JPS62203003A - Apparatus for measuring shape of convex nonspherical surface - Google Patents
Apparatus for measuring shape of convex nonspherical surfaceInfo
- Publication number
- JPS62203003A JPS62203003A JP4558186A JP4558186A JPS62203003A JP S62203003 A JPS62203003 A JP S62203003A JP 4558186 A JP4558186 A JP 4558186A JP 4558186 A JP4558186 A JP 4558186A JP S62203003 A JPS62203003 A JP S62203003A
- Authority
- JP
- Japan
- Prior art keywords
- convex
- half mirror
- light
- reflected
- zone plate
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000003384 imaging method Methods 0.000 description 4
- 238000010586 diagram Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 2
- 230000005540 biological transmission Effects 0.000 description 1
Landscapes
- Length Measuring Devices By Optical Means (AREA)
Abstract
Description
【発明の詳細な説明】
産業上の利用分野
本発明は、反射型ノ゛−ンプレートを用いて、凸非球面
の形状を測定する凸非球面形状測定装置に関するもので
ある。DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a convex aspherical surface shape measuring device that measures the shape of a convex aspherical surface using a reflective sound plate.
従来の技術
以下、第2図に基ずいて凸非球面形状測定の従来技術に
ついて説明する。2. Prior Art Below, a conventional technology for measuring the shape of a convex aspherical surface will be explained based on FIG.
まず、第2図に示すように矢印Aから入射するレーザ一
平面波が、ハーフミラ−21で透過光さ反射光とに2等
分される。そして、その透過光は、ハーフミラ−22を
透過後、凸レンズ23を透過し、被測凸非球面24で反
射し、再び凸レンズ23を透過し、ハーフミラ−22で
反射し、凸レンズ25の方向に進む。First, as shown in FIG. 2, a laser plane wave incident from arrow A is divided into two equal parts by a half mirror 21 into transmitted light and reflected light. After passing through the half mirror 22, the transmitted light passes through the convex lens 23, is reflected by the convex aspherical surface 24 to be measured, passes through the convex lens 23 again, is reflected by the half mirror 22, and proceeds in the direction of the convex lens 25. .
一方、ハーフミラ−21で反射した光はミラー26 、
27で反射し、ホログラム28で回折し、ハーフミラ−
22を透過し、凸レンズ25に至る。ここで、ホログラ
ム28の位置は、被測凸非球面24の凸レンズ23に関
する像位置と共役な位置とする。この時、凸レンズ25
に至った光は、凸レンズ25を透過し、ピンホール29
を経て、ホログラム28の回折光と、被測凸非球面24
の凸レンズ23に関する像を形成する光とは干渉する。On the other hand, the light reflected by the half mirror 21 is reflected by the mirror 26,
It is reflected by 27, diffracted by hologram 28, and becomes a half mirror.
22 and reaches the convex lens 25. Here, the position of the hologram 28 is assumed to be a position conjugate with the image position of the convex aspherical surface 24 to be measured with respect to the convex lens 23 . At this time, the convex lens 25
The light that reaches the point passes through the convex lens 25 and enters the pinhole 29.
The diffracted light of the hologram 28 and the convex aspherical surface 24 to be measured
The light interferes with the light forming the image on the convex lens 23.
その干渉縞を測定することにより、被測凸非球面の形状
を知ることができる。By measuring the interference fringes, the shape of the convex aspherical surface to be measured can be determined.
なお、このような技術を紹介するものとして、P198
2〜1992 )等がある。In addition, as an introduction to such technology, see page 198.
2-1992) etc.
発明が解決しようとする問題点
しかし、第2図に示した様な構成では、ハーフミラ−2
枚、ミラー2枚と干渉計の構成要素が多く、そのためミ
ラー、ハーフミラ−の形状誤差、アライメント誤差を取
り除くことが非常に困難だった。また、透過型ホログラ
ムを用いるため、光の利用効率が低く、干渉縞形状のコ
ントラストの低下を招と、測定形状の認識誤差の原因と
なっていた。Problems to be Solved by the Invention However, in the configuration shown in FIG.
There are many components of the interferometer, including two mirrors and two mirrors, which makes it extremely difficult to eliminate errors in the shape and alignment of the mirrors and half mirrors. Furthermore, since a transmission hologram is used, the light utilization efficiency is low, leading to a decrease in the contrast of the interference fringe shape and causing recognition errors in the measured shape.
本発明は、上記従来技術の欠点に°監み、ミラー系の誤
差要因を減らし、光の利用効率を高くし、被測凸非球面
の測定形状を高精度に認識できることを目的とする。SUMMARY OF THE INVENTION The present invention addresses the above-mentioned shortcomings of the prior art, reduces error factors in the mirror system, increases light utilization efficiency, and enables highly accurate recognition of the measured shape of a convex aspherical surface to be measured.
問題点を解決するだめの手段
本発明はレーサー光源より出射された平面波を透過光と
反射光きに分けるハーフミラ−と、前記ハーフミラ−で
等分された位置に設けられ、前記ハーフミラ−の透過光
と反射光とを入射する同一形状の第1.第2の凸レンズ
と、前記第1の凸レンズの出射光を被測凸非球面で反射
させ、前記第2の凸レンズの出射光を反射型のゾーンプ
レートで反射させ、前記被測凸非球面の反射光が前記第
1の凸レンズを通った後の光と前記反射型のゾーンプレ
ートの反射光光が前記第2のレンズを通った後の光とを
重ねる手段と、その光の重ね合わせにより生じる干渉縞
を観測する観測手段とを設けることにより、上記目的を
達成するものである。Means for Solving the Problems The present invention provides a half mirror that divides a plane wave emitted from a laser light source into transmitted light and reflected light, and is provided at a position equally divided by the half mirror, and the transmitted light of the half mirror is and the reflected light are incident on the first . The light emitted from the second convex lens and the first convex lens is reflected by the convex aspherical surface to be measured, the light emitted from the second convex lens is reflected by a reflective zone plate, and the light emitted from the convex aspherical surface to be measured is reflected. A means for superimposing the light after the light passes through the first convex lens and the light after the reflected light from the reflective zone plate passes through the second lens, and interference caused by the superposition of the light. The above object is achieved by providing an observation means for observing the stripes.
作 用
本発明は上記構成のように、ハーフミラ−を1枚用いる
だけで、また反射型のゾーンプレートを用いることによ
り、ミラー系のアライメント誤差、形状誤差を大巾に軽
減し、また光の利用効率が高くなり、干渉縞のコントラ
ストが向上し、干渉縞の読取り誤差要因が軽減され、高
精度で凸非球面を測定することができる。Effects As in the above configuration, the present invention uses only one half mirror and a reflective zone plate to greatly reduce alignment errors and shape errors in the mirror system, and also improves the utilization of light. The efficiency is increased, the contrast of the interference fringes is improved, the causes of errors in reading the interference fringes are reduced, and convex aspheric surfaces can be measured with high precision.
実施例
以下、図面を参照しながら本発明の一実施例について説
明する。Embodiment Hereinafter, an embodiment of the present invention will be described with reference to the drawings.
第1図は本発明の一実施例における凸非球面形状測定装
置の要部概念図である。FIG. 1 is a conceptual diagram of the main parts of a convex aspherical surface shape measuring device according to an embodiment of the present invention.
第1図において、1はレーザー光源2からのレーザー光
を平面波とするコリメーターレンズ、3はコリメーター
レンズ1を介して入射するレーザー光の平面波を透過光
と反射光とに分けるハーフミラ−14,5はその透過光
と反射光とが入射する同一形状の凸レンズ、6は被測凸
非球面、7は反射型のゾーンプレート、8は凸レンズ4
,5からの球面波をハーフミラ−3を介して結像させる
結像レンズ、9は結像レンズ8により生じる干渉縞によ
り被測凸非球面6の形状を見る観測面である。In FIG. 1, 1 is a collimator lens that converts the laser light from the laser light source 2 into a plane wave; 3 is a half mirror 14 that divides the plane wave of the laser beam incident through the collimator lens 1 into transmitted light and reflected light; 5 is a convex lens of the same shape through which the transmitted light and reflected light enter, 6 is a convex aspherical surface to be measured, 7 is a reflective zone plate, and 8 is a convex lens 4
, 5 is imaged through a half mirror 3, and 9 is an observation surface for observing the shape of the convex aspherical surface 6 to be measured by interference fringes generated by the imaging lens 8.
上記構成において、以下その動作を説明する。The operation of the above configuration will be explained below.
ます、レーサー光源2より発したレーザー光は、コリメ
ータレンズlで平面波となり、ハーフミラ−3で反射光
吉透過光の2つに分かれる。ハーフミラ−3の反射光は
凸レンズ4を通り、被測凸非球面6で反射後、再び凸レ
ンズ4を通り、ハーフミラ−3を介して結像レンズ8に
より干渉縞の観測面9に至る。First, the laser light emitted from the laser light source 2 becomes a plane wave by the collimator lens 1, and is split into two parts by the half mirror 3: reflected light and transmitted light. The reflected light from the half mirror 3 passes through a convex lens 4, is reflected by a convex aspherical surface 6 to be measured, passes through the convex lens 4 again, and reaches an observation surface 9 for interference fringes via an imaging lens 8 via the half mirror 3.
一方、ハーフミラ−3を通過し、凸レンズ5に至った光
は、反射型のゾーンプレート7で回折し、その光は再度
凸レンズ5を通り、ハーフミラ−3で反射後、結像レン
ズ8を介して干渉縞の観察面に至る。ここで、凸レンズ
4,5は全く同じ形状をしていて、凸レンズ4及び5の
距離がハーフミラ−3から互いに等しいようにし、また
反射型のゾーンプレート7による回折光が被測凸非球面
・lの反射光と等しくなるように反射型のゾーンプレー
ト7を作成することにより、干渉縞の観測面9には被測
凸非球面6の本来の形状からのずれの分だけの干渉縞が
観察できる。On the other hand, the light that passes through the half mirror 3 and reaches the convex lens 5 is diffracted by the reflective zone plate 7, passes through the convex lens 5 again, is reflected by the half mirror 3, and then passes through the imaging lens 8. This leads to the observation plane of interference fringes. Here, the convex lenses 4 and 5 have exactly the same shape, the distances of the convex lenses 4 and 5 from the half mirror 3 are equal to each other, and the diffracted light by the reflective zone plate 7 is By creating the reflective zone plate 7 so that the reflected light is equal to the reflected light of .
発明の効果
以上の様に本発明では、ハーフミラ−1枚を用いるだけ
で、他に一切のミラー系を用いず、ミラ−系のアライメ
ント誤差、形状誤差を大巾lこ軽減し、かつ、反射型の
ゾーンプレートを用いることにより、光の利用効率が高
くなり、干渉縞のコントラストが向上し、干渉縞の読取
り誤差要因が軽減され、高精度で凸非球面を測定するこ
きがでと、その効果は大きい。As described above, the present invention uses only one half mirror without using any other mirror system, greatly reduces alignment errors and shape errors in the mirror system, and improves reflection. By using a type zone plate, the efficiency of light utilization is increased, the contrast of interference fringes is improved, and the causes of errors in reading interference fringes are reduced. The effect is great.
第1図は本発明の一実施例における凸非球面形状測定装
置の要部概念図、第2図は従来の凸非球面形状測定装置
の要部概念図である。
1・・コリメーターレンズ、2・ レーザー光源、3・
・・ハーフミラ−14,5・・・凸レンズ、6・・・被
測凸非球面、7・・・反射型のゾーンプレート、8・・
・結像レンズ、9・・・観測面。
代理人の氏名 弁理士 中 尾 敏 男 はか1名Ml
図
”f T v−h町のwy口FIG. 1 is a conceptual diagram of the main parts of a convex aspherical surface shape measuring device according to an embodiment of the present invention, and FIG. 2 is a conceptual diagram of the main parts of a conventional convex aspherical surface shape measuring device. 1. Collimator lens, 2. Laser light source, 3.
... Half mirror 14, 5... Convex lens, 6... Convex aspherical surface to be measured, 7... Reflective zone plate, 8...
・Imaging lens, 9... Observation surface. Name of agent: Patent attorney Toshio Nakao (1 person)
Figure "f T v-h town's wy entrance
Claims (1)
に分けるハーフミラーと、前記ハーフミラーで等分され
た位置に設けられ、前記ハーフミラーの透過光と反射光
とを入射する同一形状の第1、第2の凸レンズと、前記
第1の凸レンズの出射光を被測凸非球面で反射させ、前
記第2の凸レンズの出射光を反射型のゾーンプレートで
反射させ、前記被測凸非球面の反射光が前記第1の凸レ
ンズを通った後の光と前記反射型のゾーンプレートの反
射光光が前記第2のレンズを通った後の光とを重ねる手
段と、その光の重ね合わせにより生じる干渉縞を観測す
る観測手段とを具備する凸非球面形状測定装置。a half mirror that divides the plane wave emitted from the laser light source into transmitted light and reflected light; and a mirror of the same shape that is provided at a position equally divided by the half mirror and receives the transmitted light and reflected light from the half mirror. 1. A second convex lens, the light emitted from the first convex lens is reflected by the convex aspherical surface to be measured, the light emitted from the second convex lens is reflected by a reflective zone plate, and the light emitted from the convex aspherical surface to be measured is reflected by the convex aspherical surface to be measured. means for superimposing the light after the reflected light of the reflective zone plate passes through the first convex lens and the light after the reflected light of the reflective zone plate passes through the second lens, and by superimposing the lights. A convex aspherical surface shape measuring device comprising observation means for observing generated interference fringes.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4558186A JPS62203003A (en) | 1986-03-03 | 1986-03-03 | Apparatus for measuring shape of convex nonspherical surface |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4558186A JPS62203003A (en) | 1986-03-03 | 1986-03-03 | Apparatus for measuring shape of convex nonspherical surface |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS62203003A true JPS62203003A (en) | 1987-09-07 |
Family
ID=12723313
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP4558186A Pending JPS62203003A (en) | 1986-03-03 | 1986-03-03 | Apparatus for measuring shape of convex nonspherical surface |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS62203003A (en) |
-
1986
- 1986-03-03 JP JP4558186A patent/JPS62203003A/en active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR100225923B1 (en) | Phase shifting diffraction interferometer | |
US6909510B2 (en) | Application of the phase shifting diffraction interferometer for measuring convex mirrors and negative lenses | |
JPS63215902A (en) | Position transducer for body | |
US4693604A (en) | Interference method and interferometer for testing the surface precision of a parabolic mirror | |
US3642374A (en) | Optical inspecting method | |
US4105335A (en) | Interferometric optical phase discrimination apparatus | |
JPS62203003A (en) | Apparatus for measuring shape of convex nonspherical surface | |
JPH06288735A (en) | Phase conjugate interferometer for parabolic mirror shape inspection measurement | |
JP4857619B2 (en) | Method for measuring eccentricity of reflective aspherical optical element, method for manufacturing optical system, reflective aspherical optical element, and optical system | |
JP2000097622A (en) | Interferometer | |
JPS6365882B2 (en) | ||
JPH0814854A (en) | Flat plate with computer hologram and measurement using the plate | |
JPH05500853A (en) | Method and apparatus for determining glass tube wall thickness | |
TWI708040B (en) | External reflection-type three dimensional surface profilometer | |
JP2621792B2 (en) | Method and apparatus for measuring spatial coherence | |
JPS5945506U (en) | optical length measurement scale | |
JPH02259512A (en) | Integrated interference measuring instrument | |
JP2899688B2 (en) | Hologram interferometer for cylindrical surface inspection | |
JPH0334002B2 (en) | ||
JP3373552B2 (en) | Method for analyzing alignment of reflection objective lens and method for adjusting reflection objective lens | |
JPH11325848A (en) | Aspherical surface shape measurement device | |
JP2003014415A (en) | Point diffraction interferometer and aligner | |
JPH0540025A (en) | Shape measuring instrument | |
SU1619014A1 (en) | Interferometer | |
JPS61272605A (en) | Interferometer for measuring surface shape |