample to realize scanning equivalent to the above (n).

しかし、公知例1,2の方法では、個々の光電変換素子
絵素の隣接部に存在する不感帯が異物を走査した場合の
異物の1見逃し“を避けることが出来ない。厳密にこれ
を避づる為には、不感帯をカバーする様に複数の光電素
子アレイを重複して設置する必要がある。これは必要以
上に信号処理回路量を多くして、かつ信頼性を低下させ
る原因となる。しかし、光電素子アレイを重複しなくて
も上記不感帯幅に比べて検出すべき異物の大きさが十分
大きい場合や、光電変換素子絵素幅の合計に比べ不感帯
幅の合計が無視出来る程度に小さい場合には、上記ゝ見
逃し“は大きな問題とならない。公知例1,2の方法で
はこのような観点から不感帯による1見逃し“は無視し
ている。
However, in the methods of Known Examples 1 and 2, it is impossible to avoid "missing one foreign object" when scanning a foreign object due to the dead zone existing in the adjacent portion of each photoelectric conversion element picture element.This is strictly avoided. In order to achieve this, it is necessary to install multiple photoelectric element arrays overlappingly to cover the dead zone.This increases the amount of signal processing circuitry more than necessary and causes a decrease in reliability.However, , when the size of the foreign object to be detected is sufficiently large compared to the above dead zone width even if the photoelectric element arrays are not overlapped, or when the total dead zone width is small enough to be ignored compared to the total width of the photoelectric conversion element picture elements. In this case, the above-mentioned ``overlook'' is not a big problem. From this point of view, in the methods of Known Examples 1 and 2, "1 miss" due to the dead zone is ignored.

〔パターン付ウェハ上の異物検出〕[Detection of foreign matter on patterned wafer]

LSI製造の中間工程でのパターン付ウェハ上の異物検
査作業は、製品歩留り向上、信頼性向上の為に不可欠で
ある。この作業の自動化は特開昭55−149829、
特開昭54−101390、特開昭55−94145、
特開昭56−30630等の一連の特許に示されている
様に偏光を利用した検出方法により実現されている。こ
の原理を第43図〜第50図を使用して説明する。
Inspection of foreign substances on patterned wafers during the intermediate process of LSI manufacturing is essential for improving product yield and reliability. The automation of this work is disclosed in Japanese Patent Application Laid-Open No. 55-149829.
JP-A-54-101390, JP-A-55-94145,
This is realized by a detection method using polarized light, as shown in a series of patents such as Japanese Patent Application Laid-Open No. 56-30630. This principle will be explained using FIGS. 43 to 50.

第43図に示す如く、照明光4をウェハ1表面に対しで
傾斜角度φで射熱したのみでは、パターン2と異物3か
ら同時に反射光と散乱光5゜6が発生するので、パター
ン2から異物3のみを弁別して検出することは出来ない
。そこで照明光4として、偏光レーザ光を使用し、異物
3を検出する工夫を行った。
As shown in FIG. 43, if only the illumination light 4 is radiated at an inclination angle φ to the surface of the wafer 1, reflected light and scattered light 5°6 will be generated from the pattern 2 and the foreign matter 3 at the same time. It is not possible to distinguish and detect only the foreign object 3. Therefore, a device was devised to detect the foreign matter 3 by using polarized laser light as the illumination light 4.

第44図(a)に示す如く、ウェハ1上に存在するパタ
ーン2にS偏光レーザ光4を照射する。(ここで、レー
ザ光4の電気ベクトル10がウェハ表面に平行な場合を
S偏光レーザ照明と呼ぶ)一般にパターン20表面凹凸
は微視的に見ると照明光の波長に比べ十分小さく、光学
的に清らかであるので、その反射光5もS偏光成分11
が保たれる。従って、S偏光遮光の検光子13を反射光
5光路中に設置すれば、反射光5は遮光され、光電変換
素子7には到達しない。一方、第44図(b)に示す如
く、異物3からの散乱光6にはS偏光成分11に加えて
P偏光成分12も含まれる。
As shown in FIG. 44(a), a pattern 2 existing on a wafer 1 is irradiated with S-polarized laser light 4. (Here, when the electric vector 10 of the laser beam 4 is parallel to the wafer surface, it is called S-polarized laser illumination.) In general, the surface irregularities of the pattern 20 are microscopically small enough compared to the wavelength of the illumination light, and optically Since it is clear, the reflected light 5 also has an S polarization component 11.
is maintained. Therefore, if the analyzer 13 for blocking S-polarized light is installed in the optical path of the reflected light 5, the reflected light 5 will be blocked and will not reach the photoelectric conversion element 7. On the other hand, as shown in FIG. 44(b), the scattered light 6 from the foreign object 3 includes a P-polarized light component 12 in addition to the S-polarized light component 11.

これは、異物3表面は粗く、偏光が解消される結果、P
偏光成分12が発生するからである。従って、検光子1
3を通過するP偏光成分14を光電変換素子7により検
出すれば、異物3の検出が出来る。
This is because the surface of the foreign object 3 is rough and the polarization is canceled.
This is because the polarized light component 12 is generated. Therefore, analyzer 1
If the photoelectric conversion element 7 detects the P-polarized light component 14 passing through the foreign object 3, the foreign object 3 can be detected.

ここでパターン反射光は、第43図に示す様にレーザ光
4に・対してパターン2の長手方向となす角度が直角の
場合には、反射光5は検光子13により完全に遮光され
るが、この角度が直角と異なる場合は完全には遮光され
ない。この考察は計測自動制御学会論文集のMol 、
 17 、No、 2. p232   4〜p242
.1981 、に述べている。これによれは、この角度
が直角より±30’以内の範囲のパターンからの反射光
のみが、ウェハ上方に設置した対物レンズに入射するの
で、この範囲のパターン反射光5は検光子13により完
全には遮光されないが、その強度は2〜3μm異物散乱
光と弁別出来る程度に小さいので、実用上問題とならな
い。
Here, as shown in FIG. 43, when the angle between the pattern 2 and the longitudinal direction of the laser beam 4 is at right angles, the reflected light 5 is completely blocked by the analyzer 13. , if this angle is different from the right angle, the light will not be completely blocked. This discussion is published in the Proceedings of the Society of Instrument and Control Engineers, Mol.
17, No, 2. p232 4-p242
.. 1981. This is because only the reflected light from the pattern whose angle is within ±30' from the right angle enters the objective lens installed above the wafer. Although the light is not blocked, its intensity is small enough to be distinguished from the 2-3 μm foreign object scattered light, so it does not pose a practical problem.

ここで偏光レーザ光4の傾斜角度φは1″〜!程度に設
定している。これは以下に示す理由による。第45図に
°示す英検では、S偏光レーザ4に対する2μITIφ
異物散乱光の検元子13通過成分140強度Vsとパタ
ーン反射光5の検光子通過成分強evpを対物L/7ズ
9(倍率40X 、 N、A=0.55)を用いて測定
した。実験結果を第46図に示す。
Here, the inclination angle φ of the polarized laser beam 4 is set to about 1'' to !. This is for the reason shown below. In the Eiken test shown in FIG.
The intensity Vs of the component 140 of the foreign body scattered light passing through the analyzer 13 and the intensity evp of the component passing the analyzer of the pattern reflected light 5 were measured using an objective L/7 lens 9 (magnification 40X, N, A=0.55). The experimental results are shown in FIG.

これはレーザ傾斜角度φを横軸にとり、異物・パターン
の弁別比VS/V、をプロットした。同図より傾斜角度
φが!;′以下の場合にVsはVpと容易に弁別出来る
ので、安定な異物検出が可能となる。又、設計的な事柄
を考慮すると、φ=1°〜36が最適である。(特開昭
56−30630参照)ここで、レーザ光源15は左右
から2ケ用いているのは、異方性を有する散乱光を発生
する異物に対して安定な検出を可能とする目的からで次
に、この検出原理を用いた異物検査方法を第47図〜第
50図に説明する。
This plotted the foreign matter/pattern discrimination ratio VS/V with the laser inclination angle φ as the horizontal axis. From the same figure, the inclination angle φ is! ;' Since Vs can be easily distinguished from Vp in the following cases, stable foreign matter detection becomes possible. Further, considering design matters, φ=1° to 36 is optimal. (Refer to Japanese Unexamined Patent Publication No. 56-30630) The reason why two laser light sources 15 are used from the left and right is to enable stable detection of foreign objects that generate anisotropic scattered light. Next, a foreign substance inspection method using this detection principle will be explained with reference to FIGS. 47 to 50.

第47図(a)に示す様に、検出範囲を制限する為にス
リット8を試料結像面に設ける。これによりスリット8
の開口部の試料上への投影面積8aの範囲内の散乱光の
みが一度に検出されるので、この面積内でのパターン反
射光P成分の積算強度14Fに比べて異物散乱光P成分
14dが十分大゛きければ、異物3が安定に検出出来る
。故に、この面積8aは検出すべき異物の大きさく2〜
3μm)と同程度の大きさにすれば、検出感度が最適と
なるが、第50図(b)に示す様な走査回数が多くなり
、長時間の検査時間を有する。逆に開口面積8aを大き
くすると、短時間に検査が出来るが、検出感度が劣化す
る結果となる。・これを考慮して、現在では面積8aを
IOX 200μmとして、2〜3μmの異物を約2分
で(150(mφウェハの場合)検査している。この様
子を第48図、第49図を用いて説明する。
As shown in FIG. 47(a), a slit 8 is provided on the sample imaging surface to limit the detection range. This allows slit 8
Since only the scattered light within the projected area 8a of the aperture onto the sample is detected at a time, the foreign object scattered light P component 14d is smaller than the integrated intensity 14F of the pattern reflected light P component within this area. If it is large enough, foreign matter 3 can be detected stably. Therefore, this area 8a is the size of the foreign object to be detected.
If the size is about the same as 3 μm), the detection sensitivity will be optimal, but the number of scans will be increased as shown in FIG. 50(b), and the inspection time will be long. Conversely, if the aperture area 8a is increased, inspection can be performed in a shorter time, but the detection sensitivity will deteriorate. - Taking this into account, currently the area 8a is set to IOX 200 μm, and foreign particles of 2 to 3 μm are inspected in about 2 minutes (150 (in the case of mφ wafer)). This situation is shown in Figures 48 and 49. I will explain using

まず、第48図ではウェハ表面の平面図(a)と断面図
(b)を示す。パターン2には(1)パターンの僅かな
凹みや(II)レーザ光4の照射方向に対して直角以外
の角度を有する個所があり、この個所の各々から僅かな
散乱光P成分14pが発生する。
First, FIG. 48 shows a plan view (a) and a cross-sectional view (b) of the wafer surface. The pattern 2 has (1) a slight depression in the pattern and (II) a part having an angle other than perpendicular to the irradiation direction of the laser beam 4, and a small amount of scattered light P component 14p is generated from each of these parts. .

一方、0.5〜2μm程度の大きさの小異物3aと2μ
m以上の大異物3bからは、上記(I) 、 (II)
の個所の各々に比べて大きな強度のP成分14dが発生
する。
On the other hand, small foreign matter 3a with a size of about 0.5 to 2 μm and 2μ
From the large foreign matter 3b with a size of m or more, the above (I) and (II)
A P component 14d having a larger intensity than each of the locations is generated.

第49図には、開口8aが試料上を走査した場合の光電
変換素子7の信号出力を示す。同図(a)ではP成分1
4p(回路パターン)及び14d(異物)の試料上の分
布を示す。この分布上を開口8aが走査すると同図(b
)に示す映像信号出力Vを得、これを二値化すると同図
(C)に示す欠陥信号が得られる。この例では小異物3
aとパターン2のエツジからの出力が同一であるので、
破線で示す閾値はこの出力より高い位置に設定せざるを
得ないので、この結果、大異物のみの検出に限定される
FIG. 49 shows the signal output of the photoelectric conversion element 7 when the aperture 8a scans over the sample. In the same figure (a), P component 1
The distribution of 4p (circuit pattern) and 14d (foreign matter) on the sample is shown. When the aperture 8a scans this distribution, the same figure (b)
) is obtained, and when it is binarized, the defect signal shown in (C) of the same figure is obtained. In this example, small foreign object 3
Since the output from edge a and pattern 2 are the same,
Since the threshold indicated by the broken line must be set at a higher position than this output, as a result, detection is limited to only large foreign objects.

しかし、256KbitメモリーI’lIに代表される
高集積LSIの製造においては、1μmの大きさの異物
の存在が製品歩留りに大きく影響するので、1μm異物
の検出感度が必要となる。
However, in the manufacture of highly integrated LSIs such as the 256 Kbit memory I'lI, the presence of foreign matter of 1 μm in size greatly affects the product yield, so a detection sensitivity of 1 μm of foreign matter is required.

これは第47図に示す装置で開口8aを5X5μm2以
下に制限すれば、前記(1) 、 (It)の散乱光P
成分の積算効果が、開口8aが10 X 200μmの
場合に比べて低減されるので、その結果、1μm異物検
出が可能となる。しかし、この場合、検査時間が約40
倍となり、製造スルーブツトとの同期が取れず、実用化
に問題がある。
If the aperture 8a is limited to 5×5 μm2 or less in the apparatus shown in FIG. 47, the scattered light P of (1) and (It) can be
Since the cumulative effect of the components is reduced compared to the case where the aperture 8a is 10 x 200 μm, it is possible to detect a foreign object of 1 μm. However, in this case, the inspection time is about 40 minutes.
This makes it difficult to synchronize with the manufacturing throughput, which poses a problem in practical application.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、微細な小異物をパターンと弁別して高
速に検査する方法を提供することにある。
An object of the present invention is to provide a method for distinguishing minute foreign objects from patterns and inspecting them at high speed.

〔発明の概要〕[Summary of the invention]

本発明は、異物に対して散乱効果の大きな偏光レーザ照
明に加えて、散乱効果の小さな照明l との2稿照明を行う。前者照明による散乱光は異物で発
生し易く、後者照明による散乱光はパターンで発生し易
いことに着目して、両者散乱光信号の比を検出すること
により、微細な異物を更に安定・高感度に検出できるよ
うにしたことにある。
In the present invention, in addition to polarized laser illumination that has a large scattering effect on foreign objects, dual illumination is performed with illumination l that has a small scattering effect. Focusing on the fact that the scattered light from the former illumination is likely to be generated by foreign objects, and the scattered light by the latter illumination is likely to be generated by patterns, by detecting the ratio of the two scattered light signals, it is possible to detect minute foreign objects more stably and with high sensitivity. The reason is that it can be detected.

又、本発明では個々の両輪の受光部の大きさが5×5μ
m (試料面上に換算)程度以下の複数の光電変換固体
撮像素子を使用し、各々の素子からの出力信号を同時に
並列比較処理することにより、高速性を劣化せずに、高
感度に異物検査を行うことにある。
Furthermore, in the present invention, the size of the light receiving portion of each of the two wheels is 5×5μ.
By using multiple photoelectric conversion solid-state imaging devices with a size of less than m (calculated on the sample surface) and simultaneously performing parallel comparison processing on the output signals from each device, foreign particles can be detected with high sensitivity without deteriorating high speed. The purpose is to conduct an inspection.

〔発明の実施例〕[Embodiments of the invention]

第1図〜第13図を用いて本発明の実施例を詳述する。 Embodiments of the present invention will be described in detail with reference to FIGS. 1 to 13.

第1図では、従来例第50図のスリット8に代り、固体
撮像素子アレイ20を用いる様子を示すd第2図は固体
撮像素子アレイ20の例を説明する。受光部20aはシ
リコンフォトダイオードやGaAsPフォトダイオード
であり、このうちで特にPIN接合型のものが、高速応
答性、高感度の特性を有し、本発明の用途に最適である
。各々の受光部20a(画素)の大きさの幅は500μ
mであり、隣接する画素の間には幅50μmの不感帯が
ある。画素数は40ケを有している場合、例えば検出系
の総合倍率100倍(対物レンズ90倍率40×とリレ
ーレンズ(図示せず)の倍率2.5Xの場合)とすれば
、1画素の大きさは試料面上で5×5μmとなり、結局
5X220μmの範囲を検出しながら走査していること
(なり、従来と同程度の検査速度となる。
FIG. 1 shows how a solid-state image sensor array 20 is used in place of the slit 8 of the conventional example shown in FIG. 50. FIG. 2 illustrates an example of the solid-state image sensor array 20. The light receiving section 20a is a silicon photodiode or a GaAsP photodiode, and among these, a PIN junction type photodiode has characteristics of high speed response and high sensitivity, and is most suitable for the use of the present invention. The width of each light receiving part 20a (pixel) is 500μ
m, and there is a dead zone with a width of 50 μm between adjacent pixels. When the number of pixels is 40, for example, if the total magnification of the detection system is 100x (objective lens 90x magnification and relay lens (not shown) magnification 2.5x), one pixel The size is 5 x 5 μm on the sample surface, and in the end, a range of 5 x 220 μm is scanned while being detected (this results in an inspection speed comparable to that of the conventional method).

この固体撮像素子アレイ20の効果を第3図に説明する
。比較の為、第50図に示す従来例を同図右(d) 、
 +e) 、 (f)に示す。同図左(a) 、 (b
l 、 (C)に;ま簡単の為、画素数を5ケ(” +
 / 、’ + 1+ −)としている。同図(a)は
固体撮像素子アレイ20で走査する状態を示し、(b)
はそれによって得られる映像信号(SLl、Si1,8
Al、81−1.Sm1)を示し、(C)ハM値VTH
テ2 を化シタ信号(Sr1.S72.SA2゜S、E
2.S?FL2)を示す。画素ルの出力信号3A、を閾
値VTHで二値化すれば、二値化信号SA2は小異物3
aでも′1“となり、従来に比べて、感度向上が得られ
る。
The effects of this solid-state image sensor array 20 will be explained with reference to FIG. For comparison, the conventional example shown in Fig. 50 is shown on the right (d) of the same figure.
+e) and (f). Figure left (a), (b)
l, (C); For simplicity, the number of pixels is set to 5 (" +
/ ,' + 1+ -). (a) shows the state in which the solid-state image sensor array 20 scans, and (b)
is the video signal (SLl, Si1, 8
Al, 81-1. Sm1) and (C) C M value VTH
Convert the signal (Sr1.S72.SA2゜S, E
2. S? FL2) is shown. If the output signal 3A of the pixel 1 is binarized using the threshold value VTH, the binarized signal SA2 will be the small foreign object 3.
Even a becomes '1'', and sensitivity is improved compared to the conventional method.

第4図には、固体撮像素子アレイ20の各々の画素の信
号処理方法を示す。画素L−%の各々の出力は二値化回
路21で並列に同時に二値化されて、二値化信号(11
“)はOR回路22に導かれ、少なくても一つの両輪で
異物が検出された場合にOR回路の出力は11“となり
、異物メモリ23に入力する。この方法により、40ケ
の画素出力は同時並列処理され、自己走査型撮像素子を
用いた場合に比べて大幅な検査速度及び検出感度の向上
が計れる。
FIG. 4 shows a signal processing method for each pixel of the solid-state image sensor array 20. The output of each pixel L-% is simultaneously binarized in parallel by the binarization circuit 21, and a binarized signal (11
“) is led to the OR circuit 22, and if a foreign object is detected in at least one of the two wheels, the output of the OR circuit becomes 11” and is input to the foreign object memory 23. With this method, the outputs of 40 pixels are simultaneously processed in parallel, and inspection speed and detection sensitivity can be significantly improved compared to when a self-scanning image sensor is used.

しかしながら、固体撮像素子アレイ20の不感帯204
は以下に説明する欠点を生じさせる。この解決策を第5
図〜第9図に示す。
However, the dead zone 204 of the solid-state image sensor array 20
gives rise to the disadvantages explained below. This solution is the fifth
It is shown in FIGS.

第5図及び第7図に示す様に、固体撮像素子アレイ20
の配列方向と走査方向とが直角の場合で、画素すとjの
間の不感帯204と小異物3cの関係が同図の様な場合
には、小異物3cを見逃してしまう。(第5図の場合(
a)から(b)に走査される。)そこで、第6図及び第
8図に示す如く、固体撮像素子アレイ20の配列方向と
走査方向とを適当な角度(例えば45度)を有するよう
にすれば、上記見逃しを避けることが出来る。
As shown in FIGS. 5 and 7, the solid-state image sensor array 20
When the arrangement direction and the scanning direction are perpendicular, and the relationship between the dead zone 204 between pixels and j and the small foreign object 3c is as shown in the figure, the small foreign object 3c will be overlooked. (In the case of Figure 5 (
Scanned from a) to (b). ) Therefore, as shown in FIGS. 6 and 8, if the arrangement direction of the solid-state image sensor array 20 and the scanning direction are set at an appropriate angle (for example, 45 degrees), the above-mentioned oversight can be avoided.

(第6図の場合(a)から(b)、(b)から(C)と
走査される。)この角度は、両輪20aの形状が矩形の
場合には必ずしも4ダとする必要は無い。
(In the case of FIG. 6, scanning is performed from (a) to (b) and from (b) to (C).) This angle does not necessarily need to be 4 da when the shape of both wheels 20a is rectangular.

第8図では小異物3Cは画素l、Aにより重複して検出
されるので結果としてダブルカウントされる。しかシ、
このダブルカウントを避ける方法として特開昭56−1
32549や特開昭56−118187や特開昭57−
66345や特開昭56−126747や特開昭56−
118647で述べている方法を用いればよい。
In FIG. 8, the small foreign object 3C is detected redundantly by pixels 1 and A, resulting in double counting. However,
As a way to avoid this double counting, JP-A-56-1
32549, JP-A-56-118187, JP-A-57-
66345, JP-A-56-126747, JP-A-56-
118647 may be used.

第9図は、ら線状走査の場合での本発明の適用例を示す
FIG. 9 shows an example of application of the invention in the case of spiral scanning.

第10図は実施例の全体構成を示す。ウェハ1は真空チ
ェーブ41でウェハチャック40に吸着されながら、X
ステージ46及びYステージ49によ   7すXY方
向に移動する。固体撮像素子アレイ20で検出された異
物情報は二値化回路21、OR回路22を経て異物メモ
リ23を包含する制御回路32に至り、表示装置33で
表示される。
FIG. 10 shows the overall configuration of the embodiment. The wafer 1 is attracted to the wafer chuck 40 by the vacuum chamber 41 and
The stage 46 and the Y stage 49 move in the X and Y directions. Foreign object information detected by the solid-state image sensor array 20 passes through a binarization circuit 21 and an OR circuit 22 to a control circuit 32 including a foreign object memory 23, and is displayed on a display device 33.

本発明では画素の大きざを5×5μm程度以下にしてい
るので、ウェハ表面のうねりに起因する焦点ずれが検量
中に発生すると、異物検出感度が著しく低下する。そこ
で、自動焦点検出部30により、検査中に焦点ずれ量を
検出して、焦点機構用モーラ43のドライバー31にフ
ィードバックする構成を用いることが不可欠である。こ
の自動焦点機能の原理は第22回8ICB学術講演会前
刷集のp223〜p224に発表し、及び特開昭58−
70540に記載されている通りであるが、第11図〜
第13図を用いてこの原理を説明する。この方法は、試
料上のパターンに影響されずに安定に自動焦点を行うこ
とに特徴があるので、本発明には最適である。
In the present invention, the pixel size is set to about 5×5 μm or less, so if a defocus occurs during calibration due to undulations on the wafer surface, the foreign matter detection sensitivity will be significantly reduced. Therefore, it is essential to use a configuration in which the automatic focus detection section 30 detects the amount of defocus during the inspection and feeds it back to the driver 31 of the focusing mechanism mortar 43. The principle of this automatic focus function was announced on pages 223 to 224 of the 22nd 8ICB Academic Conference Preprint Collection, and
70540, but as shown in Fig. 11~
This principle will be explained using FIG. 13. This method is ideal for the present invention because it is characterized by stable automatic focusing without being affected by the pattern on the sample.

纂11図には自動焦点検出部3oの主要部を示す。FIG. 11 shows the main parts of the automatic focus detection section 3o.

縞パターンカラス板上の縞パターン60a 、 604
は各々対物レンズ9により試料上に投影されるが、各々
の合焦点位置は撮像素子アレイ2oの合焦点に対して若
干上がり−f゛ぎ及び下がりすぎに設定されている。各
々の縞パターン60a 、 604の試料上の像は対物
レンズ9で拡大され半透過ミラー34 、62で反射さ
れ、撮像素子61の上に結像される。
Striped pattern Striped pattern on the crow board 60a, 604
are respectively projected onto the sample by the objective lens 9, but the respective focal point positions are set slightly above and slightly below the focal point of the imaging element array 2o. The images of the respective striped patterns 60a and 604 on the sample are magnified by the objective lens 9, reflected by the semi-transmissive mirrors 34 and 62, and imaged onto the image pickup device 61.

第12図(a)はウェハ下りすぎ(Z(0)の場合、撮
像素子61上に結像される投影編パターンを示し、第1
2図(d)は第12図(a)に示す場合における撮像素
子61で検出される映像信号波形を示す。第″12図(
b)は合焦点位置(2=0)の場合、撮像素子61上に
結像される投影パターンを示し、第12図(C)は第1
2図(b)に示す場合における撮像素子61で検出され
る映像信号波形を示す。第12図(e)はウェハ上りす
ぎ(Zoo)の場合、撮像素子61上に結像される投影
縞パターンを示し、第12図(f)は第12図(C)に
示す場合における撮像素子61で検出される映像信号波
形を示す。
FIG. 12(a) shows a projection pattern that is imaged on the image sensor 61 when the wafer is too far down (Z(0)).
FIG. 2(d) shows the video signal waveform detected by the image sensor 61 in the case shown in FIG. 12(a). Figure ″12 (
b) shows the projection pattern imaged on the image sensor 61 in the case of the focused position (2=0), and FIG.
2 shows a video signal waveform detected by the image sensor 61 in the case shown in FIG. 2(b). FIG. 12(e) shows the projected fringe pattern imaged on the image sensor 61 when the wafer is too high (Zoo), and FIG. 12(f) shows the image sensor in the case shown in FIG. 12(C). 61 shows a video signal waveform detected at 61.

従って、撮像素子61の検出信号は撮像素子アレイ20
が合焦点の場合には、縞パターン60aと604に対応
する個所で等しくなるので両者の差゛信号は零となる。
Therefore, the detection signal of the image sensor 61 is the same as that of the image sensor array 20.
When is the focused point, the stripe patterns 60a and 604 are equal in location, so the difference signal between the two becomes zero.

一方、上がりすぎ(又は下がりすぎ)の場合には、撮像
素子610合焦点からのずれと差信号の出力の大きさが
対応するので、第13図に示すサーボ信号が得られる。
On the other hand, in the case of too much rise (or too much fall), the deviation from the in-focus point of the image sensor 610 corresponds to the magnitude of the output of the difference signal, so that the servo signal shown in FIG. 13 is obtained.

同図では試料面がアルミ面の場合と複雑なパターン(メ
モリーセル面)の場合で差信号の実測例を示す。これに
より、±0.5μm以内の焦点合せが可能となるので、
対物レンズ90倍率40×の場合には、安定した異物検
出が可能となる。自動焦点機構として、例えば第10図
に示すような、モータ43、斜面45、球44、板バネ
42を用いる構成が簡本である。
The figure shows an example of actual measurement of the difference signal when the sample surface is an aluminum surface and when the sample surface has a complex pattern (memory cell surface). This allows focusing within ±0.5 μm, so
When the objective lens has a magnification of 90x and a magnification of 40x, stable foreign object detection is possible. The autofocus mechanism has a simple configuration using a motor 43, a slope 45, a ball 44, and a leaf spring 42, as shown in FIG. 10, for example.

次に本発明の請求範囲に対応する説明を第14図〜第2
9図を用いて説明する。
Next, explanations corresponding to the scope of claims of the present invention will be given in Figures 14 to 2.
This will be explained using FIG.

まず、第14図、第15図を用いて基本的な原理を述べ
る。第47図の方法において、検光子13を取り除き、
偏光ビームスプリッタ150を設置すると第14図とな
る。ここで、スリット8H98Lは試料上の同一点を検
出している。偏光ビームスプリッタ150は、P偏光灰
分を反射し、S偏光成分を通過させる特性を有するので
、光電変換素子7Lの出力Vpは第47図(第49図)
と同一となる。これを第15図(a) l (b)に写
す。一方、第15図(C)のように走査されて光電変換
素子7Hからの出力Vsは第15図(d)に示す如くと
なる。(a)。
First, the basic principle will be described using FIGS. 14 and 15. In the method of FIG. 47, the analyzer 13 is removed,
When the polarizing beam splitter 150 is installed, FIG. 14 is obtained. Here, the slits 8H98L detect the same point on the sample. Since the polarizing beam splitter 150 has a characteristic of reflecting the P-polarized ash and passing the S-polarized component, the output Vp of the photoelectric conversion element 7L is as shown in FIG. 47 (FIG. 49).
is the same as This is shown in Figures 15(a) and 1(b). On the other hand, the output Vs from the photoelectric conversion element 7H after being scanned as shown in FIG. 15(C) becomes as shown in FIG. 15(d). (a).

(b)と(C) 、 (d)を比較すると、(a) 、
 (b)では異物の方がパターンに比べ出力が高(なり
、(C) 、 (d)ではパターンの方が出力が高くな
るうそこで、両者の出力比■V6をアナログ比較回路1
00で演算しく第15図(e)に示す)、二値化回路1
01において閾値mで二値化すると(第15図(f)に
示す)、(第49図における二値化では検出不可能であ
りた)小異物3aの検出が可能となることが判る。
Comparing (b) with (C) and (d), (a),
In (b), the output of the foreign object is higher than that of the pattern, and in (C) and (d), the output of the pattern is higher than that of the pattern.
00 (as shown in FIG. 15(e)), the binarization circuit 1
It can be seen that when 01 is binarized using the threshold value m (as shown in FIG. 15(f)), it becomes possible to detect the small foreign matter 3a (which could not be detected by the binarization in FIG. 49).

又、前述した固体撮像素子アレイ20H、20Lを光電
変換素子7H,7Lの代りに用いれば、検出感度向上が
計れる。この場合には、アナログ比較回路100と二値
化回路101は複数個用いてアナログ比較を同時に並列
的に行う必要がある   ?(第16図参照)。
Furthermore, if the solid-state image sensor arrays 20H and 20L described above are used in place of the photoelectric conversion elements 7H and 7L, detection sensitivity can be improved. In this case, it is necessary to use a plurality of analog comparison circuits 100 and binarization circuits 101 to simultaneously perform analog comparison in parallel. (See Figure 16).

以上の照明・検出法を(I[)型照明と呼ぶ。The above illumination/detection method is called (I[) type illumination.

次に第17図及び第18図を用い、(I)型照明を説明
する。これは、第46図に示す傾斜角度φによる異物と
パターンの出力特性を利用して第17図に示す如く、例
えば同時に低角度S偏光照明光15L(波長λ1)と高
角度S偏光照明光(波長λす15Hな同一試料点に照明
して、色分解用分岐プリズムと検光子151H,151
LでP成分のみをアレイ20H,20Lにより検出・比
較する方法である。
Next, type (I) illumination will be explained using FIGS. 17 and 18. For example, as shown in FIG. 17, by using the output characteristics of the foreign matter and the pattern due to the inclination angle φ shown in FIG. Illuminating the same sample point with wavelength λ15H, color separation branching prism and analyzer 151H, 151
In this method, only the P component in L is detected and compared using arrays 20H and 20L.

アレイ20H,20Lの出力と二値化法を第18図に示
す。
The outputs of the arrays 20H and 20L and the binarization method are shown in FIG.

第18図(a)は、異物3a 、 3bが存在する例え
ばSL上恍斜め下側よりレーザ光を照射した場合を示す
。同図(b)はその場合の出力信号VLを示し、同図(
C)はその二値信号を示す。第18図(d)は例えばS
L上に斜め上側よりレーザ光を照射した場合を示す。同
図(e)はその場合の出力信号VHを示す。
FIG. 18(a) shows a case in which a laser beam is irradiated from an obliquely lower side of the SL where foreign objects 3a and 3b are present, for example. Figure (b) shows the output signal VL in that case, and Figure (b) shows the output signal VL in that case.
C) shows the binary signal. FIG. 18(d) shows, for example, S
The case where the laser beam is irradiated onto L from diagonally above is shown. FIG. 4(e) shows the output signal VH in that case.

L 第18図(f)はτ7の信号波形を示し、同図(g)は
その二値信号を示す。
L FIG. 18(f) shows the signal waveform of τ7, and FIG. 18(g) shows its binary signal.

上記、照明・検光条件は第30図(q)でモデル化して
衣す。(I)型照明(Cおいては、上記のS偏光照明光
15L、15Hの使用のみに限らず、第30図(b)〜
(h)、第31図(a)〜(dlに示す種々の照明光・
検光の条件を用いることも出来る。この中で、異物の方
を強調する照明・検光条件(L)には(イ)S偏光照明
でP偏光灰分の検光又は(o) P偏光照明でP偏光成
分の検光のいずれかの条件を用いている。この理由は後
で詳しく述べる。
The above illumination and analysis conditions are modeled in Figure 30 (q). (I) type illumination (in C, the use is not limited to the above-mentioned S-polarized illumination lights 15L and 15H;
(h), various illumination lights shown in FIGS. 31(a) to (dl)
It is also possible to use conditions for light analysis. Among these, the illumination/analysis conditions (L) that emphasize foreign matter include either (a) analysis of P-polarized ash with S-polarized illumination, or (o) analysis of P-polarized components with P-polarized illumination. The following conditions are used. The reason for this will be explained in detail later.

一方、パターンの方を強調する照明−検光の条件Hは、
上記(イ)、(0)以外の場合ならよいので必ずしも偏
光を用いなくてもよい。(即ち通常のハロゲンランプ等
のインコヒーレント光を用いてもよく、これは第31図
(a)〜(d)で8+Pの記号で示す。) 上記、色分解用分岐プリズムは、特開昭55−  ・1
49829や特開昭56−43539で述べているダイ
クロイックプリズム(又はミラ、−)を設けることや、
光分岐用プリズム(半透過ミラー)と色フィルタ又は干
渉フィルタを組み合せて用いてもよい。
On the other hand, the illumination-analysis condition H that emphasizes the pattern is
Polarized light does not necessarily need to be used, as any cases other than (a) and (0) above may be used. (In other words, incoherent light such as an ordinary halogen lamp may be used, and this is shown by the symbol 8+P in FIGS. 31(a) to 31(d).) - ・1
Providing a dichroic prism (or mirror, -) as described in 49829 and JP-A-56-43539,
A light branching prism (semi-transmissive mirror) and a color filter or an interference filter may be used in combination.

また、照明光15H,15LはHe −Ne レーザ(
λ=6.328A)やGaAlAs L/−ザダイオー
ド(λ=7.800〜8.300人)やInGaAsP
 L/−ザダイオード(λ=ら異なる2種を這択すn、
ば、レンズ系]56Lにより試料面で絞られるので病い
照妾が夜られ、検出が更に安定になる。
In addition, the illumination lights 15H and 15L are He-Ne laser (
λ=6.328A), GaAlAs L/-the diode (λ=7.800~8.300A), and InGaAsP
L/-the diode (select two different types from λ=n,
For example, since the lens system 56L narrows the focus at the sample surface, the ill light is removed and the detection becomes more stable.

上述した様に、(1)型照明では、異物強調照明(L)
にはげ)又は(ロ)の菌性を満たし、かつパターン強調
照明(H)と異物強調照明(L)は異なる波長(λ1.
λ2)であることが必須の条件となる。
As mentioned above, in type (1) illumination, foreign object highlighting illumination (L)
The pattern emphasizing illumination (H) and the foreign object emphasizing illumination (L) are of different wavelengths (λ1.
λ2) is an essential condition.

ここで、色分解の代わりに、特開昭57−66345に
示す如く、時分割検出を行い(L) 、 (H)での検
出出力を比較する方式を用いれば、照明・検光を情成部
品が簡単になる。この場合には照明は一極でアレイ20
も1ケで足りるが、検光子にはボッケルセル等の高速検
光特性切換え機能を有する光素子が不可欠である。
Here, instead of color separation, if a method is used that performs time-division detection and compares the detection outputs in (L) and (H), as shown in Japanese Patent Laid-Open No. 57-66345, illumination and analysis can be performed using information. Parts become easier. In this case the illumination is one pole and the array 20
However, the analyzer must include an optical element such as a Bockel cell that has a high-speed analysis characteristic switching function.

次に渠19図〜第28図を用いて本発明の詳細な説明す
る。
Next, the present invention will be explained in detail with reference to FIGS. 19 to 28.

第19図は第16図に示す信号処理回路の詳細を示す。FIG. 19 shows details of the signal processing circuit shown in FIG. 16.

これは畠4図と同様な方法である。This is the same method as in Figure 4 Hatake.

第20図〜第22図はWJ10図、第20図と同様であ
るが、異なる点は、照明光15H,レンズ系15HJと
光分岐プリズム1501色フィルタ151H,151L
Figures 20 to 22 are similar to WJ10 and Figure 20, but the differences are the illumination light 15H, lens system 15HJ, light branching prism 1501, color filters 151H, 151L.
.

アレイ20H、アナログ比較回路100を追加した点で
ある。
This is because an array 20H and an analog comparison circuit 100 are added.

第23図〜第28図を用いてアナログ比較方法を更FC
詳述する。
Modify the analog comparison method using Figures 23 to 28 FC
Explain in detail.

第23図及び第24図は第17図の条件を用い、実験し
た結果を示す。!t&ではパターン2の出力14pに関
しては、パターン2を照明光4H(4L)のウェハ表面
への投影方向に対して直角より角度1回転させながらパ
ターン出力VL、VHを測定した。一方、異物は0.7
,1.2μmの標準粒子を用いて(この場合は回転をす
る必要は栓い)VL、VHを測定した。この測定値を第
24図に示す。
23 and 24 show the results of an experiment using the conditions shown in FIG. 17. ! At t&, regarding the output 14p of pattern 2, pattern outputs VL and VH were measured while rotating pattern 2 by one angle from a right angle to the direction of projection of illumination light 4H (4L) onto the wafer surface. On the other hand, foreign matter is 0.7
, 1.2 μm standard particles (in this case, rotation is not necessary), and VL and VH were measured. The measured values are shown in FIG.

これよりパターンの任意の角度においても、パターンか
らの出力比(白丸印) ML/VHはm(図   −中
の破線の傾きの逆数)より小さい事が判る。
From this, it can be seen that at any angle of the pattern, the output ratio (white circle) ML/VH from the pattern is smaller than m (the reciprocal of the slope of the broken line in the figure).

一方、黒丸印で示す異物の出力比VL/VHはmより大
きい。
On the other hand, the output ratio VL/VH of foreign matter indicated by a black circle is larger than m.

第24図の異物とパターンの出力特性を考慮して電気回
路により両者を弁別する方法を第25図〜第28図に説
明する。
A method of discriminating between the foreign matter and the pattern using an electric circuit in consideration of the output characteristics of the foreign matter and the pattern shown in FIG. 24 will be explained with reference to FIGS. 25 to 28.

第25図、第26図ではアナログ割算回路を用いた例を
示す。出力比VL/Vl(はアナログ割算回路100で
演算され、VL/VH>mの場合二値化回路tot K
より・芒・が出力、れ、。cc−cよ意す。
FIGS. 25 and 26 show an example using an analog division circuit. The output ratio VL/Vl (is calculated by the analog divider circuit 100, and when VL/VH>m, the binarization circuit tot K
The awn is output. It means cc-c.

ことは、出力比演算において、vHが小さい場合には演
算誤差が大きくなり、演算結果が不安定となる(例えば
、VHが零の場合、VL/VH=■となる)ことである
。これを避ける方法として、二値化回路104でVL〉
vTH(vTHは0.511 m程度の異物に対応する
Vt、の値)の場合(11“)に限りVL / VHの
演算結果を有効′1“とすればよい。これは二値化回路
104とAND回路103により具現化される。
This means that in the output ratio calculation, when vH is small, the calculation error becomes large and the calculation result becomes unstable (for example, when VH is zero, VL/VH=■). As a way to avoid this, the binarization circuit 104
Only in the case of vTH (vTH is the value of Vt corresponding to a foreign object of about 0.511 m) (11"), the calculation result of VL/VH may be set as valid '1". This is realized by the binarization circuit 104 and the AND circuit 103.

第27図、第28図はアナログ減算回路105を用いた
例を示す。この場合には、H又はLの照明光強度の調整
やアレイ20H又は2OLの出力増幅器(図示せず)の
ゲインを調整し、” = 1 (傾き45度)とするこ
とが肝要である。アナログ減ることは同様である。
FIG. 27 and FIG. 28 show an example using the analog subtraction circuit 105. In this case, it is important to adjust the intensity of the H or L illumination light and the gain of the output amplifier (not shown) of the array 20H or 2OL so that "= 1 (45 degree inclination).Analog. The same goes for decreasing.

以上のアナログ割算・減算の代わりに出力をA/D変換
して、ディジタル値で演算してもよい0 第29図は(l[I)型照明を示す。この場合には照明
光15H,15Lは各々波長λ1.λ2を有し、色分解
光学系として例えば光分岐プリズム150、色フィルタ
151H,151Lを用いている。ここで照明系の半透
過ミラー15Cは15H,15Lの照明光を合成する為
に用いる。
Instead of the above-mentioned analog division/subtraction, the output may be A/D converted and calculations made with digital values. FIG. 29 shows an (l[I) type illumination. In this case, the illumination lights 15H and 15L each have a wavelength of λ1. λ2, and uses, for example, a light branching prism 150 and color filters 151H and 151L as a color separation optical system. Here, the semi-transparent mirror 15C of the illumination system is used to combine the illumination lights 15H and 15L.

以上、(Il 、 (I[)、 (I[) Wの照明・
検光条件においては、異物を強調する条件(L)は前記
K) 、 (0)の条件を用いることが必須である。一
方、パターンを強調する条件(H)は第30図(a)〜
(h)〜第31図(a)〜(d)に示す様に種々考えら
れる。次に示す第1表は(1)(If) (I[[)型
条件における第30図の(a)〜(h)〜第31図(a
)〜(d)の適用可否を表わすものである。
Above, the illumination of (Il, (I[), (I[)W)
Regarding the light analysis conditions, it is essential to use the conditions K) and (0) above as the condition (L) for highlighting foreign substances. On the other hand, the condition (H) for emphasizing the pattern is shown in Fig. 30(a)~
Various methods can be considered as shown in FIGS. 31(h) to 31(a) to 31(d). Table 1 below shows (1) (If) (I [[) type conditions (a) to (h) in Figure 30 to (a
) to (d) are applicable.

第 1 表 O適用可 次に異物を強調する条件(L)について考察する。Table 1 O applicable Next, consider the condition (L) that emphasizes foreign matter.

1、パターン反射光の解析 本章ではパターン反射光の偏光特性の解析を行う。ま4
“、解析に必要な記号の説明を荏とめる。ここでベクト
ルの成分はXYZ座標成分である。又、パターン20法
線、入射光4、反射光5、対物レンズ90通過光、入射
光の偏光10の各ベクトルは正規化している。
1. Analysis of pattern reflected light In this chapter, we will analyze the polarization characteristics of pattern reflected light. M4
", I will explain the symbols necessary for analysis.Here, the components of the vector are the XYZ coordinate components. Also, the normal to the pattern 20, the incident light 4, the reflected light 5, the light passing through the objective lens 90, and the polarization of the incident light. Each of the 10 vectors is normalized.

パターン20法線ベクトル:!N=(α、β、γ〕(I
N+ =1 ’)  (1) パターン20入射光4ベクトル:A=〔λ、μ、す(+
A+ = 1 )(2) 〃 2の反射光5ベクトル二B=〔ρ、δ、τ〕(IB
l=1)  (3) 対’$#7ス9に通光ヘクト/l/ : B’= (0
、0、1:] (lB’1=1)(4)入射先人の偏光
成分10 : ’E = (Ex、By、Ez) (I
El=1) (5)反射光Bの偏光成分: R= (R
x 、Ry 、凡Z)        (6)対物レン
ズ通過光偏光成分14:ズ=〔瓜、Rシ、R’Z)  
 (7)    。
Pattern 20 normal vector:! N = (α, β, γ) (I
N+ = 1') (1) Pattern 20 incident light 4 vectors: A = [λ, μ, S(+
A+ = 1) (2) 2 reflected light 5 vector 2B = [ρ, δ, τ] (IB
l=1) (3) Light passes through vs. $#7 and 9/l/: B'= (0
, 0, 1:] (lB'1=1) (4) Polarization component 10 of the incident person: 'E = (Ex, By, Ez) (I
El=1) (5) Polarization component of reflected light B: R= (R
x, Ry, Z) (6) Polarized light component 14 of the light passing through the objective lens: Z = [Melon, Rshi, R'Z)
(7).

入射光ムと法線べどのなす角度 :φ   (8)法線
NとXY平面とのなす角度 6、   (9)パターン
長手方向とX軸とのなす角度:η (lO)反射光Bと
Z軸とのなす角度 :ψ    (11)反射光BのX
Y平面への投影成分とX軸のなす角度 :θ     
         (12)検光子の検光軸とX軸との
なす角度:・ζ  (13)(1)パターン反射光の基
礎式 本節では物理光学理論を用いて、パターンからの反射光
の基礎式を展開、する。
Angle between the incident light beam and the normal line: φ (8) Angle between the normal line N and the XY plane 6, (9) Angle between the longitudinal direction of the pattern and the X axis: η (lO) Reflected light beams B and Z Angle with the axis: ψ (11) X of reflected light B
Angle between the projected component on the Y plane and the X axis: θ
(12) Angle between the analyzer's analysis axis and the ,do.

第32図にパターンエツジの法線ベクトルNに対する入
射光Aと反射光Bの関係を示す。ここで、ベクトルの内
積を用いて以下の式を得る。
FIG. 32 shows the relationship between incident light A and reflected light B with respect to the normal vector N of the pattern edge. Here, the following equation is obtained using the inner product of vectors.

σ””B = −n             (14
)=−(OA+AC)        (15)= −
(−A+ 2 (A−Nl)Nl)    (1g)8
ム−2(A 11N ) N        (17)
ここで、入射光Aと法線Nのなす角度φは、以下の式よ
り得られる。
σ””B = −n (14
)=-(OA+AC) (15)=-
(-A+ 2 (A-Nl)Nl) (1g)8
Mu-2 (A 11N) N (17)
Here, the angle φ between the incident light A and the normal N is obtained from the following equation.

ムeN= IAI ・INII cos(π−φ)  
  (18)=−■φ           (19)
式(11、(2)を式(17)に代入して、ベクトルβ
の成分として以下の式を得るっ 次に反射の際に生じる偏光成分の変化を説明する。フレ
ネルの反射の法則によれば、第33図に示す様に、入射
角φでの反射により入射面(入射光Aと法線Nで構成さ
れる平面)に垂直な入射光の偏光成分(電界ベクトル)
IEsと平行な偏光成分IEpは、各々反射の後にBS
、(ktpとなる。
MueN= IAI ・INII cos(π-φ)
(18)=-■φ (19)
Substituting equations (11, (2) into equation (17), vector β
The following equation is obtained as the component of According to Fresnel's law of reflection, as shown in Figure 33, the polarization component (electric field vector)
The polarization components IEp parallel to the IEs are each reflected by the BS
, (ktp.

ここで、係数S(φ)、p(φ)はパターンの屈折率n
を用いて以下の式で与えられる。
Here, the coefficients S(φ) and p(φ) are the refractive index n of the pattern
It is given by the following formula using .

第34図にn=1.5の場合でS(φ)、p(φ)の値
の計算例を示す。同図(a)は入射角φと強度との関係
を示し、同図(b)は入射角φと振幅との関係を示す。
FIG. 34 shows an example of calculating the values of S(φ) and p(φ) in the case of n=1.5. FIG. 5(a) shows the relationship between the incident angle φ and the intensity, and FIG. 6(b) shows the relationship between the incident angle φ and the amplitude.

ここで(b)に示すようにS(φ)はφ=(f〜9σの
範囲で負となるが、p(φ)はφ=φを境に正から負に
変化する。このRp==Oとなる入射角度φをpola
rization angle  と呼ぶ。第33図(
al l (blにφくφの場合とφ〉φの場合の比較
を示す。ここで、EpとRpとの関係は式(17)を導
いた過程と同様となることに注意して、入射光の偏光成
分Eと反射光の偏光成分配は以下の関係式を満たす。ま
ず、入射光の偏光成分EをS成分とp成分に分解する。
Here, as shown in (b), S(φ) becomes negative in the range of φ=(f to 9σ, but p(φ) changes from positive to negative after φ=φ. This Rp== The incident angle φ that becomes O is pola
It is called the rization angle. Figure 33 (
al l (A comparison is shown between the case where φ is smaller than φ and the case where φ>φ.Here, note that the relationship between Ep and Rp is the same as the process that led to equation (17), and the incident The polarization component E of the light and the polarization component distribution of the reflected light satisfy the following relational expression.First, the polarization component E of the incident light is decomposed into an S component and a p component.

凹=== Es+112p(211) =(Esx、BS)’+Esz) + (Epx+Ep
y+Epz ) (29)次に、反射光の偏光成分Bを
S成分とp成分に分解する。
Concave === Es+112p(211) = (Esx, BS)'+Esz) + (Epx+Ep
y+Epz ) (29) Next, the polarization component B of the reflected light is decomposed into an S component and a p component.

B=融+lRp              (34)
= (Rsx、凡Sy、R3z) +(顯X、R,,y
、Rpz) (35)=−p(φ)(Epx−2にα+
Epy−2に/、Epz  2Kr) (38)ここで
に=Epxα十F’pyβ+Epzγ(=lEp・N 
)  (39)式(35)に式(36)、(38)を代
入して、次式を得る。
B=fusion+lRp (34)
= (Rsx, Sy, R3z) + (Rx, R,,y
, Rpz) (35)=-p(φ)(α+ in Epx-2
Epy-2 /, Epz 2Kr) (38) Here = Epxα + F'pyβ + Epzγ (=lEp・N
) (39) Substituting equations (36) and (38) into equation (35), the following equation is obtained.

注 一般にパターンのプロフィールは第35図に示す様に滑
らかな形状を呈する。そこで、Y軸とその長手方向のな
す角度ηを有するパターンの法@Nはパターンのプロフ
ィール(沿って変化する。法線NとXY平面とのなす角
度ξを連続的に変化させて、Y軸に沿う入射光Aに対す
る反射光βを計算し、第36図を得る。これより1.)
同図(a)に示すように例えば、 N @ A =0.
55の対物レンズ9をパターン2の上方に配置すると、
これらの反射光Bの中で対物レンズの入射瞳内の線分R
Qに達する反射光のみが、対物レンズに入射する。ここ
で、角度ηを増加させながら線分RQの軌跡を求めると
、同図(b)に示す様に角tf v >3σの場合には
、もはや反射光は対物レンズに入射しないことが判る。
Note: In general, the pattern profile exhibits a smooth shape as shown in FIG. Therefore, the modulus @N of a pattern having an angle η formed between the Y axis and its longitudinal direction changes along the profile of the pattern. Calculate the reflected light β for the incident light A along the line and obtain Figure 36. From this, 1.)
For example, as shown in FIG. 4(a), N @ A = 0.
When the objective lens 9 of 55 is placed above the pattern 2,
Among these reflected lights B, a line segment R within the entrance pupil of the objective lens
Only the reflected light that reaches Q enters the objective lens. Here, when the locus of the line segment RQ is determined while increasing the angle η, it can be seen that when the angle tf v >3σ, the reflected light no longer enters the objective lens, as shown in FIG. 3(b).

対物レンズに入射した反射光Bは、対物レンズに入射し
、第37図(a) 、 (b)に示す様にZ軸方向に平
行に屈折する。この際、屈折により偏光取分が変化する
ので、以下これを解析する。ここで、屈折光をB′、そ
の偏光成分をR′とする。最初に反射偏光成分几を光軸
Zに対して放射成分Krと接線成分Rθに分解する。
The reflected light B incident on the objective lens enters the objective lens and is refracted in parallel to the Z-axis direction as shown in FIGS. 37(a) and 37(b). At this time, the polarization fraction changes due to refraction, which will be analyzed below. Here, the refracted light is assumed to be B', and its polarized light component is assumed to be R'. First, the reflected polarized light component is decomposed into a radiation component Kr and a tangential component Rθ with respect to the optical axis Z.

R= IFLr + B6             
 (43)偏光成分ト、とRθのXY平面上の投影成分
Rr、Rθは座標変換を用いて以下の式より得られる。
R= IFLr + B6
(43) The projection components Rr and Rθ of the polarization component T and Rθ on the XY plane can be obtained from the following equation using coordinate transformation.

ここで屈折により偏光成分Rθは変化しないが、成分B
、は几θを回転軸として角度ψだけ回転した成分几?と
なる。ここで角度ψは反射光Bと2軸とのなす角度であ
る。
Here, the polarization component Rθ does not change due to refraction, but the component B
, is the component 几 rotated by an angle ψ with θ as the rotation axis? becomes. Here, the angle ψ is the angle between the reflected light B and the two axes.

h’r=C−ψ■θRr、II!cfsInθRr 、
 0 )     (4B)式(37)と式(40)よ
り屈折光B′の偏光成分R′は、以下の式より得られる
h'r=C-ψ■θRr, II! cfsInθRr,
0) (4B) From equations (37) and (40), the polarization component R' of the refracted light B' can be obtained from the following equation.

ば;略+陶=〔鴫、梅、 0 )       (49
)=〔式ψ(2)θ’f%r−amθRθ、wcfsi
n a Rr+0θRθ、 O) (50)&=(1w
!cψ02θ−5n2θ)Rx+xsθsinθ(−一
1 ) % (st)柚=耐−θ(s!Icψ−1)R
x+(−一〇仲2θ)R,(52)ここで、偏光成分B
と8′の大きさは変化しないことを、以下に確認する。
ba; omitted + pottery = [plum, plum, 0) (49
)=[Formula ψ(2)θ'f%r−amθRθ,wcfsi
na Rr+0θRθ, O) (50) &=(1w
! cψ02θ−5n2θ)Rx+xsθsinθ(−11) % (st)Yuzu=resistant−θ(s!Icψ−1)R
x+(−10 2θ)R, (52) where, polarization component B
It is confirmed below that the sizes of and 8' do not change.

反射光Bは角度θ。Reflected light B has an angle θ.

ηを用いて以下の成分となる。The following components are obtained using η.

113 = (−xθ×血ψ、―θ×顕ψ、coaψ)
(sa)反射光Bとその偏光成分Bは唾直なので次式を
得る。
113 = (-xθ x blood ψ, - θ x manifestation ψ, coaψ)
(sa) Since the reflected light B and its polarized light component B are direct, the following equation is obtained.

IB@1R=(2)θ−ψ均叶苅θ苅ψ勇峠■ψ凡z=
 O(54)偏光成分■の大きさは式(54)を用いて
以下の様に得られる。
IB @ 1R = (2) θ−ψ uniform θ苅ψ Yuutoge■ψBonz=
The magnitude of the O(54) polarization component (2) can be obtained using equation (54) as follows.

1d=禮+柚十R:          (5!i)一
方、偏光成分I・′の大きさは式(51)、(52)を
用いて次式を得る。
1d=Rei+YujuR: (5!i) On the other hand, the magnitude of the polarization component I·' is obtained from the following equation using equations (51) and (52).

+i+2=42+4         (58)よ((
!ec?Jθ十船H什耐−θ(式ψ−1)■) +(c
rsasmθ(気ψ−1)Rx+(−f”” 十” )
Ry)2=(CIIecfOθ+stnθ+2sec−
7fcmθ苅θ)+(2)2θ顕20(→−2弐ψ+1
))番((弐−h神4θ十藁ψ詰5in2θ)+Q)5
2asin2θ(→−2secψ+1月RF、)−2(
cosθsinθ(式・ψa)82θ+5in2θ)(
9ecψ−1)+xsθ−(−−1)(secpsin
2θ+”2a))RxRy            (
so)=(sL112θ(sin!θ十〇)l”θ)−
)−Jψツ(Jθ神2θ))綴十(請(5ixF a神
2θ)+4Jθ(Jθ神2θ))4十2Su′Iθ(2
)θ(secψ−1)(gecψ+1 ) )tJLY
   (61)= (sin”θ十sec”f cos
”θ)g+(。′θ+Jψ工′θ) Ry−)−sin
 2f) tarFψRxRy           
    (62)式(58)と式(62)は同一であり
、aとR′の大きさは変化しないことが確認できた。更
に、偏光成分IFLrと叫の太きさも変化しないことも
、次式により確認される。
+i+2=42+4 (58) ((
! ec? Jθ 10 ships H duty – θ (formula ψ – 1) ■) + (c
rsasmθ (ki ψ−1) Rx+(−f”” 10”)
Ry)2=(CIIecfOθ+stnθ+2sec−
7 fcm θ θ) + (2) 2 θ 20 (→-2 ψ + 1
)) Number ((2-h god 4θ ten straw ψ 5 in 2θ) + Q) 5
2asin2θ(→-2secψ+1 month RF,)-2(
cosθsinθ(formula・ψa)82θ+5in2θ)(
9ecψ−1)+xsθ−(−−1)(secpsin
2θ+”2a))RxRy (
so)=(sL112θ(sin!θ10)l”θ)−
) - Jψtsu (Jθ God 2θ)) Tsuzuriju (Uke (5ixF a God 2θ) + 4Jθ (Jθ God 2θ))
)θ(secψ−1)(gecψ+1) )tJLY
(61) = (sin”θ10 seconds”f cos
”θ)g+(.′θ+Jψ工′θ) Ry−)−sin
2f) tarFψRxRy
(62) It was confirmed that equation (58) and equation (62) are the same, and the magnitudes of a and R' do not change. Furthermore, it is confirmed by the following equation that the polarization component IFLr and the thickness of the signal do not change.

l IFLrl = K、 + ’R,,(63)= 
(、RrcoIIθ)2)−(RrsLrIθ)21−
R2(64)= ccs”θ(耐ち+ユθR7弁工′θ
(ユθ融十いθRア)2−)−tan賀あθに一θ% 
> 2 =(1+困ψ)(c−1−θ凰+苅θ〜)2=Jψ(i
〜十却θRy)2(67) = l [Rr12(68) 以上で任意の角度θを有するパターンからの反射JIB
が対物レンズを通過する際の偏光成分の大きさが、入射
光の偏光成分の大きざを用いて表わされた。
l IFLrl = K, + 'R,, (63) =
(,RrcoIIθ)2)-(RrsLrIθ)21-
R2 (64) = ccs”θ
(Y θ melts θR a) 2-) -tangaa θ to 1 θ%
> 2 = (1 + difficult ψ) (c - 1 - θ 凰 + 萅 θ ~) 2 = Jψ (i
~ 100 θRy)2(67) = l [Rr12(68) Reflection JIB from a pattern having an arbitrary angle θ
The magnitude of the polarized light component when the light passes through the objective lens was expressed using the magnitude of the polarized light component of the incident light.

(3)入射光が水平の場合の計算 本節では、入射光AがY軸と一致した場合の偏光成分を
計算する。これは傾斜角度が00の場合であり、ウェハ
からの正反射光が対物レンズに入らないので、異物検出
に適する。即ち、入射光は次式で表わされる。
(3) Calculation when the incident light is horizontal In this section, we will calculate the polarization component when the incident light A coincides with the Y axis. This is the case where the tilt angle is 00, and the specularly reflected light from the wafer does not enter the objective lens, so it is suitable for detecting foreign objects. That is, the incident light is expressed by the following equation.

A=(0、−1、O)         (69)式(
17)より反射光Bは、法線ベクトルへの成分を用いて
次式を得る。
A = (0, -1, O) (69) Formula (
17) For the reflected light B, the following equation is obtained using the component to the normal vector.

B=〔2αβ、2β2−1,2βγ)      (7
0)式(54)より角度ψ、θは法線ベクトル取分を用
いて次式となる。
B=[2αβ, 2β2−1, 2βγ) (7
0) From equation (54), the angles ψ and θ are expressed as follows using the normal vector fraction.

以下では入射光の偏光ベクトルを■l113=(1,0
゜0〕の場合と■IB=(0,0,1)の場合に分けて
計算する。本綴では前者を8偏光照明、後者をP偏光照
明と呼ぶ。
Below, the polarization vector of the incident light is ■l113=(1,0
Calculate separately for the case of ゜0] and the case of ■IB=(0, 0, 1). In this book, the former is called 8-polarized illumination, and the latter is called P-polarized illumination.

■ S偏光照明の場合(E=(1,0,0))式(30
)〜(33)を用いて、偏光成分Eのパターンに対する
311p成分を計算する。(第38図)反射光の偏光成
分ヌは式(40)〜(42)を用いて、次式となる。
■ In the case of S-polarized illumination (E = (1, 0, 0)) Equation (30
) to (33), calculate the 311p component for the pattern of the polarization component E. (FIG. 38) The polarization component N of the reflected light is expressed by the following equation using equations (40) to (42).

偏光成分Hの大きさは式(58)を用いて、次式を得る
The magnitude of the polarization component H is determined by the following equation using equation (58).

1B12= (S(φ))2γ2//(α2+r)+(
p(φ))2αシ(α半ろ   (78)■ P偏光照
明の場合(””LO+ 0 + 1:l )同様に以下
の式を得る。
1B12= (S(φ))2γ2//(α2+r)+(
p(φ))2αsi(αhalflo) (78)■ In the case of P-polarized illumination (""LO+0+1:l) Similarly, the following equation is obtained.

Ihl = (s(φ))2α2/(α牟ろ+(ぼり)
2γ2/(α2+γ2)     (84)■ S偏光
・P偏光照明の比較 上記の■、■の場合において、球面上の点りの偏光成分
城、柚を以下に比較する。これは、対物レンズ上に配置
した検光子の検光軸がX軸に平行の場合と垂直な場合を
考えると、検光子を通過する偏光成分が各々の場合で躯
、4 となることを意味する。この時、通過光の強度は
各々で鯰、42となる。
Ihl = (s(φ))2α2/(αmuro+(bori)
2γ2/(α2+γ2) (84) ■ Comparison of S-polarized light and P-polarized illumination In the cases of (1) and (2) above, the polarization components of the dot on the spherical surface are compared as follows. This means that if we consider cases in which the analysis axis of the analyzer placed on the objective lens is parallel to the X-axis and perpendicular to the X-axis, the polarized light components passing through the analyzer will be 4 in each case. do. At this time, the intensity of the passing light is 42 in each case.

第39図にパターンの屈折率n =Z、45 (S+0
2の屈折率)の場合の通過光の強度分布を示す。図中に
は対物レンズ入射瞳を破線で示す。いずれの場合も、入
射光がY軸と一致しているので、分布はY軸に対して対
称となる。また、入射光の偏光成分(電界ベクトノV)
Eと検光軸が垂直な場合(即ちS偏光照明での柚とP偏
光照明での成)はY軸上で零となる。同図(a) 、 
(b)ではS偏光照明([lE!=(1,0,0))で
の通過光の強度分布y2.4s示す。また、同図(C)
 、 (d)ではP偏光照明(β−(0,0,1))の
場合を示す。前者の吟と後者の喝を比較すると、入射瞳
内での通過光強度最大値の比は約1=10となり、前者
の場合が最もパターン反射光強度が低くなることが判る
。また、P偏光照明で検光軸がY軸に垂直な場合では入
射瞳内の円弧状部分で反射光強KRyが零となり興味深
い。
In Fig. 39, the refractive index of the pattern n = Z, 45 (S+0
The intensity distribution of passing light is shown in the case of a refractive index of 2). In the figure, the objective lens entrance pupil is indicated by a broken line. In either case, since the incident light coincides with the Y-axis, the distribution is symmetrical with respect to the Y-axis. In addition, the polarization component of the incident light (electric field vector V)
When E and the analysis axis are perpendicular to each other (i.e., when the S-polarized illumination is used and the P-polarized illumination is used), the value becomes zero on the Y-axis. Figure (a),
(b) shows the intensity distribution y2.4s of passing light under S-polarized illumination ([lE!=(1,0,0)). Also, the same figure (C)
, (d) shows the case of P-polarized illumination (β-(0,0,1)). Comparing the former case with the latter case, it can be seen that the ratio of the maximum transmitted light intensity within the entrance pupil is about 1=10, and the pattern reflected light intensity is the lowest in the former case. Furthermore, when the analysis axis is perpendicular to the Y-axis with P-polarized illumination, the reflected light intensity KRy becomes zero in the arc-shaped portion within the entrance pupil, which is interesting.

第40図には屈折率n w4.2 (Po1y−8iの
屈折率)の場の計算結果を示す。同図(a) l (b
)はE=(1゜0.0〕の場合を示し、同図(C) 、
 Gd)はE=(0゜0.1〕の場合を示す。第39図
に較べると、屈折率の相違により反射光強度が高くなっ
ているが、分布の傾向は同様である。
FIG. 40 shows the calculation results for the field of refractive index n w4.2 (refractive index of Po1y-8i). Figure (a) l (b
) indicates the case where E = (1°0.0], and (C) in the same figure,
Gd) shows the case where E=(0°0.1).Compared to FIG. 39, the reflected light intensity is higher due to the difference in the refractive index, but the tendency of the distribution is the same.

以上より、パターン反射光の対物レンズ通過強度は、S
偏光照明で検光軸をX@に垂直とした場合が最も低くな
ることが判る。一方、この条件での異物からの散乱光は
偏光が解消されるので、検光子により遮光されず、結果
として弁別比が最も高くなることが予想される。次にこ
れを実験により検討する。
From the above, the intensity of the pattern reflected light passing through the objective lens is S
It can be seen that the value is lowest when the analysis axis is perpendicular to X@ with polarized illumination. On the other hand, since the scattered light from the foreign object under these conditions is depolarized, it is not blocked by the analyzer, and as a result, it is expected that the discrimination ratio will be the highest. Next, we will examine this through experiments.

2、 実験による検討 第411NK実験法の概略を示す。照明には5mWのH
e −Neレーザ、25×ビームエクスパンダ、fθレ
ンズ(f = 300 *x )を用いてウェハ上に3
0μmφ  −のレーザスポットを形成した。照射角度
は水平より!とした。対物レンズには倍率40X(NA
−0,55)、IJシレーンズ2.5×を用い、検出器
にはカルニコン(2/ 311 )撮像管を用いた。対
物レンズの上方には検光子(偏光板)を光軸に対して回
転可能に配置した。ウェハ試料はPo1y −8i及び
5i02パターンを共に有するものを使用し、その表面
に形成された0、4μm 厚のPo1y−8i及び5i
02パターンエツジからの反射光強度Nを測定した。一
方、異物のモデルとして、ポリスチレン製標準粒子(n
=1.59)で直径0.7μmφ、1μmφを使用し、
その散乱光強度Sを測定した。
2. Experimental Study An outline of the No. 411 NK experimental method is presented. 5mW H for lighting
3 on the wafer using an e-Ne laser, a 25× beam expander, and an fθ lens (f = 300*x).
A laser spot of 0 μmφ − was formed. The irradiation angle is from horizontal! And so. The objective lens has a magnification of 40X (NA
-0,55), IJ Silanes 2.5x was used, and a Carnicon (2/311) image pickup tube was used as the detector. An analyzer (polarizing plate) was arranged above the objective lens so as to be rotatable about the optical axis. The wafer sample used had both Poly-8i and 5i02 patterns, and 0.4 μm thick Poly-8i and 5i patterns were formed on the surface.
The intensity N of reflected light from the 02 pattern edge was measured. On the other hand, polystyrene standard particles (n
= 1.59) using diameters of 0.7 μmφ and 1 μmφ,
The scattered light intensity S was measured.

パターンと異物の出力は、ウェハを回転し、回転角度η
をθ°〜18Cの範囲でNを測定した。
The output of the pattern and foreign matter rotates the wafer and the rotation angle η
N was measured in the range of θ° to 18C.

第42図に測定結果を示す。測定ではS偏光照明(a)
・(b)とP偏光照明(C1・(d)の各々の場合で、
検光軸をY軸に平行及び垂直にした。同図の縦軸は信号
出力S−N%横軸はパターン回転角度ηを示す。S偏光
照明で検光軸がY軸に平行の場合(a)とP偏光照明で
検光軸がX@に垂直な場合(d)でG′X撮像管の飽和
を避けるために、2%透過のNDフィルタを用いた。
Figure 42 shows the measurement results. In the measurement, S-polarized illumination (a)
・In each case of (b) and P-polarized illumination (C1・(d),
The analysis axis was parallel and perpendicular to the Y axis. In the figure, the vertical axis shows the signal output S-N, and the horizontal axis shows the pattern rotation angle η. 2% to avoid saturation of the G' A transmission ND filter was used.

図よりSiO2からのパターン反射光は第36図で計算
した如く回転角度ηが増すと、零となるがPo1y−8
iからの反射光はη=9σ付近まで発生する。これは第
41図に示す8EM観察像で示す如く、Po1y−8i
パターンエツジには微小凹凸が存在するからである。い
ずれの場合も、パターン反射光は第39図(第40図)
で計算した傾向が見られるが、異物散乱光も完全には偏
光が解消されず、パターンと同様の傾向も有する。しか
し、1μm異物散乱光出力出力poly−8iパタ一ン
反射光の最大出力Nを比べると(b)と(d)の場合が
高S/N比が得られることが判った。実際の異物検全を
考えると、検出器はTVカメラよりも、光1、子増倍管
やPIN−8iホトダイオードアレイ等の高速検出性を
有するものを用いることにより、検査時間を単線するこ
とが可能となる。これを考慮して、(b)と(d)の場
合を比べると、(d)の方が杓10倍出力の大きざがあ
り、電気的なノイズや外乱光に対して安定な検査が行え
ることが判る。
From the figure, the pattern reflected light from SiO2 becomes zero as the rotation angle η increases as calculated in Fig. 36, but Po1y-8
The reflected light from i is generated up to around η=9σ. As shown in the 8EM observation image shown in Figure 41, this is true for Po1y-8i.
This is because minute irregularities exist on the pattern edges. In either case, the pattern reflected light is shown in Figure 39 (Figure 40).
However, the foreign object scattered light is not completely depolarized and has the same tendency as the pattern. However, when comparing the maximum output N of the 1 μm foreign object scattered light output and the poly-8i pattern reflected light, it was found that a high S/N ratio can be obtained in cases (b) and (d). When considering actual foreign matter inspection, the inspection time can be reduced by using a detector with high-speed detection such as an optical 1, a child multiplier, or a PIN-8i photodiode array rather than a TV camera. It becomes possible. Taking this into consideration, when comparing cases (b) and (d), case (d) has a 10 times larger output, allowing for stable inspection against electrical noise and ambient light. I understand that.

以上よりP偏光照明で検光軸がXsK垂直な場合(P偏
光成分検出)が最も安定かつ高感度の検査が可能となり
、1μm以下の異物検出も可能である。又、S偏光照明
で検光軸がX@に垂直な場合(P偏光成分検出)も照明
光が十分強い場合にはパターンに対して高87N比を得
ることが出来る。
From the above, when the analysis axis is perpendicular to XsK with P-polarized illumination (P-polarized light component detection), the most stable and highly sensitive inspection is possible, and it is also possible to detect foreign objects of 1 μm or less. Also, when the analysis axis is perpendicular to X@ with S-polarized illumination (P-polarized component detection), a high 87N ratio can be obtained for the pattern if the illumination light is sufficiently strong.

又、本発明は前記の如くウェハに限定されず、ホトマス
クやレチクル等の他の製品の検査にも適用可能である。
Furthermore, the present invention is not limited to wafers as described above, but can also be applied to the inspection of other products such as photomasks and reticles.

又、両輪の大きさの制限は、loXloμms度でも、
1.5μm〜2μmの異物を検出する場合には実用上差
支えないことが実験により確認している。
Also, the limit on the size of both wheels is loXloμms degrees,
It has been confirmed through experiments that there is no practical problem in detecting foreign matter of 1.5 μm to 2 μm.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明によれば、異物検出の高速性
を維持しつつ、対象物体上に存在する微小異物の検出を
高感度かつ安定に行うことの出来る効果を奏する。
As explained above, according to the present invention, it is possible to detect minute foreign objects present on a target object with high sensitivity and stability while maintaining high speed of foreign object detection.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の異物検出方法の一実施例を示す構成図
、第2図は第1図に示す固体撮像素子の詳細を示す斜視
図、第3図は本発明と従来例との比較を説明するための
図、第4図は第1図に示す固体撮像素子の信号処理回路
を示す図、第5図は不感帯と異物との位置関係を示す図
、第6図は本発明での不感帯と異物との位置関係を示す
図、第7図は第5図に2ける固体撮像素子のウェハとの
相対的走査方向を示す図、第8図は第6図における固体
撮像素子のウェハとの相対的走査方向を示す図、第9図
は固体撮像素子のウェハとの相対的らせん状走査を示す
図、第10図は第1図に示す実施例を更に具体的に示し
た構成図、第11図は第10図に示す自動焦点検出部を
示す斜視図、第12図は自動焦点検出を説明するための
J第13図は第11図に示す自動焦点検出部から得られ
る差出力と焦点すれとの関係を示した図、第14図は本
発明の基本原理を示   dす斜視図、第15図は第1
4図においてウェハ上を走査する状態及び第14図に示
す装置において得られる出力信号を示す図、第16図は
第14図において光電変換素子として固体撮像素子アレ
イを用い(I[)型照明の場合を示す斜視図、第17図
は(I)型照明の場合を示す斜視図、第18図は第17
図に示す装置で得られる出力信号等を示す図、第19図
はアナログ比較回路を詳細に示した図、第20図は第1
7図に示す実施例を更に具体化して示した斜視図、第2
1図は第20図の正面図、第22図は第21図に示され
ていない信号処理回路もブロイクで示した図、第23図
は回路パターンと異物からの反射光の状態を示す図、第
24図はそれにもとづいて得られる出力VHとVLとの
実験関係データを示す図、第25図はVH/ VLの結
果を示す図、第26図は第25図に示すVH/VLを実
現するためのアナログ割算回路を示す図、第27図はV
L−VHの結果を示す図、第28図は第27図に示すV
r、 −VHを実現するためのアナログ減算回路を示す
図、第41図は実験装置を示す斜視図、第42図はS/
N比を示す実験データのグラフ、第43図はウェハを示
す断面図、第44図は照射されたレーザ光に対するウェ
ハ上の回路パターンと異物からの反射状態を示す図、第
45図は従来の異物検出方法の第1例を示す概略斜視図
、第46図は第45図で傾斜角度φを変化させた場合の
出力比Vs /Vpの測定データを示すグラフ、第47
図は従来の異物検出方法の第2例を示す概略斜視図、第
48図はウェハ上の回路パターンと異物からの反射状態
を示す図、第49図は第47図に示す7口くスタットを
相対的にウェハ上を走査して得られる映像信号の関係等
を示す図、第50図は第47図に示す第2例と同様に従
来の異物検出方法を示す概略斜視図である。 第29図は(I[)型照明を示す斜視図、第30図及び
第31図は種々の照明・検光の組ま合せを示す図、第3
2図はパターンの入射光Aと反射光Bを示す斜視図、第
33図は入射光・反射光の偏光を示す斜視図、第34図
は係数S(φ)、p(φ)の計算例を示すグラフ、第3
5図はパターンのプロフィールを示す斜視図、第36図
はパターン反射光Bの方向と線分RQの軌跡を示す斜視
図、第37図は反射光Bと対物レンズとの関係を示す斜
視図、第38図はS偏光照明の場合(入射光A(0,−
1゜0〕、E(1,0,0)の場合)の反射光Bの偏光
を示す斜視図、第39図、第40図は偏元既分強度分布
を示す平面図(n = 1.45及びn=4.2)。 〔符号の説明〕 1・・・ウニハ    2・・・パターン3・・・異物
     4・・・照明光5・・・反射光    6・
・・散乱光7・・・光電変換素子 9・・・対物レンズ
10・・・S偏光    11・・・S偏光成分12.
14・・・P偏光成分13・・・検光子15・・・偏光
レーザ光源 20・・・光電変換用固体撮像素子アレイ20a・・・
受光部   20b・・・不感帯21・・・二値化回路
  22・・・OR回路23・・・異物メモリ30・・
・自動焦点検出部150・・・偏光ビームスプリッタ(
又は色分解プリズム又はダイクロイックミラー又は光分
岐プリズム) 100・・・アナログ比較回路 101.104,105・・・二値化回路103・・・
AND回路 151H,151L・・・色フィルタ(又は干渉フィル
タ、又は検光子) 〆
Fig. 1 is a configuration diagram showing an embodiment of the foreign object detection method of the present invention, Fig. 2 is a perspective view showing details of the solid-state image sensor shown in Fig. 1, and Fig. 3 is a comparison between the present invention and a conventional example. FIG. 4 is a diagram showing the signal processing circuit of the solid-state image sensor shown in FIG. 1, FIG. 5 is a diagram showing the positional relationship between the dead zone and a foreign object, and FIG. A diagram showing the positional relationship between the dead zone and a foreign object, FIG. 7 is a diagram showing the relative scanning direction of the solid-state image sensor with respect to the wafer in FIG. 5, and FIG. FIG. 9 is a diagram showing the relative spiral scanning of the solid-state image sensor with respect to the wafer. FIG. 10 is a configuration diagram showing the embodiment shown in FIG. 1 in more detail. Fig. 11 is a perspective view showing the automatic focus detection section shown in Fig. 10, and Fig. 12 is a perspective view for explaining automatic focus detection. Figure 14 is a perspective view showing the basic principle of the present invention, and Figure 15 is a diagram showing the relationship with out-of-focus.
Fig. 4 shows the state in which the wafer is scanned and the output signals obtained in the apparatus shown in Fig. 14, and Fig. 16 shows the state in which the wafer is scanned and the output signals obtained in the apparatus shown in Fig. 14. FIG. 17 is a perspective view showing the case of (I) type illumination, and FIG. 18 is a perspective view showing the case of (I) type illumination.
19 is a diagram showing the analog comparison circuit in detail, and FIG.
A perspective view showing a further embodiment of the embodiment shown in FIG.
1 is a front view of FIG. 20, FIG. 22 is a diagram showing the signal processing circuit not shown in FIG. 21 as a block diagram, and FIG. 23 is a diagram showing the circuit pattern and the state of reflected light from foreign objects. Fig. 24 is a diagram showing the experimental relationship data between the outputs VH and VL obtained based on this, Fig. 25 is a diagram showing the results of VH/VL, and Fig. 26 is a diagram showing the VH/VL shown in Fig. 25. Figure 27 shows an analog divider circuit for V
A diagram showing the results of L-VH, Figure 28 is the V shown in Figure 27.
FIG. 41 is a perspective view of the experimental equipment, and FIG. 42 is a diagram showing an analog subtraction circuit for realizing r, -VH.
A graph of experimental data showing the N ratio, FIG. 43 is a cross-sectional view of the wafer, FIG. 44 is a diagram showing the state of reflection from the circuit pattern on the wafer and foreign matter with respect to the irradiated laser beam, and FIG. 45 is the conventional FIG. 46 is a schematic perspective view showing a first example of the foreign object detection method; FIG. 46 is a graph showing measurement data of the output ratio Vs/Vp when the inclination angle φ is changed in FIG.
The figure is a schematic perspective view showing a second example of the conventional foreign object detection method, FIG. 48 is a diagram showing the circuit pattern on the wafer and the state of reflection from the foreign object, and FIG. FIG. 50, which is a diagram showing the relationship between video signals obtained by relatively scanning a wafer, is a schematic perspective view showing a conventional foreign object detection method similar to the second example shown in FIG. 47. Figure 29 is a perspective view showing the (I[) type illumination, Figures 30 and 31 are diagrams showing various combinations of illumination and analysis, and Figure 3
Figure 2 is a perspective view showing the incident light A and reflected light B of the pattern, Figure 33 is a perspective view showing the polarization of the incident light and reflected light, and Figure 34 is an example of calculating the coefficients S(φ) and p(φ). Graph showing, 3rd
5 is a perspective view showing the pattern profile, FIG. 36 is a perspective view showing the direction of pattern reflected light B and the locus of line segment RQ, and FIG. 37 is a perspective view showing the relationship between reflected light B and the objective lens. Figure 38 shows the case of S-polarized illumination (incident light A(0, -
1°0], E(1,0,0)), and FIGS. 39 and 40 are plan views showing polarized intensity distributions (n = 1.0). 45 and n=4.2). [Explanation of symbols] 1... Uniha 2... Pattern 3... Foreign matter 4... Illumination light 5... Reflected light 6.
...Scattered light 7...Photoelectric conversion element 9...Objective lens 10...S polarized light 11...S polarized light component 12.
14...P polarized light component 13...Analyzer 15...Polarized laser light source 20...Solid-state image sensor array for photoelectric conversion 20a...
Light receiving section 20b...Dead zone 21...Binarization circuit 22...OR circuit 23...Foreign object memory 30...
・Automatic focus detection unit 150...Polarizing beam splitter (
or color separation prism, dichroic mirror, or light branching prism) 100...analog comparison circuit 101.104,105...binarization circuit 103...
AND circuit 151H, 151L...color filter (or interference filter, or analyzer)

Claims (1)

【特許請求の範囲】 1、対象物体上の異物を強調させて第1の光電変換素子
で検出し、対象物体上の背景を強調させて第2の光電変
換素子で検出し、上記第1の光電変換素子から得られる
異物検出信号を第2の光電変換素子から得られる検出信
号でもって強調して検出することを特徴とする異物検出
方法。 2、対象物体上の異物を強調させて第1の光電変換素子
で検出し、且つ対象物体上の背景を強調させて第2の光
電変換素子で検出する光学装置と、上記第1の光電変換
素子から得られる異物検出信号を第2の光電変換素子か
ら得られる検出信号でもって強調させる比較手段とを備
え付けたことを特徴とする異物検出装置。 3、上記光学装置は、対象物体に対して異なる傾斜角度
で異なる波長でもって照明する照明光学系と、対象物体
から反射してくる光を色分解して第1及び第2の光電変
換素子に分岐する色分解・分岐光学素子とで構成したこ
とを特徴とする特許請求の範囲第2項記載の異物検出装
置。 4、上記色分解・分岐光学素子は、光分岐プリズム又は
半透明鏡と色フィルタとで構成したことを特徴とする特
許請求の範囲第3項記載の異物検出装置。 5、上記色分解・分岐光学素子は、ダイクロイックプリ
ズム又はダイクロイックミラーで構成したことを特徴と
する特許請求の範囲第3項記載の異物検出装置。 6、上記色分解・分岐光学素子は、更に検光子を有する
ことを特徴とする特許請求の範囲第4項または第5項記
載の異物検出装置。 7、上記光学装置は、対象物体に対して傾斜角度を有す
る直線偏光光を照明する直線偏光照明光学系と、対象物
体から反射してくる光を偏光分解して第1及び第2の光
電変換素子に分岐する偏光分解・分岐光学素子とで構成
したことを特徴とする特許請求の範囲第2項記載の異物
検出装置。 8、上記偏光分解・分岐光学素子は、偏光ビームスプリ
ッタで構成したことを特徴とする特許請求の範囲第7項
記載の異物検出装置。 9、上記偏光分解・分岐光学素子は、光分岐プリズム又
は半透過鏡と検光子とで構成したことを特徴とする特許
請求の範囲第7項記載の異物検出装置。 10、上記光学装置は、対象物体に対して同一傾斜角度
で異なる波長でもって照明する照明光学系と、対象物体
から反射してくる光を色分解して第1及び第2の光学変
換素子に分岐する色分解・分岐光学素子とで構成したこ
とを特徴とする特許請求の範囲第2項記載の異物検出装
置。 11、上記色分解・分岐光学素子は、光分岐プリズム又
は半透明鏡と色フィルタとで構成したことを特徴とする
特許請求の範囲第10項記載の異物検出装置。 12、上記色分解・分岐光学素子は、ダイクロイックプ
リズム又はダイクロイックミラーで構成したことを特徴
とする特許請求の範囲第10項記載の異物検出装置。 13、上記色分解・分岐光学素子は、更に検光子を有す
ることを特徴とする特許請求の範囲第11項または第1
2項記載の異物検出装置。 14、上記比較手段は、割算手段を備え付けたことを特
徴とする特許請求の範囲第2項記載の異物検出装置。 15、第2の光電変換素子から得られる信号が零近傍の
とき割算手段の出力を無視することを特徴とする特許請
求の範囲第14項記載の異物検出装置。 16、上記比較手段は減算手段を備え付けたことを特徴
とする特許請求の範囲第2項記載の異物検出装置。 17、第2の光電変換素子から得られる信号が零近傍の
とき減算手段の出力を無視することを特徴とする特許請
求の範囲第16項記載の異物検出装置。
[Claims] 1. The foreign matter on the target object is emphasized and detected by the first photoelectric conversion element, the background on the target object is emphasized and detected by the second photoelectric conversion element, and the 1. A foreign object detection method, comprising: emphasizing and detecting a foreign object detection signal obtained from a photoelectric conversion element with a detection signal obtained from a second photoelectric conversion element. 2. An optical device that emphasizes a foreign substance on a target object and detects it with a first photoelectric conversion element, and emphasizes a background on the target object and detects it with a second photoelectric conversion element, and the first photoelectric conversion element. 1. A foreign object detection device comprising: comparison means for emphasizing a foreign object detection signal obtained from the element with a detection signal obtained from a second photoelectric conversion element. 3. The above optical device includes an illumination optical system that illuminates the target object with different wavelengths at different inclination angles, and a system that separates the light reflected from the target object into first and second photoelectric conversion elements. 3. The foreign object detection device according to claim 2, characterized in that it is constructed of a color separation/branching optical element that branches. 4. The foreign object detection device according to claim 3, wherein the color separation/branching optical element is composed of a light branching prism or a semi-transparent mirror and a color filter. 5. The foreign object detection device according to claim 3, wherein the color separation/branching optical element is constituted by a dichroic prism or a dichroic mirror. 6. The foreign object detection device according to claim 4 or 5, wherein the color separation/branching optical element further includes an analyzer. 7. The optical device includes a linearly polarized illumination optical system that illuminates a target object with linearly polarized light having an inclination angle, and a first and second photoelectric conversion system that polarizes and decomposes the light reflected from the target object. 3. The foreign object detection device according to claim 2, characterized in that it is constituted by a polarization splitting/branching optical element that splits into elements. 8. The foreign object detection device according to claim 7, wherein the polarization separation/splitting optical element is constituted by a polarization beam splitter. 9. The foreign object detection device according to claim 7, wherein the polarization separation/branching optical element is composed of a light branching prism or a semi-transmissive mirror and an analyzer. 10. The above optical device includes an illumination optical system that illuminates a target object with different wavelengths at the same tilt angle, and a first and second optical conversion element that separates the light reflected from the target object into colors. 3. The foreign object detection device according to claim 2, characterized in that it is constructed of a color separation/branching optical element that branches. 11. The foreign object detection device according to claim 10, wherein the color separation/branching optical element is composed of a light branching prism or a semi-transparent mirror and a color filter. 12. The foreign object detection device according to claim 10, wherein the color separation/branching optical element is constituted by a dichroic prism or a dichroic mirror. 13. Claim 11 or 1, wherein the color separation/branching optical element further includes an analyzer.
The foreign object detection device according to item 2. 14. The foreign object detection device according to claim 2, wherein the comparing means is equipped with a dividing means. 15. The foreign object detection device according to claim 14, wherein the output of the dividing means is ignored when the signal obtained from the second photoelectric conversion element is near zero. 16. The foreign object detection device according to claim 2, wherein the comparison means is equipped with a subtraction means. 17. The foreign object detection device according to claim 16, wherein the output of the subtraction means is ignored when the signal obtained from the second photoelectric conversion element is near zero.
JP59225714A 1984-10-29 1984-10-29 Method and apparatus for detecting foreign matter Granted JPS61104243A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP59225714A JPS61104243A (en) 1984-10-29 1984-10-29 Method and apparatus for detecting foreign matter
US06/792,320 US4740079A (en) 1984-10-29 1985-10-28 Method of and apparatus for detecting foreign substances

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59225714A JPS61104243A (en) 1984-10-29 1984-10-29 Method and apparatus for detecting foreign matter

Publications (2)

Publication Number Publication Date
JPS61104243A true JPS61104243A (en) 1986-05-22
JPH0435025B2 JPH0435025B2 (en) 1992-06-09

Family

ID=16833654

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59225714A Granted JPS61104243A (en) 1984-10-29 1984-10-29 Method and apparatus for detecting foreign matter

Country Status (1)

Country Link
JP (1) JPS61104243A (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62261044A (en) * 1986-05-06 1987-11-13 Hitachi Electronics Eng Co Ltd Foreign matter inspector
JPS63296348A (en) * 1987-05-28 1988-12-02 Hitachi Electronics Eng Co Ltd Detector of wafer foreign matter
JPS6459928A (en) * 1987-08-31 1989-03-07 Canon Kk Inspection of surface condition
JPH01245136A (en) * 1988-03-28 1989-09-29 Horiba Ltd Inspection instrument for existence of foreign matter
JPH03102248A (en) * 1989-09-18 1991-04-26 Hitachi Ltd Method and apparatus for detecting foreign matter
JPH0423447A (en) * 1990-05-18 1992-01-27 Hitachi Ltd Method and apparatus for detecting extraneous substance
JP2002277406A (en) * 2001-03-14 2002-09-25 Saki Corp:Kk Visual inspection method and device therefor
JP2006133026A (en) * 2004-11-04 2006-05-25 Hitachi High-Technologies Corp Visual inspection apparatus
JP2008058331A (en) * 2000-06-14 2008-03-13 Qc Optics Inc Highly sensitive optical inspection system and method for detecting defect on diffraction surface
WO2013154067A1 (en) * 2012-04-09 2013-10-17 株式会社日立ハイテクノロジーズ Inspection device and image capture element
JP2014052217A (en) * 2012-09-05 2014-03-20 Dainippon Printing Co Ltd Foreign matter inspection device, foreign matter inspection method
JP2014222239A (en) * 2009-07-22 2014-11-27 ケーエルエー−テンカー・コーポレーションKla−Tencor Corporation Dark field inspection system with ring illumination
JP2015132625A (en) * 2015-03-17 2015-07-23 大日本印刷株式会社 Foreign matter inspection device, and foreign matter inspection method

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
HU0900110D0 (en) * 2009-02-24 2009-04-28 Elipszilon Kulturalis Szolgalt Optical detector for a position detecting

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62261044A (en) * 1986-05-06 1987-11-13 Hitachi Electronics Eng Co Ltd Foreign matter inspector
JPS63296348A (en) * 1987-05-28 1988-12-02 Hitachi Electronics Eng Co Ltd Detector of wafer foreign matter
JPS6459928A (en) * 1987-08-31 1989-03-07 Canon Kk Inspection of surface condition
JPH01245136A (en) * 1988-03-28 1989-09-29 Horiba Ltd Inspection instrument for existence of foreign matter
JPH03102248A (en) * 1989-09-18 1991-04-26 Hitachi Ltd Method and apparatus for detecting foreign matter
JPH0423447A (en) * 1990-05-18 1992-01-27 Hitachi Ltd Method and apparatus for detecting extraneous substance
JP2008058331A (en) * 2000-06-14 2008-03-13 Qc Optics Inc Highly sensitive optical inspection system and method for detecting defect on diffraction surface
JP2002277406A (en) * 2001-03-14 2002-09-25 Saki Corp:Kk Visual inspection method and device therefor
JP2006133026A (en) * 2004-11-04 2006-05-25 Hitachi High-Technologies Corp Visual inspection apparatus
JP4485910B2 (en) * 2004-11-04 2010-06-23 株式会社日立ハイテクノロジーズ Appearance inspection device
US7821644B2 (en) 2004-11-04 2010-10-26 Hitachi High-Technologies Corporation Apparatus for visual inspection
JP2014222239A (en) * 2009-07-22 2014-11-27 ケーエルエー−テンカー・コーポレーションKla−Tencor Corporation Dark field inspection system with ring illumination
US9176072B2 (en) 2009-07-22 2015-11-03 Kla-Tencor Corporation Dark field inspection system with ring illumination
WO2013154067A1 (en) * 2012-04-09 2013-10-17 株式会社日立ハイテクノロジーズ Inspection device and image capture element
US9791380B2 (en) 2012-04-09 2017-10-17 Hitacthi High-Technologies Corporation Inspection device and image capture element
JP2014052217A (en) * 2012-09-05 2014-03-20 Dainippon Printing Co Ltd Foreign matter inspection device, foreign matter inspection method
JP2015132625A (en) * 2015-03-17 2015-07-23 大日本印刷株式会社 Foreign matter inspection device, and foreign matter inspection method

Also Published As

Publication number Publication date
JPH0435025B2 (en) 1992-06-09

Similar Documents

Publication Publication Date Title
JP4312777B2 (en) Confocal self-interference microscope with side lobes removed
JP4030815B2 (en) System and method for simultaneous or sequential multiple perspective sample defect inspection
KR920007196B1 (en) Method and apparatus for detecting foreign matter
JP5466377B2 (en) Defect inspection equipment
US7068363B2 (en) Systems for inspection of patterned or unpatterned wafers and other specimen
US5717485A (en) Foreign substance inspection apparatus
TWI402498B (en) An image forming method and image forming apparatus
JP2007033433A (en) Defect inspection device and method for it
US20080068593A1 (en) Method and apparatus for detecting defects
JPS61104243A (en) Method and apparatus for detecting foreign matter
US20130063721A1 (en) Pattern inspection apparatus and method
JP2008096430A (en) Method and apparatus for detecting defect
JPH1152224A (en) Automatic focus detecting method and device and inspecting device
JP4001653B2 (en) Optical inspection of samples using multichannel response from the sample
JP5571969B2 (en) Defect inspection method and apparatus
JPH0562696B2 (en)
US5715061A (en) Optical measuring apparatus and optical measuring method
JPH10282007A (en) Defect inspection method of foreign matter and apparatus therefor
JPS6361601B2 (en)
JP3053096B2 (en) Foreign object detection method and device
JPH05142156A (en) Foreign matter inspecting device
JPS61104242A (en) Apparatus for inspecting foreign matter
JPH0646182B2 (en) Apparatus and method for inspecting foreign matter on mask
JPS61104658A (en) Array of semiconductor solid-state image pickup element
JPS61117433A (en) Method and device for detecting foreign matter

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term