JPS62228124A - Spectroscopic apparatus - Google Patents

Spectroscopic apparatus

Info

Publication number
JPS62228124A
JPS62228124A JP5789286A JP5789286A JPS62228124A JP S62228124 A JPS62228124 A JP S62228124A JP 5789286 A JP5789286 A JP 5789286A JP 5789286 A JP5789286 A JP 5789286A JP S62228124 A JPS62228124 A JP S62228124A
Authority
JP
Japan
Prior art keywords
light
spectroscopic
condensing
incident
space
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5789286A
Other languages
Japanese (ja)
Other versions
JPH0752121B2 (en
Inventor
Yuzuru Neyatani
閨谷 譲
Katsu Inoue
井上 克
Masayoshi Kawakami
正義 川上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Japan Atomic Energy Agency
Original Assignee
Hitachi Ltd
Japan Atomic Energy Research Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd, Japan Atomic Energy Research Institute filed Critical Hitachi Ltd
Priority to JP5789286A priority Critical patent/JPH0752121B2/en
Publication of JPS62228124A publication Critical patent/JPS62228124A/en
Publication of JPH0752121B2 publication Critical patent/JPH0752121B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
  • Spectrometry And Color Measurement (AREA)

Abstract

PURPOSE:To measure the spatial distribution of light emitting sources with high energy efficiency, by a method wherein the lights emitted from light sources distributed in a space are incident to two adjacent surfaces of a regular polygonal rotary mirror and the reflected lights therefrom are separately condensed by a condensing means and at least two spectroscopic means spectrally diffracting the condensed light are provided. CONSTITUTION:The luminous flux reflected from the A-surface 2a of a polygonal rotary mirror 2 is converged by A-surface condensing matter 13 and condensed to an incident slit 18 by utilizing reflecting mirrors 14, 15, 17 and a condensing matter 16. Subsequently, the incident luminous flux is projected on a dispersing element 20 by a collimation mirror 19 and further incident on an emitting slit 22 by a collimation mirror 21. As mentioned above, only light having a specific wavelength is detected by an A-surface reflected light detector 10. The luminous flux reflected from the B-surface 2b of the polygonal rotary mirror 2 is converged by condensing matter 23 to be condensed to an incident slit 27 by utilizing reflecting mirrors 24, 26 and condensing matter 25, and dispersed by a dispersing element 28 through the incident slit 27 to be detected by a B-surface reflected light detector 11. By this method, the lights from light sources 1 distributed in a space can be simultaneously measured by utilizing different spectroscopes.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は、分光装置、特に発光源の空間分布測定を行う
分光装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to a spectroscopic device, and particularly to a spectroscopic device that measures the spatial distribution of a light emitting source.

〔発明の背景〕[Background of the invention]

分光装置で1時間分解を目的とする高速分光装置は従来
から用いられているが、プラズマなどの発光源の空間分
布を分光測定する装置は殆んど知られていない。
Although high-speed spectrometers for the purpose of one-hour resolution have been used in the past, there are almost no known devices for spectroscopically measuring the spatial distribution of light emitting sources such as plasma.

空間分解と時間分解とを同時に達成する方法としては、
正多角形面回転m(以下多面回転鏡と称する)を回転さ
せ、その反射光を集光光学系で分光装置に集光する方法
が考えられるが、多面回転鏡の大形化を伴い、その加工
技術及び弾性モーメントの増大に伴う駆動の回層さなど
により限界があ河、エネルギー的に極めて効率が低くな
る。また、多数の分光器を並置する方法も考えられ、こ
の方法はエネルギー的に有利であるが、空間分解点の数
が多くなるとそのコストが急激に増大するという点で問
題がある。
As a method to achieve spatial and temporal resolution at the same time,
One possible method is to rotate a regular polygonal rotating mirror m (hereinafter referred to as a polygonal rotating mirror) and condense the reflected light onto a spectrometer using a condensing optical system, but as the polygonal rotating mirror becomes larger, There is a limit due to the processing technology and the number of layers in the drive as the elastic moment increases, resulting in extremely low energy efficiency. A method of arranging a large number of spectrometers side by side is also considered, and although this method is advantageous in terms of energy, it has a problem in that the cost increases rapidly as the number of spatial resolution points increases.

〔発明の目的〕[Purpose of the invention]

本発明は、このような多面回転鏡方式で発光源の空間分
布測定を高エネルギー効率で行なうことのできる分光装
置を提供することを目的とするものである。
An object of the present invention is to provide a spectroscopic device that can measure the spatial distribution of a light emitting source with high energy efficiency using such a polygonal rotating mirror system.

〔発明の概要〕[Summary of the invention]

本発明は、空間に分布する光源の発する光が入射する正
多角形面回転鏡と、該正多角形面回転鏡の隣接する2面
に入射し該2面から反射する前記光をそれぞれ別個に集
光する集光手段と、該集光手・段で集光された前記光を
分光する少なくとも2個の分光手段とを有することを特
徴とするものである。
The present invention provides a regular polygonal surface rotating mirror into which light emitted from a light source distributed in space is incident, and the light that is incident on two adjacent surfaces of the regular polygonal surface rotating mirror and reflected from the two surfaces, respectively. It is characterized by comprising a light condensing means for condensing light, and at least two spectroscopic means for dividing the light condensed by the condensing means/means.

本発明は、半透鏡などの光量分割手段を用いることなく
、多面回転鏡の相隣接する2面に光を同時に入射させ、
相異なる2方向に反射光を導くようにし、さらに、小形
の2個の集光光学系により、例えば、2個の分光手段に
集光入射せしめることを可能にして、所期の目的の達成
を可能にしたものである。そして、2個以上の分光手段
に同時にほぼ等しい光量を導くときにその効果を著しく
発揮できる。
The present invention allows light to simultaneously enter two adjacent surfaces of a multifaceted rotating mirror without using a light amount dividing means such as a semi-transparent mirror,
By guiding the reflected light in two different directions, and by using two small condensing optical systems, it is possible to condense the light into two spectroscopic means, for example, to achieve the desired purpose. It made it possible. Further, the effect can be significantly exhibited when substantially equal amounts of light are guided simultaneously to two or more spectroscopic means.

〔発明の実施例〕[Embodiments of the invention]

第2図及び第3図は1本発明のそれぞれ異なる実施例の
基本構成の説明図である。これらの図で、1は黒光@l
a、lb・・・等よりなる空間に分布する光源、2は回
転中心3の回りに回転しA面2a。
FIGS. 2 and 3 are explanatory diagrams of the basic configurations of different embodiments of the present invention. In these figures, 1 is black light @l
A light source distributed in a space consisting of a, lb..., etc., 2 rotates around a rotation center 3 and forms an A plane 2a.

8面2b等を有する多面回転鏡、4は多面回転鏡2の回
転方向、5は光源の分布する空間の中心と多面回転鏡2
の中心とを結ぶ直線、6a、6b。
A polygonal rotating mirror having 8 surfaces 2b, etc., 4 is the rotation direction of the polygonal rotating mirror 2, 5 is the center of the space where the light source is distributed, and the polygonal rotating mirror 2
Straight lines connecting the centers of , 6a and 6b.

2a、8面2bのA面、8面オフセット、8a。2a, A side of 8th side 2b, 8th side offset, 8a.

8bはA面、B面皮射光線、9は空間に分布する光源1
と多面回転!!!2との間に設けられている集光物体、
10.11はそれぞれA面2a、13面2bからの反射
光線、8a、8bを検出するA面。
8b is the A-plane and B-plane skin rays; 9 is the light source 1 distributed in space;
And multi-plane rotation! ! ! A condensing object provided between 2,
10.11 is the A surface for detecting the reflected light rays 8a and 8b from the A surface 2a and 13 surface 2b, respectively.

B面反射光検出器を示している。A B-plane reflected light detector is shown.

第1図に示すように多面回転tlt2が配置されている
場合には、空間に分布する光源1から発する光は・黒光
@la、lb等の点光源の集合体と考えられる・そして
1例えば、点光源1aから発せられた光6a、6bは波
として空間に広がり、例えば1点光源1bから発生され
た光6dも同様に波として空間に広がる。すなわち、こ
れらの光線6 a e 6 b y 6 c y 6 
d e 6 eはそれぞれ空間に分布する光の性質を備
えたものである。従って、多面回転鏡2が回転中心3の
回りに回転方向4に回転している場合には、A面2a、
8面2bに照射される光は、A面オフセット7a、B面
オフセット7bを基準とするA面皮射光線8aとB面皮
射光AIJI8bとに分割され、光源の位置的走査が行
なわれる。すなわち、このように光源の位置的走査を行
ないつつ、光線を同時に、同条件、同効率で分割できる
効果がある。
When the polygonal rotation tlt2 is arranged as shown in FIG. 1, the light emitted from the light source 1 distributed in space is considered to be a collection of point light sources such as black light @la, lb, etc., and 1, for example, The lights 6a and 6b emitted from the point light source 1a spread in the space as waves, and the light 6d emitted from the one point light source 1b, for example, similarly spreads in the space as waves. That is, these rays 6 a e 6 b y 6 c y 6
Each of d e 6 e has the property of light distributed in space. Therefore, when the polygon rotating mirror 2 is rotating in the rotation direction 4 around the rotation center 3, the A plane 2a,
The light irradiated onto the eight surfaces 2b is divided into an A surface skin light beam 8a and a B surface skin light beam AIJI8b based on the A surface offset 7a and the B surface offset 7b, and positional scanning of the light source is performed. That is, while performing the positional scanning of the light source in this way, there is an effect that the light beam can be divided simultaneously, under the same conditions, and with the same efficiency.

第3図では、空間に分布する光源1と多面回転鏡2との
間にレンズ等よりなる集光物体9を設けて、より効率よ
く分布特性を計測可能にしたちのであり、A旧友射光検
知pI110.B面反射光検知器10を設けておけば同
時に同じものを測定することができる。
In Fig. 3, a condensing object 9 made of a lens or the like is provided between the light source 1 distributed in space and the polygonal rotating mirror 2 to enable more efficient measurement of the distribution characteristics. .. If the B-plane reflected light detector 10 is provided, the same thing can be measured at the same time.

第1図は、本発明の分光装置の一実施例の構成説明図で
、第2図及び第3図と同一部分には同一符号が付しであ
る。この図で、12は空間に分布する光源1から発生す
る光線6を多面回転鏡2に導く反射鏡を示し、多面回転
鏡2のA面2aとA面皮射光検出器10との間の光路は
、A画集光物体139反射鏡141反射鏡15.集光物
体16゜反射fi17.入射スリット18.コリメミラ
−19,2分散索子20.コリメミラー21がら構成さ
れ多面回転鏡2の8面2bとB面反射光検出器11との
間の光路は、B画集光物体239反射鏡24.集光物体
259反射鏡26.入射スリブ82フ2分散素子28か
ら構成されている。
FIG. 1 is an explanatory diagram of the configuration of an embodiment of the spectroscopic apparatus of the present invention, and the same parts as in FIGS. 2 and 3 are given the same reference numerals. In this figure, reference numeral 12 indicates a reflecting mirror that guides the light beam 6 generated from the light source 1 distributed in space to the polygonal rotating mirror 2, and the optical path between the A surface 2a of the polygonal rotating mirror 2 and the A surface skin light detector 10 is , A picture condensing object 139 reflecting mirror 141 reflecting mirror 15. Focusing object 16° reflection fi17. Entrance slit 18. Collime mirror 19, two-distributed cord 20. The optical path between the 8 surfaces 2b of the polygonal rotating mirror 2, which is composed of collimating mirrors 21, and the B-surface reflected light detector 11 includes a B-image condensing object 239, a reflecting mirror 24. Focusing object 259 Reflector 26. It is composed of an entrance sleeve 82, two dispersion elements 28.

この実施例の分光装置において1点光源1a。In the spectroscopic device of this embodiment, there is one point light source 1a.

1b・・・等の集合体と考えられる空間に分布する光源
1は1反射鏡12を利用して多面回転鏡2に導かれ、こ
こでA面2a及び8面2bで2光束に分割され各々の分
光光路に入射される・ すなわち、多面回転fi2のA面2aで反射した光束は
A画集光物体13により光束をしぼられ、反射鏡14,
15.17及び集光物体16を利用し入射スリット18
に集光される。この際、光束の広がりによっては光束の
広がりをおさえるためにさらに集光物体を設ける場合も
ある。つし)で入射スリット18を介して入射した光束
はコリメミラ−19によって分散素子20に投影され、
さらにコリメミラ−21により出射スリット22番こ入
る。このようにすることによって特定波長の光だけがA
面反射光検知器10によって検出される。
A light source 1 distributed in a space that can be thought of as a collection of objects such as 1b, etc. is guided to a polygonal rotating mirror 2 using a 1-reflector 12, where it is divided into 2 beams by the A surface 2a and the 8th surface 2b, and each In other words, the light beam reflected on the A surface 2a of the polygonal rotation fi2 is narrowed down by the A image condensing object 13,
15.17 and the incident slit 18 using the condensing object 16
The light is focused on. At this time, depending on the spread of the light flux, a condensing object may be further provided to suppress the spread of the light flux. The light flux that entered through the entrance slit 18 is projected onto the dispersion element 20 by the collimating mirror 19.
Furthermore, the collimating mirror 21 enters the exit slit 22. By doing this, only light of a specific wavelength can be
It is detected by the surface reflection light detector 10.

また、多面回転鏡2の8面2bで反射した光束は、B画
集光物体23により光束をしぼられ、反射鏡24.26
及び集光物体25を利用し入射スリット27に集光され
る。この際にも、A面の場合と同様に、さらに集光物体
を設ける場合もある。
In addition, the light flux reflected by the 8 surfaces 2b of the polygonal rotating mirror 2 is narrowed down by the B-image condensing object 23, and is
The light is then focused onto the entrance slit 27 using the light focusing object 25 . In this case, as in the case of the A-plane, a condensing object may be further provided.

ついで入射スリット27を介して入射した光束は分散素
子28にて分散されB面圧射光検出器11で検出される
Next, the light flux that entered through the entrance slit 27 is dispersed by a dispersion element 28 and detected by the B-plane pressure-injection photodetector 11.

かくして、空間に分布する光源1より発した光は同時に
異なる分光器を利用して測定できる。そして、多面回転
鏡2を回転方向4にパルスモータ等を利用し回転すると
、回転に同期して、空間に分布する光源1から発する光
がA画集光物体13及びB画集光物体23に入射する視
野は第4図(a)、(b)、(0)、(d)によって示
すように変化する。第4図で、第1図、第2図と同一部
分には同一符号が付しである。このようにA画集光物体
13とB画集光物体23に入射する視野が変化するのは
、多面回転鏡2とA画集光体13又はB画集光物体23
との間には一定の間隙があるため空間に分布する光源1
のある一点1例えば1点光源1aより発した光がA画集
光物体13とB画集光物体23とに入射する範囲は限ら
れたものとなり、第4図の(c)、(d)にはこのよう
にして範囲外になった場合を示しており、このことは、
空間に分布する光源1を点光源の集合物と考えれば、多
面回転鏡2を回転させることによって空間に分布する光
源1を分割することができることを示しておす、従って
、多面回転鏡2を回転させた場合、A面又はB面反射光
検出alo又は11には空間に分布する光源1の空間分
解測定が得られたことになる。そして、−面を変化させ
るの必要な回転ステップ数に応じた空間分解のデータが
得られる。
In this way, the light emitted from the light source 1 distributed in space can be measured simultaneously using different spectrometers. Then, when the polygonal rotating mirror 2 is rotated in the rotational direction 4 using a pulse motor or the like, light emitted from the light source 1 distributed in space enters the A-image condensing object 13 and the B-image condensing object 23 in synchronization with the rotation. The field of view changes as shown in FIGS. 4(a), (b), (0), and (d). In FIG. 4, the same parts as in FIGS. 1 and 2 are given the same reference numerals. In this way, the field of view incident on the A-picture condensing object 13 and the B-picture condensing object 23 changes because of the polygonal rotating mirror 2 and the A-picture condensing object 13 or the B-picture condensing object 23.
There is a certain gap between the light source 1 which is distributed in space.
The range in which light emitted from a certain point 1, for example, a single point light source 1a, enters the A-image focusing object 13 and the B-image focusing object 23 is limited, and in (c) and (d) of FIG. This shows the case where it goes out of range, which means that
If we consider the light source 1 distributed in space as a collection of point light sources, we will show that the light source 1 distributed in space can be divided by rotating the polygonal rotating mirror 2. Therefore, by rotating the polygonal rotating mirror 2. In this case, a spatially resolved measurement of the light source 1 distributed in space is obtained by the A-plane or B-plane reflected light detection alo or 11. Then, spatially resolved data corresponding to the number of rotation steps necessary to change the -plane is obtained.

すなわち空間に分布する光源1を分割して、空間分解測
定ができることになる。
That is, by dividing the light source 1 distributed in space, spatially resolved measurement can be performed.

また、この多面回転1!!2の隣接する角が、光源の分
布する空間1の中心と多面回転鏡2の中心とを結ぶ直線
上まで回転すると、最初と同一の状態になるので前述と
同様にして空間分解測定が行なわれる。すなわち、一定
時間経過した後の空間分解測定が行なわれる。これが多
面回転鏡を用いている理由で1例えば1回転分割数を8
面とすれば、多面回転鏡を1回転させる間に反射光検出
器から一面が変化するのに必要な時間分だけずれた同じ
位置での時間分解データが8個得られる。従って、空間
分解の必要度の高い場合には多面回転鏡の面数を少なく
し回転ステップを小さくすればよく、時間分解の必要度
の高い場合には多面回転鏡の面数を大きくし回転ステッ
プを大きくすれば目的を達成することができる。
Also, this multi-sided rotation 1! ! When the adjacent corners of 2 are rotated onto the straight line connecting the center of space 1 where the light source is distributed and the center of polygonal rotating mirror 2, the state is the same as the beginning, so spatially resolved measurements are performed in the same manner as described above. . That is, spatially resolved measurement is performed after a certain period of time has elapsed. This is the reason why we use a polygonal rotating mirror.For example, the number of divisions per rotation is 8.
If it is a surface, eight pieces of time-resolved data at the same position, shifted by the time required for one surface to change, can be obtained from the reflected light detector during one rotation of the polygon rotating mirror. Therefore, when the need for spatial resolution is high, the number of faces of the polygonal rotating mirror can be reduced and the rotation step can be made small, and when the need for time resolution is high, the number of faces of the polygonal rotating mirror can be increased and the rotation step is reduced. You can achieve your goal by increasing .

なお、集光光学系の後に光量分割手段をもうけ、3個以
上の分光手段に集光入射せしむるようにすることもでき
る。また分光手段は少なくとも2種の分光手段が用いら
れるが、これらの分光手段には、例えば、分光帯域が紫
外域と可視域のものを用いる場合、紫外可視域と赤外域
のものを用いる場合、少なくとも2個の分光帯域の一部
又は全部が重なりあっている場合、あるいは、分散形骨
光装置とフーリエ分光装置などのような非分散形分光装
置とを用いる場合、フィルター分光装置とフーリエ分光
装置などのような非フィルター分光装置とを用いる場合
等種々のものを用いることができる。
Note that it is also possible to provide a light amount splitting means after the condensing optical system so that the light is condensed and incident on three or more spectroscopic means. At least two types of spectroscopic means are used. For example, when using spectroscopic means with spectral bands in the ultraviolet and visible ranges, when using those with spectral bands in the ultraviolet-visible range and in the infrared range, When at least two spectral bands partially or completely overlap, or when using a dispersive bone spectrometer and a non-dispersive spectrometer such as a Fourier spectrometer, a filter spectrometer and a Fourier spectrometer are used. Various devices can be used, such as when using a non-filter spectroscopic device such as the following.

このような実施例の分光装置によれば、広がりを持った
光源、または複数の光源よりなる複合光源の位置分割測
定を行なうのに際して、位置的走査を行ないつつ、光束
を等価に分割して2種類の測定を同時に行なうことが可
能である。そして、1つの光線を同条件、同効率で2つ
に分割できる。ので、同時測定ができる。また分光器併
用により波長の異なる光の測定を同時に行なえるため、
測定時間の短縮、高効率化とともに同時測定ができ試験
結果の同時進行結果を見ることができるため。
According to the spectroscopic device of this embodiment, when performing positional division measurement of a spread light source or a composite light source consisting of a plurality of light sources, the light beam is equally divided into two while performing positional scanning. It is possible to carry out different types of measurements simultaneously. Then, one beam of light can be split into two under the same conditions and with the same efficiency. Therefore, simultaneous measurements can be performed. Also, since it is possible to measure light of different wavelengths at the same time by using a spectrometer,
In addition to shortening measurement time and increasing efficiency, simultaneous measurements can be performed and test results can be viewed simultaneously.

従来法に比し、格段の高効率化を行なうことができる。Compared to conventional methods, it is possible to achieve significantly higher efficiency.

〔発明の効果〕〔Effect of the invention〕

本発明は、多面回転鏡方式で発光源の空間分布測定を高
エネルギー効率で行なうことのできる分光装置を提供可
能とするもので、産業上の効果の大なるものである。
INDUSTRIAL APPLICABILITY The present invention makes it possible to provide a spectroscopic device that can measure the spatial distribution of a light emitting source with high energy efficiency using a polygonal rotating mirror system, and has great industrial effects.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明の分光装置の一実施例の構成説明図、
第2図及び第3図は同じくそれぞれ異なる実施例の基本
構成の説明図、第4図は同じく原理の説明図である。 1・・・(黒光wXla、lb・・・等よりなる)空間
に分布する光源、2・・・(A面2a、B面2b等を有
する)多面回転鏡、6,6a、6b、6c、6d。 6e・・・光線、8a、8b・・・A面、B面反射光線
。 9・・・集光物体、10.11・・・A面、B面圧射光
検出器、12・・・反射鏡、13・・・A画集光物体、
14゜15.17・・・反射鏡、1G・・・集光物体、
18・・・入射スリット、19.21・・・コリメミラ
ー、20・・・2分散素子、22・・・出射スリット、
23・・・B画集光物体、24.26・・・反射鏡、2
5・・・集光物体、27・・・入射スリット、28・・
・分散素子。 ・魚
FIG. 1 is an explanatory diagram of the configuration of an embodiment of the spectroscopic device of the present invention,
2 and 3 are similarly explanatory diagrams of the basic configuration of different embodiments, and FIG. 4 is an explanatory diagram of the principle. 1... Light source distributed in space (consisting of black light wXla, lb..., etc.), 2... Polygonal rotating mirror (having A surface 2a, B surface 2b, etc.), 6, 6a, 6b, 6c, 6d. 6e...Light rays, 8a, 8b...A surface, B surface reflected rays. 9... Focusing object, 10.11... A side, B side pressure radiation detector, 12... Reflecting mirror, 13... A image focusing object,
14゜15.17... Reflector, 1G... Focusing object,
18... Entrance slit, 19.21... Collimer mirror, 20... 2-dispersion element, 22... Output slit,
23...B image condensing object, 24.26...Reflector, 2
5...Condensing object, 27...Incidence slit, 28...
・Dispersion element. ·fish

Claims (1)

【特許請求の範囲】 1、空間に分布する光源の発する光が入射する正多角形
面回転鏡と、該正多角形面回転鏡の隣接する2面に入射
し該2面から反射する前記光をそれぞれ別個に集光する
集光手段と、該集光手段で集光された前記光を分光する
少なくとも2個の分光手段とを有することを特徴とする
分光装置。 2、前記集光手段が、前記空間の中心と前記正多角形面
回転鏡の中心とを結ぶ直線に対しそれぞれ正負の等しい
偏倚を有する2個の集光手段である特許請求の範囲第1
項記載の空間装置 3、前記分光手段が、分光帯域の異なる少なくとも2個
の分光手段である特許請求の範囲第1項又は第2項記載
の分光装置。 4、前記分光手段が、分光操作の異なる少なくとも2種
の分光手段である特許請求の範囲第1項又は第2項記載
の分光装置。 5、前記分光手段が、光量分割手段と、3個以上の分光
手段とを有するものである特許請求の範囲第1項又は第
2項記載の分光装置。
[Claims] 1. A regular polygonal rotating mirror into which light emitted from a light source distributed in space is incident, and the light incident on two adjacent surfaces of the regular polygonal rotating mirror and reflected from the two surfaces. What is claimed is: 1. A spectroscopic device comprising: a condensing means that separately condenses the light, and at least two spectroscopic means that separates the light condensed by the condensing means. 2. Claim 1, wherein the light condensing means is two light condensing means each having equal positive and negative deviations with respect to a straight line connecting the center of the space and the center of the regular polygonal rotating mirror.
3. The spectroscopic device according to claim 1 or 2, wherein the spatial device 3 and the spectroscopic means are at least two spectroscopic means having different spectral bands. 4. The spectroscopic device according to claim 1 or 2, wherein the spectroscopic means is at least two types of spectroscopic means having different spectroscopic operations. 5. The spectroscopic device according to claim 1 or 2, wherein the spectroscopic means has a light amount dividing means and three or more spectroscopic means.
JP5789286A 1986-03-15 1986-03-15 Spectroscopic device Expired - Lifetime JPH0752121B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5789286A JPH0752121B2 (en) 1986-03-15 1986-03-15 Spectroscopic device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5789286A JPH0752121B2 (en) 1986-03-15 1986-03-15 Spectroscopic device

Publications (2)

Publication Number Publication Date
JPS62228124A true JPS62228124A (en) 1987-10-07
JPH0752121B2 JPH0752121B2 (en) 1995-06-05

Family

ID=13068632

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5789286A Expired - Lifetime JPH0752121B2 (en) 1986-03-15 1986-03-15 Spectroscopic device

Country Status (1)

Country Link
JP (1) JPH0752121B2 (en)

Also Published As

Publication number Publication date
JPH0752121B2 (en) 1995-06-05

Similar Documents

Publication Publication Date Title
AU2005252809B2 (en) Echelle spectrometer with improved use of the detector by means of two spectrometer arrangements
US6141100A (en) Imaging ATR spectrometer
US3927944A (en) Spectrophotometer
US8873048B2 (en) Spectrometer arrangement
US4575243A (en) Monochromator
US5424826A (en) Wideband optical micro-spectrometer system
US4486095A (en) Movement measuring apparatus and landmarks for use therewith
EP2724129B1 (en) Spectrograph with anamorphic beam expansion
JP2000171300A (en) Semiconductor line sensor or double grating coincidence spectrometer including photomultiplier
JP2006138734A (en) Optical spectrum analyzer
CN110553736A (en) raman spectrometer
EP0062642B1 (en) Movement measuring apparatus and landmarks for use therewith
KR20050016248A (en) Improved real-time goniospectrophotometer
CN210603594U (en) Spectrum appearance
JPS6038644B2 (en) spectrophotometer
US4095900A (en) Optical technique for background suppression
JPS62228124A (en) Spectroscopic apparatus
JP3593559B2 (en) High-speed spectrometer
JPH0486534A (en) Photometer for multi-wavelength simultaneous photometry
JP3275287B2 (en) Interferometer
JPS62203024A (en) Fabry-perot spectroscope
JP2550650B2 (en) Optical spectrum analyzer
JP2000258249A (en) Spectrum analyzer
KR20040030066A (en) Spectrometric method and device for carrying out said method (variants)
JP3309537B2 (en) Fourier transform spectrophotometer