JPS62202804A - Method for generating excited oxygen molecule o2 (1delta) - Google Patents

Method for generating excited oxygen molecule o2 (1delta)

Info

Publication number
JPS62202804A
JPS62202804A JP7119686A JP7119686A JPS62202804A JP S62202804 A JPS62202804 A JP S62202804A JP 7119686 A JP7119686 A JP 7119686A JP 7119686 A JP7119686 A JP 7119686A JP S62202804 A JPS62202804 A JP S62202804A
Authority
JP
Japan
Prior art keywords
aqueous solution
gas
mixed aqueous
hydrogen peroxide
pipes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7119686A
Other languages
Japanese (ja)
Other versions
JPH0699123B2 (en
Inventor
Taro Uchiyama
太郎 内山
Kiwamu Takehisa
究 武久
Isao Ishizaki
石崎 功
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MITSUI KENSAKU TOISHI KK
Original Assignee
MITSUI KENSAKU TOISHI KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by MITSUI KENSAKU TOISHI KK filed Critical MITSUI KENSAKU TOISHI KK
Publication of JPS62202804A publication Critical patent/JPS62202804A/en
Publication of JPH0699123B2 publication Critical patent/JPH0699123B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Oxygen, Ozone, And Oxides In General (AREA)
  • Lasers (AREA)

Abstract

PURPOSE:To generate an excited oxygen molecule in high generation ratio, by reacting a mixed aqueous solution of an alkali aqueous solution and hydrogen peroxide with a molecular chlorine-containing gas in a layer of a hydrophilic material having gas permeability. CONSTITUTION:Hollow pipes 16 of a hydrophilic, gas-permeable material is set in a reactor 10. Then, a mixed aqueous solution of an alkali aqueous solution and hydrogen peroxide is fed from a feed opening 12 attached to the reactor 10 to the reactor 10, discharged from an outlet 20 and penetrated to the whole surface part of the pipes 16 by capillary phenomena. Simultaneously a molecular chlorine-containing gas is fed from gas feed openings 22 to hollow parts of the pipes 16, transported through fine pores of the pipes 16 to the surface parts of the pipes 16, brought into contact with and reacted with the mixed aqueous solution of an alkali aqueous solution and hydrogen peroxide to generate an excited oxygen molecule, which is discharged from the outlet 20 and recovered.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、シングレットデルタ酸素の発生方法に関する
ものである。詳しくは、本発明は、液体と気体との反応
により励起酸素分子(molecularOXygen
 in the eXCited 5inlJlet−
delta electroniC5tate) 02
  (+Δ)を発生する改良された方法に関するもので
ある。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Field of Application) The present invention relates to a method for generating singlet delta oxygen. Specifically, the present invention provides excited oxygen molecules (molecular OXygen) through a reaction between a liquid and a gas.
in the eXCited 5inlJlet-
delta electronicC5tate) 02
(+Δ).

(従来の技術) 励起酸素分子02 (1Δ)は、主として化学励起沃素
レーザーの原料として用いられる。
(Prior Art) Excited oxygen molecules 02 (1Δ) are mainly used as a raw material for chemically excited iodine lasers.

化学励起沃素レーザーとは、化学反応によって発生させ
た02 (1Δ)からのエネルギー移乗により生じる励
起沃素原子1 (2P、/2 )と基底状態の沃素原子
I(2P2/3)との間で遷移で発振するレーザーであ
る。この02 (1△)は、水酸化ナトリウム等のアル
カリ水溶液中で過酸化水素水溶液(H202)と塩素ガ
スとを反応させることにより発生する。その反応式は、
つぎのようにまとめられる。
A chemically excited iodine laser is a transition between an excited iodine atom 1 (2P, /2) generated by energy transfer from 02 (1Δ) generated by a chemical reaction and an iodine atom I (2P2/3) in the ground state. It is a laser that oscillates at This 02 (1Δ) is generated by reacting an aqueous hydrogen peroxide solution (H202) with chlorine gas in an alkaline aqueous solution such as sodium hydroxide. The reaction formula is
It can be summarized as follows.

H202+2Na01−l+cN−+ 02  (1△ )  +2NaOH+21−120従
来、このような反応方法としては、H2O2と水酸化ナ
トリウム水溶液との混合液中に塩素ガスを気泡状にして
注入していた[米国特許第4,461.756号、同第
4.246.252号、同第4.310.502号およ
び同第4,342,116号、ジャーナル・オブ・アプ
ライド・フィジックス(J、 Aρp1、Phys、 
) 52(8)、8月号(1981年)、アプライド・
フィジカル・レター(八pp、、 Phl/S、 Le
tt、 > 45 (10) 。
H202+2Na01-l+cN-+ 02 (1△) +2NaOH+21-120 Conventionally, such a reaction method involved injecting chlorine gas in the form of bubbles into a mixture of H2O2 and an aqueous sodium hydroxide solution [U.S. 4,461.756, 4.246.252, 4.310.502 and 4,342,116, Journal of Applied Physics (J, Aρp1, Phys,
) 52(8), August issue (1981), Applied
Physical Letter (8pp, Phl/S, Le
tt, > 45 (10).

1511月号(1984年)およびアプライド・フィジ
カル・レター(八pp1.phys、 Left、 >
 41 (1)、17月@(1982年)]。
15 November issue (1984) and Applied Physical Letters (8pp1.phys, Left, >
41 (1), July @ (1982)].

(発明が解決しようとする問題点) しかしながら、このような方法では、発生する02  
(1Δ)は溶液中を通過しなければならないので、該溶
液中で02 (1△)が失活する割合は非常に高いため
に、実際に得られる発生率[02(1△)分圧の全酸素
圧に対する割合」は40〜60%程度しか得られない。
(Problem to be solved by the invention) However, in such a method, 02
(1Δ) has to pass through the solution, so the rate of deactivation of 02 (1Δ) in the solution is very high, so the actually obtained generation rate [02(1Δ) partial pressure] The ratio to the total oxygen pressure is only about 40 to 60%.

また、これらの方法は、塩素ガスの量を増ずと反応熱の
ために、あぶくが多量に発生して反応が妨げられ、02
 (1△)の半が制限されるという欠点があった。
In addition, these methods do not increase the amount of chlorine gas and generate a large amount of bubbles due to the reaction heat, which hinders the reaction.
There was a drawback that half of (1△) was limited.

したがって、本発明の目的は、シングレットデルタ酸素
発生の新規な方法を提供することにある。
It is therefore an object of the present invention to provide a new method for singlet delta oxygen generation.

本発明の他の目的は、液体と気体との反応により励起酸
素分子02 (1△)を極めて高い発生率で発生させる
方法を提供することにある。
Another object of the present invention is to provide a method for generating excited oxygen molecules 02 (1△) at an extremely high generation rate through a reaction between a liquid and a gas.

(問題点を解決するための手段) これらの開目的は、アルカリ性水溶液と過酸化水素との
混合水溶液を、親水性がありかつ気体透過性のある材質
の居の表面部に浸透させ、該層の表面の反対側から分子
状塩素含有ガスを透過させ、該ガスが該材質を透過する
際に該材質表面部に浸透した混合水溶液と反応し、励起
酸素分子02(IΔ)を該層の表面の水溶液浸透部側か
ら発生させることを特徴とする励起酸素分子の発生方法
により達成される。
(Means for Solving Problems) The purpose of these developments is to infiltrate the surface of a material that is hydrophilic and gas permeable with a mixed aqueous solution of an alkaline aqueous solution and hydrogen peroxide. A molecular chlorine-containing gas is passed through from the opposite side of the surface of the layer, and when the gas passes through the material, it reacts with the mixed aqueous solution that has penetrated into the surface of the material, releasing excited oxygen molecules 02 (IΔ) onto the surface of the layer. This is achieved by a method for generating excited oxygen molecules, which is characterized in that the excited oxygen molecules are generated from the side of the aqueous solution permeation section.

(作用) 本発明によるシステムは、前記のごとき反応を起すため
に、アルカリ性水溶液、例えば水酸化ナトリウム、水酸
化カリウム、水酸化リチウム等のアルカリ金属の水酸化
物、水酸化カルシウム、水酸化マグネシウム等のアルカ
リ土類金属の水酸化物等の水溶液と、高濃度の過酸化水
素水との混合水溶液を、親水性があり均質かつ微細な細
孔を有する気体透過性のある材質の層の表面部に毛管力
を十分生かし浸透させる。一方、該層の表面の反対側か
ら分子状塩素含有ガスを透過させると、該ガスが該材質
を透過する際に、該材質表面部に浸透した混合水溶液と
塩素とが接触して反応し、励起酸素分子02  (1Δ
)を該層の表面の水溶液浸透部側から発生させることに
なる。
(Function) In order to cause the above reaction, the system according to the present invention uses an alkaline aqueous solution, for example, an alkali metal hydroxide such as sodium hydroxide, potassium hydroxide, lithium hydroxide, calcium hydroxide, magnesium hydroxide, etc. A mixed aqueous solution of an aqueous solution of an alkaline earth metal hydroxide, etc. and a highly concentrated hydrogen peroxide solution is applied to the surface of a layer of a gas-permeable material that is hydrophilic and has homogeneous and fine pores. Penetration takes full advantage of capillary force. On the other hand, when a molecular chlorine-containing gas is permeated from the opposite side of the surface of the layer, when the gas permeates through the material, the mixed aqueous solution that has permeated the surface of the material and chlorine come into contact and react, Excited oxygen molecule 02 (1Δ
) is generated from the aqueous solution permeation portion side of the surface of the layer.

本発明によれば、混合液浸透部の反対側から分子状塩素
含有ガスを加圧することにより、該ガスは該材質層を透
過して該水溶液と塩素とが接触して反応し、励起酸素分
子02 (1Δ)が該水溶液の面から該材質の反対側の
空間に発生する。つまり、この水溶液と塩素との反応は
、該材質層表面の極く薄い層において起るため、発生す
る励起酸素分子02 (1△)は、直ちに水溶液面から
離れて該ガスの流れる別の空間に移動する。したがって
、−反発生した励起酸素分子が水溶液中の他の分子との
衝突により失活する確率は、極めて小さくなる。
According to the present invention, by pressurizing the molecular chlorine-containing gas from the opposite side of the mixed liquid permeation section, the gas permeates through the material layer and the aqueous solution and chlorine come into contact and react, causing excited oxygen molecules. 02 (1Δ) is generated in the space on the opposite side of the material from the surface of the aqueous solution. In other words, since the reaction between this aqueous solution and chlorine occurs in an extremely thin layer on the surface of the material layer, the generated excited oxygen molecules 02 (1△) immediately leave the aqueous solution surface and enter another space where the gas flows. Move to. Therefore, the probability that the degenerated excited oxygen molecules are deactivated by collision with other molecules in the aqueous solution is extremely small.

前記アルカリ性水溶液としてはアルカリ金属水酸化物の
水溶液が好ましく、特に水酸化カリウムおよび水酸化ナ
トリウム水溶液が好ましい。混合水溶液中の911は7
.5〜14、好ましくは8〜11である。また該混合水
溶液中の過酸化水素の濃度は、通常30〜90重措%、
好ましくは50へ・80重間%である。
As the alkaline aqueous solution, an aqueous solution of an alkali metal hydroxide is preferable, and an aqueous solution of potassium hydroxide and sodium hydroxide is particularly preferable. 911 in mixed aqueous solution is 7
.. 5-14, preferably 8-11. Further, the concentration of hydrogen peroxide in the mixed aqueous solution is usually 30 to 90%,
Preferably it is 50 to 80% by weight.

親水性およびガス透過性を有する材質としては、例えば
多孔質セラミックス、多孔質ガラス、多孔質金属、多孔
質有機材料(例えば親水化処理したポリプロピレン、ポ
リ塩化ビニル樹脂、フッ素樹脂等)等があり、その平均
細孔径は1〜20μ電、好ましくは3〜7μ血である。
Examples of materials having hydrophilicity and gas permeability include porous ceramics, porous glass, porous metals, porous organic materials (for example, hydrophilized polypropylene, polyvinyl chloride resin, fluororesin, etc.), Its average pore size is between 1 and 20 μm, preferably between 3 and 7 μm.

その気孔率は20〜85%、好ましくは35〜85%で
ある。すなわち、20%未満では透過性が劣り、一方8
5%を越えると強度を保つことが困難だからである。
Its porosity is 20-85%, preferably 35-85%. That is, if it is less than 20%, the transparency is poor;
This is because if it exceeds 5%, it is difficult to maintain strength.

しかし、気孔率はなるべく高い方が好ましい。ざらに、
積分の細孔径の分布は、最大で2倍長の長さのものが9
0%以上、好ましくは95%以上であり、172倍の長
さまでのものが10%以下、好ましくは5%以下である
。前記材質の形状はフィルムないしシート状、中空パイ
プ、中空糸等の中空体等、任意の形状が採られ得る。該
材質層の厚さは、通常0.01〜20IIIIII好ま
しく1〜5111111で−ある。
However, it is preferable that the porosity is as high as possible. Roughly,
The integral pore diameter distribution is 9 times the maximum length of the pores.
It is 0% or more, preferably 95% or more, and the length up to 172 times is 10% or less, preferably 5% or less. The shape of the material may be any shape, such as a film or sheet, a hollow body such as a hollow pipe, or a hollow fiber. The thickness of the material layer is usually 0.01 to 20III, preferably 1 to 5111111.

分子状塩素含有ガスとしては、塩素ガス111独の他に
塩素ガスと不活性ガス(例えば窒素、ヘリウム、アルゴ
ン等)との混合ガスがある。その供給量は、CΩ2とし
て該材質層に対して1〜100m mol/7−111
in 、好ましくは2〜20mIIIO1/d・min
である。該混合ガス中の塩素ガス濃度は、5容M%以上
、好ましくは100容d%である。しかして、随起酸素
分子発生側の雰囲気は、通常0゜1〜100TOrr、
好ましくは3〜10rorrの減圧下に保たれている。
In addition to chlorine gas 111, the molecular chlorine-containing gas includes a mixed gas of chlorine gas and an inert gas (for example, nitrogen, helium, argon, etc.). The supply amount is 1 to 100 m mol/7-111 to the material layer as CΩ2.
in, preferably 2 to 20 mIIIO1/d・min
It is. The chlorine gas concentration in the mixed gas is 5 volume M% or more, preferably 100 volume d%. Therefore, the atmosphere on the side where incidental oxygen molecules are generated is usually 0°1 to 100 TOrr,
Preferably, the pressure is maintained at a reduced pressure of 3 to 10 rorr.

つぎに、図面を参照しながら本発明をざらに詳細に説明
する。
Next, the present invention will be roughly described in detail with reference to the drawings.

第1〜3図に示すように、反応容器10の下部に混合水
溶液供給口12によりアルカリ性水溶液と過酸化水素水
との混合水溶液を供給して形成される水溶液層14の液
面に接するように少なくとも1本の中空状パイプ16が
設(プられ、ざらに該水溶液層14上の空間部18には
、パイプ(図示せず)に連結する酸素ガス排出口20が
設けられ、また、該水溶液の濶麿を一定に保つために、
必要により涙金液排出口26が設けられている。この装
置に使用される中空パイプ16は、例えば平均細孔径5
μ電の微細な細孔を有するセラミックス製のものである
As shown in FIGS. 1 to 3, a mixed aqueous solution of an alkaline aqueous solution and a hydrogen peroxide solution is supplied to the lower part of the reaction vessel 10 through a mixed aqueous solution supply port 12 so as to be in contact with the liquid surface of an aqueous solution layer 14 formed. At least one hollow pipe 16 is provided, and a space 18 above the aqueous solution layer 14 is provided with an oxygen gas outlet 20 connected to the pipe (not shown). In order to maintain a constant level of
A lachrymal solution outlet 26 is provided if necessary. The hollow pipe 16 used in this device has an average pore diameter of 5, for example.
It is made of ceramics with microscopic pores.

このような装置において、アルカリ性水溶液と過酸化水
素水との混合水溶液を供給口12により供給しかつ排出
口20により排出させることにより、反応容器10内の
混合水溶液の′cL度を保つ。
In such an apparatus, by supplying a mixed aqueous solution of an alkaline aqueous solution and a hydrogen peroxide solution through the supply port 12 and discharging it through the discharge port 20, the mixed aqueous solution in the reaction vessel 10 is maintained at a constant temperature of 1.

この場合、過酸化水素水は高濃僚のものが好ましく、7
0〜90重徂%、例えば90重但%のものを用いる。ア
ルカリ水溶液は10〜50重量%、例えば25重量%の
ものを用いる。過酸化水素水とアルカリ水溶液は体積比
で5対1程度とする。
In this case, the hydrogen peroxide solution is preferably highly concentrated;
0 to 90% by weight, for example 90% by weight, is used. The alkaline aqueous solution used is 10 to 50% by weight, for example 25% by weight. The hydrogen peroxide solution and the alkaline aqueous solution should have a volume ratio of about 5:1.

の結果、混合水溶液中の過酸化水素濃度は32〜82重
量%、アルカリ濃度は3〜25重量%となる。これらの
名水)d液は別々に反応容器10に供給してもよいが、
均一な混合水溶液として反応容器に供給することが望ま
しい。反応容器10は、該混合水溶液を供給する前に真
空ポンプを用いて10m丁orr以下の圧力に減圧して
おくことが望ましい。該混合水溶液の供給量は、パイプ
16が該水溶液の水面下に0.5〜4mm、好ましくは
1〜2mm沈む程度である。該水溶液は、パイプ16と
接触した最下部から毛細管現象により、該パイプ16の
全表面部に浸透する。ガス供給口22から供給される分
子状塩素含有ガスは、パイプ外との圧力差により該パイ
プの微細孔を通ってその表面に達し、混合水溶液と接触
して反応し、励起酸素分子02 (1△)を発生し、酸
素ガス排出口20より糸外へ排出される。分子状塩素含
有ガスの流層は、CΩ2としてセラミックス製パイプの
単位外周面積当り1〜100mm01/cd−min、
例えば5 m NOVにH−111inである。
As a result, the hydrogen peroxide concentration in the mixed aqueous solution is 32 to 82% by weight, and the alkali concentration is 3 to 25% by weight. These famous waters) d liquid may be separately supplied to the reaction vessel 10,
It is desirable to supply it to the reaction vessel as a uniform mixed aqueous solution. It is desirable to reduce the pressure of the reaction vessel 10 to 10 m orr or less using a vacuum pump before supplying the mixed aqueous solution. The amount of the mixed aqueous solution supplied is such that the pipe 16 sinks 0.5 to 4 mm, preferably 1 to 2 mm, below the surface of the aqueous solution. The aqueous solution permeates the entire surface of the pipe 16 from the lowest point in contact with the pipe 16 due to capillary action. The molecular chlorine-containing gas supplied from the gas supply port 22 passes through the fine pores of the pipe and reaches its surface due to the pressure difference with the outside of the pipe, contacts and reacts with the mixed aqueous solution, and excites oxygen molecules 02 (1 △) is generated and is discharged to the outside of the yarn from the oxygen gas discharge port 20. The flow layer of molecular chlorine-containing gas is 1 to 100 mm0/cd-min per unit outer peripheral area of the ceramic pipe as CΩ2,
For example, H-111 inch at 5 m NOV.

第4図は、本発明の他の実Mi態様を示ずもので、反応
容器30の中間部位(、ガス供給室46および該ガス供
給室に対向するガス排出室40を設け、該ガス供給室4
6の一端(ガス排出室側)1こ親水性およびガス透過性
を有する材質層の薄板ないし薄膜36を垂直ないし斜め
に取付ける。過酸化水素水とアルカリ性水溶液との混合
水溶液34を前記両室46および40の上部に溜め、こ
れを上部からたらすと該材質製薄板ないし薄膜が該混合
水溶液で濡れる。ガス排出室40および反応容器30を
予め減圧したのら該ガス供給室46に分子状塩素含有ガ
スを供給すると、塩素ガスは該薄板ないし薄膜36を透
過して該混合水溶液と接触して反応し、励起酸素分子0
2 (1△)が発生し、ガス排出口40から系外に排出
される。該薄板ないし薄膜を流下した混合水溶液は、反
応容器30の下部に溜った液層44を形成するが、必要
により系外に排出される。
FIG. 4 shows another embodiment of the present invention, in which a middle part of the reaction vessel 30 (a gas supply chamber 46 and a gas discharge chamber 40 facing the gas supply chamber are provided, and the gas supply chamber 4
6 (on the side of the gas discharge chamber), a thin plate or thin film 36 made of a material layer having hydrophilicity and gas permeability is attached vertically or diagonally. A mixed aqueous solution 34 of a hydrogen peroxide solution and an alkaline aqueous solution is stored in the upper part of both chambers 46 and 40, and when this is dripped from the upper part, the thin plate or thin film made of the material is wetted with the mixed aqueous solution. When molecular chlorine-containing gas is supplied to the gas supply chamber 46 after depressurizing the gas discharge chamber 40 and the reaction vessel 30 in advance, the chlorine gas passes through the thin plate or thin film 36 and comes into contact with the mixed aqueous solution to react. , excited oxygen molecules 0
2 (1△) is generated and is discharged from the gas outlet 40 to the outside of the system. The mixed aqueous solution that has flown down the thin plate or film forms a liquid layer 44 that accumulates at the bottom of the reaction vessel 30, but is discharged outside the system if necessary.

第5および6図は、本発明のざらに他の実施態様を示す
もので、原理的には第4図の場合と同様でおるが、反応
容器50の中間部位に、親水性おにびガス透過性を有す
る材質層の筒状ガス供給室56および該ガス供給室の上
部に混合水溶液供給装置68をほぼ斜めに設ける。反応
容器50を予め減圧したのち、混合水溶液供給装置68
下部の滴下孔またはスリン1〜より混合水溶液を滴下す
ると、該水溶液は筒状ガス供給室56の表面部を濡らし
ながら流下する。一方、反応容器50内を予め減圧した
のち、分子状塩素含有ガスをガス供給口62より供給す
ると圧力差により塩素ガスは該ガス供給室56から反応
容器50内に透過する間に前記混合水溶液と接触して反
応し、励起酸素分子02  (1Δ)が発生し、ガス排
出口60から系外に排出される。なお、該筒状ガス供給
室56の表面を流下した混合水溶液は、反応容器50の
下部に溜った液槽64を形成するが必要により糸外に排
出される。なお、必要により該筒状ガス供給室56を回
転させてちよい。
5 and 6 show roughly other embodiments of the present invention, which are similar in principle to the case shown in FIG. A cylindrical gas supply chamber 56 made of a permeable material layer and a mixed aqueous solution supply device 68 are provided substantially obliquely above the gas supply chamber. After reducing the pressure in the reaction container 50 in advance, the mixed aqueous solution supply device 68
When the mixed aqueous solution is dripped from the lower drip hole or Surin 1~, the aqueous solution flows down while wetting the surface of the cylindrical gas supply chamber 56. On the other hand, after reducing the pressure in the reaction vessel 50 in advance, when a molecular chlorine-containing gas is supplied from the gas supply port 62, the chlorine gas passes from the gas supply chamber 56 into the reaction vessel 50 due to the pressure difference, and the mixed aqueous solution. Upon contact and reaction, excited oxygen molecules 02 (1Δ) are generated and are discharged from the gas outlet 60 to the outside of the system. The mixed aqueous solution that has flowed down the surface of the cylindrical gas supply chamber 56 forms a liquid tank 64 that accumulates at the bottom of the reaction vessel 50, but is discharged outside the thread if necessary. Note that the cylindrical gas supply chamber 56 may be rotated if necessary.

第7および8図は、本発明の別の実施態様を示すもので
、第1〜3図に示す装置と同様な装置において、反応容
器70内に設けられろ親水性およびガス透過性を有する
材質層の筒状ガス供給室76を、中心軸(回転シャフト
84aおよび84bを設け、軸受86aおよび86bに
より回転自在に支承させる。筒状ガス供給室76の下部
を、反応容器70内の混合水溶液74中に浸漬し、回転
させるとその外側表面仝而が濡れる。反応容器70内を
減圧したのちにガス供給口82より分子状塩素含有ガス
を供給すると、塩素ガスは前記材質層を透過して混合水
溶液と接触して反応し、励起酸素分子02 (1Δ)が
発生し、ガス排出口80から系外へ排出される。なお、
該混合水溶液は、液供給ロア2から供給されかつ液排出
口88から排出されて濃度を一定に保つことができる。
7 and 8 show another embodiment of the present invention, in which an apparatus similar to that shown in FIGS. The cylindrical gas supply chamber 76 of the layer is provided with a central axis (rotary shafts 84a and 84b, and is rotatably supported by bearings 86a and 86b. When the reaction vessel 70 is immersed in the liquid and rotated, its outer surface becomes wet.When molecular chlorine-containing gas is supplied from the gas supply port 82 after reducing the pressure inside the reaction vessel 70, the chlorine gas permeates through the material layer and mixes. Upon contact with the aqueous solution and reacting, excited oxygen molecules 02 (1Δ) are generated and are discharged from the system through the gas outlet 80.
The mixed aqueous solution is supplied from the liquid supply lower 2 and discharged from the liquid outlet 88, so that the concentration can be kept constant.

第9図は、本発明で使用される親水性およびガス透過性
を有する材質でつくられた筒状ガス供給室の一例を示す
断面図である。
FIG. 9 is a sectional view showing an example of a cylindrical gas supply chamber made of a hydrophilic and gas permeable material used in the present invention.

(実施例) 実施例1〜4 第1〜3図に示1装置(ただし、ガス供給室16は1本
)において、平均気孔径4〜5μ電、外径10mm、長
623 QntmJ3よび厚すlll1mのセラミック
ス製円筒状パイプをガス供給室16として用い、反応容
器10に過酸化水素水麿90重量%の過酸化水素水50
mおよび濃度43重但%の水酸化ナトリウム水溶液50
0dの混合水溶液(p(1約10)を供給したのち、反
応容器内を5mTorrに減圧し、前記ガス供給室16
内に塩素ガスを供給したところ、第1表の結果が得られ
た。なお、測定は、筒状ガス供給室16からの距離へが
約500mmの個所から600mmのパイプをドライア
イスとアルコ・−ルとの混合物で195Kに冷却して水
分を除去したのら、その出口からの距ff1Bが60Q
mmの個所でPbS検出器で02 (lΔ)の絶対量を
測定するとともに、ガスアナライザーで未反応の塩素但
を測定した。生成ガスは3001iter/minで吸
引し、かつ不使用の塩素を除去するために77にの液体
窒素で冷却した (第10A図参照)。その結果を第1
表に示す。
(Example) Examples 1 to 4 In one device shown in Figs. 1 to 3 (however, there is one gas supply chamber 16), the average pore diameter is 4 to 5 μm, the outer diameter is 10 mm, the length is 623 QntmJ3, and the thickness is 1 m. A cylindrical pipe made of ceramics is used as the gas supply chamber 16, and 50% hydrogen peroxide solution containing 90% by weight of hydrogen peroxide solution is placed in the reaction vessel 10.
m and a sodium hydroxide aqueous solution with a concentration of 43% by weight and 50%
After supplying a mixed aqueous solution of 0d (p (about 10)), the pressure inside the reaction vessel was reduced to 5mTorr, and the gas supply chamber
When chlorine gas was supplied into the chamber, the results shown in Table 1 were obtained. The measurement was performed from a point approximately 500 mm away from the cylindrical gas supply chamber 16, after cooling a 600 mm pipe to 195 K with a mixture of dry ice and alcohol to remove moisture, and then The distance from ff1B is 60Q
The absolute amount of 02 (lΔ) was measured using a PbS detector at a point of mm, and unreacted chlorine was also measured using a gas analyzer. The product gas was sucked at 3001 iter/min and cooled with liquid nitrogen at 77°C to remove unused chlorine (see Figure 10A). The result is the first
Shown in the table.

実施例5〜10 第10A図および第108図に示す装置を用いて実験を
行なった。反応容器’110に、平均気孔径4〜5μm
、外径10mm、長さ230mm、厚ざ11IImのセ
ラミックス製円筒状パイプをガス供給室116として用
い、一方、過酸化水素水供給口112aおよびアルカリ
性水溶液供給口112bを備えた混合室112に連結さ
れた8!滴下管(直径Q、3mmの孔を5顛間隔て備え
ている)114を反応容器10に過酸化水素濃度90重
徂%の過酸前記ガス供給室116上に設け、ガス供給口
122より塩素ガスを供給し、液滴下管より実施例1と
同様の混合水溶液を2.5mff1/Sec割合で滴下
して反応し、反応後の水溶液は液排出口124より排出
させた。筒状ガス供給室116の外側表面部で発生した
励起酸素分子02 (1Δ)は、該筒状ガス供給室11
6からの距離へが約500mmの個所から600mmの
パイプ130をドライアイスとアルコールとの混合物で
195Kに冷却して水1分を除去したのち、その出口か
らの距1fSltBが60Qm111の個所でPbS検
出器132rO2(’△)の絶対量を測定するとともに
、ガスアナライザーで未反応の塩素量を測定した。生成
ガスは3001iter/l1linで吸引し、かつ不
使用の塩素を除去するために冷却器134で77にの液
体窒素で冷却した。その結果を第1表に示す。
Examples 5 to 10 Experiments were conducted using the apparatus shown in FIGS. 10A and 108. In the reaction vessel '110, the average pore size was 4 to 5 μm.
A ceramic cylindrical pipe with an outer diameter of 10 mm, a length of 230 mm, and a thickness of 11 II m is used as the gas supply chamber 116, and is connected to a mixing chamber 112 equipped with a hydrogen peroxide solution supply port 112a and an alkaline aqueous solution supply port 112b. Ta8! A dropping tube (diameter Q, equipped with 5 holes of 3 mm) 114 is installed in the reaction vessel 10 above the peroxy acid gas supply chamber 116 with a hydrogen peroxide concentration of 90% by weight, and chlorine is supplied from the gas supply port 122. A gas was supplied, and a mixed aqueous solution similar to that in Example 1 was dropped from the droplet tube at a rate of 2.5 mff1/Sec to cause a reaction, and the aqueous solution after the reaction was discharged from the liquid outlet 124. The excited oxygen molecules 02 (1Δ) generated on the outer surface of the cylindrical gas supply chamber 116 are
After cooling the pipe 130 of 600 mm from a point approximately 500 mm away from 6 to 195 K with a mixture of dry ice and alcohol to remove 1 minute of water, PbS was detected at a point where the distance 1fSltB from the outlet was 60Qm111. The absolute amount of O2 ('△) in the vessel 132 was measured, and the amount of unreacted chlorine was also measured using a gas analyzer. The produced gas was sucked in at 3001 iter/l1lin and cooled with liquid nitrogen at 77°C in a cooler 134 to remove unused chlorine. The results are shown in Table 1.

比較例1〜4 平均孔径100μm、厚さ10IIII11および直径
12CI11を有するガラスフィルターを垂直な筒状反
応容器の比較的下部に取イ」け、該ガラスフィルターの
上面と反応容器内面とにより形成される空間に実施例1
と同じu含水溶液を供給し、かつ該ガラスフィルターの
下面と反応容器内面とにより形成される空間に塩素ガス
を供給し、実施例5と同様な条件でガラスフィルターを
通過させた。02(lΔ)102、および02/CΩ2
の収率は実施例5と同様の方法で測定した。その結果を
第1表に示す。
Comparative Examples 1 to 4 A glass filter having an average pore diameter of 100 μm, a thickness of 10III11, and a diameter of 12CI11 is placed in a relatively lower part of a vertical cylindrical reaction vessel, and the glass filter is formed by the upper surface of the glass filter and the inner surface of the reaction vessel. Example 1 in space
The same u-containing solution as in Example 5 was supplied, and chlorine gas was supplied to the space formed by the lower surface of the glass filter and the inner surface of the reaction vessel, and the solution was allowed to pass through the glass filter under the same conditions as in Example 5. 02(lΔ)102, and 02/CΩ2
The yield was measured in the same manner as in Example 5. The results are shown in Table 1.

第1表のデータをプロットすると、第11図にとおりで
ある。同図において○印は実施例5〜10、Δ印は、比
較例1〜4を表わす。
When the data in Table 1 is plotted, it is as shown in FIG. In the figure, ○ marks represent Examples 5 to 10, and Δ marks represent Comparative Examples 1 to 4.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明による励起酸素分子発生システムの一実
施態様を示す一部破断概略斜視図、第2図は第1図のI
I −II線に沿う断面図、第3図は第1図のIII 
−III線に沿う断面図、第4図は本発明の伯の実施態
様を示す断面図、第5図は本発明のさらに他の実M態様
を示す断面図、第6図は第5図のv−v線に沿う断面図
、第7図は本発明の別の実施態様を示す断面図、第8図
は第7図のVlll−■線に沿う断面図、第9図は本発
明で使用される親水性および気体透過性を有する材質層
の形状の一例を示す断面図、第10A図は、本発明のシ
ステムの測定個所を示す概略図であり、第108図は、
第11A図のXIA−XIA線に沿う断面図であり、ま
た第11図は02圧と02 (雪Δ)102との関係を
示すグラフである。 手続ンrli正限葺(方式) 昭和61年6月4日 特許庁長官   宇 N  通 部 殿1、事件の表示 昭和61年 特許願 第71.196@2、発明の名称 励起酸素分子02 (1Δ)の発生方法3、補正をする
者 事f4との関係  特許出願人 住 所   東京都 町田市 成瀬 2663番地9氏
 名   自由  太部 住 所   埼玉系 入間市 大字狭山ケ原 11番地
10名 称   三井研削砥石株式会社 代表者 松本 昭夫 4、代理人 住 所   東京都千代田区二番町11番地9ダイアパ
レス二番町昭和61年5月6日 (発送日:昭和61年
5月20日)6、補正の対象 「図面」および「委任状」 7、補正の内容 願出に添付した図面の浄化・別紙のとおり(内容に変更
なし)がパ 手続ネm、正書(方式) %式% 1、事件の表示 昭和61年 特許願 第71.196号2、発明の名称 V」超酸素分子02 (1Δ)の発生方法3、補正をす
る者 事件との関係  特許出願人 住 所   東京都 町田市 成瀬 2663番地9氏
名 自由 太部 住 所   埼玉系 人間市 大字狭山ケ原 11番地
10名 称   三井研削砥6株式会社 代表者 松本 昭夫 4、代理人 Xlへ−Xlへ線に沿う断面図であり」を[−第10B
図は、第10A図のXへ−XA線に沿う断面図であり」
と補正する。 手続祐1正吉 昭和61年8月6日 特許庁長官   黒 1) 明 雄 殿自発補正 6、補正の対象 「図面の第10図」
FIG. 1 is a partially cutaway schematic perspective view showing an embodiment of the excited oxygen molecule generation system according to the present invention, and FIG.
A cross-sectional view taken along the line I-II, FIG. 3 is the section III in FIG.
4 is a sectional view showing another embodiment of the present invention, FIG. 5 is a sectional view showing still another embodiment of the present invention, and FIG. 6 is a sectional view of FIG. 7 is a sectional view showing another embodiment of the present invention; FIG. 8 is a sectional view taken along line Vllll-■ in FIG. 7; FIG. FIG. 10A is a cross-sectional view showing an example of the shape of a material layer having hydrophilicity and gas permeability, and FIG. 10A is a schematic diagram showing measurement points of the system of the present invention, and FIG.
11A is a sectional view taken along the line XIA-XIA in FIG. 11A, and FIG. 11 is a graph showing the relationship between 02 pressure and 02 (snow Δ) 102. Procedure rli positive limit (method) June 4, 1985 Director General of the Patent Office U N Tsu Department 1, Indication of the case 1986 Patent application No. 71.196 @ 2, Name of the invention Excited oxygen molecule 02 (1Δ ) generation method 3, relationship with the person making the amendment f4 Patent Applicant Address: 2663-9 Naruse, Machida City, Tokyo Name: Jiyu Abe Address: Saitama-based 11-10 Sayamagahara, Iruma City Name: Mitsui Grinding Whetstone Co., Ltd. Representative: Akio Matsumoto 4, Agent Address: Dia Palace Niban-cho, 11-9 Niban-cho, Chiyoda-ku, Tokyo May 6, 1986 (Shipping date: May 20, 1986) 6. Amendment Target "drawings" and "power of attorney" 7. Contents of amendment Cleaning of the drawings attached to the application As shown in the attached sheet (no change in content) is the formal document (method) % formula % 1. Indication of the case 1985 Patent Application No. 71.196 2, Title of the Invention "V" Method of Generating Super Oxygen Molecule 02 (1Δ) 3, Relationship with the Amendment Case Patent Applicant Address 2663-9 Naruse, Machida City, Tokyo Name Free Fatabe Address Saitama-based Ningen City Oaza Sayamagahara 11-10 Name Mitsui Grinding Tool 6 Co., Ltd. Representative Akio Matsumoto 4, Agent XXl - This is a cross-sectional view along the line from [- 10B
The figure is a sectional view taken along the line X-XA in Figure 10A.
and correct it. Procedure Yu 1 Masakichi August 6, 1986 Commissioner of the Patent Office Black 1) Yu Akira Spontaneous amendment 6, subject of amendment "Figure 10 of the drawings"

Claims (3)

【特許請求の範囲】[Claims] (1)アルカリ性水溶液と過酸化水素との混合水溶液を
、親水性がありかつ気体透過性のある材質の層の表面部
に浸透させ、該層の表面の反対側から分子状塩素含有ガ
スを透過させ、該ガスが該材質を透過する際に該材質表
面部に浸透した混合水溶液と反応し、励起酸素分子O_
2(^1Δ)を該層の表面の水溶液浸透部側から発生さ
せることを特徴とする励起酸素分子の発生方法。
(1) A mixed aqueous solution of an alkaline aqueous solution and hydrogen peroxide is infiltrated into the surface of a layer of a hydrophilic and gas permeable material, and molecular chlorine-containing gas is permeated from the opposite side of the surface of the layer. When the gas passes through the material, it reacts with the mixed aqueous solution that has penetrated the surface of the material, and excited oxygen molecules O_
2(^1Δ) is generated from the aqueous solution permeation part side of the surface of the layer.
(2)親水性およびガス透過性を有する材質が多孔質セ
ラミックス、多孔質ガラス、多孔質金属および多孔質有
機材料よりなる群から選ばれた少なくとも1種のもので
ある特許請求の範囲第1項に記載の方法。
(2) Claim 1, wherein the material having hydrophilicity and gas permeability is at least one selected from the group consisting of porous ceramics, porous glass, porous metals, and porous organic materials. The method described in.
(3)該材質の平均細孔径が1〜20μmである特許請
求の範囲第1項に記載の方法。
(3) The method according to claim 1, wherein the material has an average pore diameter of 1 to 20 μm.
JP7119686A 1985-10-31 1986-03-31 Excited Oxygen Molecule O ▲ Lower 2 ▼ (Upper 1 ▼ Δ) Generation Method Expired - Lifetime JPH0699123B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP60-242846 1985-10-31
JP24284685 1985-10-31

Publications (2)

Publication Number Publication Date
JPS62202804A true JPS62202804A (en) 1987-09-07
JPH0699123B2 JPH0699123B2 (en) 1994-12-07

Family

ID=17095162

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7119686A Expired - Lifetime JPH0699123B2 (en) 1985-10-31 1986-03-31 Excited Oxygen Molecule O ▲ Lower 2 ▼ (Upper 1 ▼ Δ) Generation Method

Country Status (1)

Country Link
JP (1) JPH0699123B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0925756A2 (en) 1997-12-25 1999-06-30 Nihon Kohden Corporation Biological signal transmission apparatus
US6881191B2 (en) 2002-10-18 2005-04-19 Cambridge Neurotechnology Limited Cardiac monitoring apparatus and method

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0925756A2 (en) 1997-12-25 1999-06-30 Nihon Kohden Corporation Biological signal transmission apparatus
US6161036A (en) * 1997-12-25 2000-12-12 Nihon Kohden Corporation Biological signal transmission apparatus
US6389309B1 (en) 1997-12-25 2002-05-14 Nihon Kohden Corporation Biological signal transmission apparatus
US7089048B2 (en) 1997-12-25 2006-08-08 Nihon Kohden Corporation Biological signal transmission apparatus
US6881191B2 (en) 2002-10-18 2005-04-19 Cambridge Neurotechnology Limited Cardiac monitoring apparatus and method

Also Published As

Publication number Publication date
JPH0699123B2 (en) 1994-12-07

Similar Documents

Publication Publication Date Title
US5254143A (en) Diaphragm for gas-liquid contact, gas-liquid contact apparatus and process for producing liquid containing gas dissolved therein
JP4996925B2 (en) Apparatus and method for osmotic membrane distillation
Kreulen et al. Determination of mass transfer rates in wetted and non-wetted microporous membranes
KR900005691B1 (en) Method and apparatus for rapid carbonation
US4643889A (en) System for generation of singlet-delta oxygen
US6368493B1 (en) Electrolytic machining method and apparatus
JP4498748B2 (en) Hollow fiber membrane contactor and process
JP3765354B2 (en) Method for producing hydrogen-containing ultrapure water
WO1998048926A1 (en) Ink deaerating hollow yarn membrane, ink deaerating method, ink deaerating apparatus, ink cartridge manufacturing method, and ink
JP2005305432A (en) System for debubbling ink
JPH0737137B2 (en) Method for removing dissolved gas from ink in an inkjet mechanism
EP0470377B1 (en) Diaphragm for gas-liquid contact, gas-liquid contact apparatus and process for producing liquid containing gas dissolved therein
JPH0335972B2 (en)
JPS62202804A (en) Method for generating excited oxygen molecule o2 (1delta)
JPH0523553A (en) Diaphragm for gas-liquid contact, gas-liquid contact apparatus, and gas-dissolving liquid manufacturing method
JP2000051606A (en) Gas permeation membrane apparatus
TW583135B (en) Pressure vessel systems and methods for dispensing liquid chemical compositions
US7116696B2 (en) Efficient method and apparatus for generating singlet delta oxygen at an elevated pressure
JP4151088B2 (en) Hydrogen-containing ultrapure water supply device
JPH0471001B2 (en)
Ohya et al. A study on pore size distribution of modified ultrathin membrances
US5318706A (en) Method of supplying dilute hydrofluoric acid and apparatus for use in this method for supplying the acid
EP0241577A1 (en) Method for separating and concentrating an organic component having a low-boiling point from an aqueous solution
JP2000317210A (en) Device and method for degassing liquid chemical
JP4438077B2 (en) Method for preparing gas-dissolved water for cleaning electronic materials