JPS6220205B2 - - Google Patents

Info

Publication number
JPS6220205B2
JPS6220205B2 JP16197683A JP16197683A JPS6220205B2 JP S6220205 B2 JPS6220205 B2 JP S6220205B2 JP 16197683 A JP16197683 A JP 16197683A JP 16197683 A JP16197683 A JP 16197683A JP S6220205 B2 JPS6220205 B2 JP S6220205B2
Authority
JP
Japan
Prior art keywords
resin
impurities
temperature
comparative example
phenol
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP16197683A
Other languages
Japanese (ja)
Other versions
JPS6053516A (en
Inventor
Shigeru Koshibe
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Bakelite Co Ltd
Original Assignee
Sumitomo Bakelite Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Bakelite Co Ltd filed Critical Sumitomo Bakelite Co Ltd
Priority to JP16197683A priority Critical patent/JPS6053516A/en
Publication of JPS6053516A publication Critical patent/JPS6053516A/en
Publication of JPS6220205B2 publication Critical patent/JPS6220205B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】 本発明は、不純物や異物の少ないフエノールノ
ボラツク樹脂の製造方法に係わり、その特徴は樹
脂化反応の最終工程で不純物・異物除去を行うと
ころにある。 従来フエノールノボラツク樹脂はヘキサメチレ
ンテトラミン等を混合し、フエノール樹脂成形材
料や鋳型用フエノール樹脂等として使われてき
た。これら用途ではフエノールノボラツク樹脂の
不純物や異物はあまり問題とならなかつた。 しかし、最近フエノールノボラツク樹脂がフエ
ノールノボラツク型エポキシ樹脂の原料やエポキ
シ樹脂組成物(成形材料や積層板)の硬化剤とし
て使用されるようになり、フエノールノボラツク
樹脂の不純物や異物が問題視されるようになつて
きた。 フエノールノボラツク型エポキシ樹脂やエポキ
シ樹脂組成物は半導体封止用途や電気回路の基板
用途として、即ち電気・電子関連分野に使われる
ため、電気性能(絶縁性)や耐湿性が要求され原
料そのものの純度向上が必要となる。 これら電気・電子用素材で問題となるのは電解
質及び異物である。電解質は絶縁性を損ない電気
性能を劣化させるし異物は均一性を損ない信頼性
面で問題となる。 異物としては特に300ミクロン以上のものが問
題となる。これは成形材料の場合未充填不良等を
起こしたり、積層板の場合異物の部分の強度が劣
化したり外観不良を起こすからである。 本発明は、これら電気・電子用の高純度フエノ
ール樹脂を提供するものである。要旨とするとこ
ろは 未反応フエノール類が1重量%以下、未反応ア
ルデヒド類が0.5重量%以下、電解質無機イオン
類が10重量ppm以下及び有機酸類が0.1重量%以
下であり、且つ300ミクロン以上の異物がないこ
とを特徴とするフエノール樹脂の製造方法であ
る。製造方法の特徴は樹脂化反応の最終段階で不
活性ガス雰囲気下における200℃以上の焚上げ工
程及び180℃未満での水洗工程を行なうことであ
る。 フエノールノボラツク樹脂中の不純物は主とし
て未反応応料(フエノール類、アルデヒド類)・
触媒類であり、又異物は樹脂のゲル化物が大部分
を占める。 未反応原料等フエノール類・アルデヒド類特に
アルデヒド類を取り除くためには不活性ガス雰囲
気下で温度を200℃以上にする必要がある。なぜ
ならば未反応アルデヒド類は単体ではなく重合
体、例えばホルムアルデヒドはバラホルムアルデ
ヒドに変質しており単体に分解する必要があるた
めである。この分解のため温度は200℃以上を必
要とし、又ゲル化物(酸化物)の発生を防ぐため
不活性ガス雰囲気下で行なうことが必要である。
さらに、この時減圧下で行なうと不純物(未反応
原料・触媒)の除去が一層促進されるのでより効
率的となる。この工程で未反応原料の大部分が除
去される。 又、無機イオン類(Na+、K+、SO4 2-等触媒や
不純物の解離物)やゲル化物等の異物を取り除く
ためには、フエノールノボラツク樹脂を水洗する
ことが必要である。この時の温度は180℃未満に
することが必要である。180℃以上だと副反応を
起こし樹脂が変質する恐れがある。さらに、この
時の水は蒸留水や純水(イオン交換水)といつた
不純物の少ない水を使用するのが望ましい。この
工程で触媒や原料中に含まれていたイオン性不純
物の大部分が除去される。 これら高温焚上げ工程と水洗工程を組み合せる
ことによりフエノールノボラツク樹脂中の不純物
や異物はほとんど除去でき、本発明の要旨たる高
純度フエノール樹脂が得られる。 又、高温焚上げ工程と水洗工程の順序はこの順
に行なう方が望ましい。高温焚上げで万一副反応
(酸化、再配列等)を起こす場合も考えられるか
らである。 本発明で対象とするフエノールノボラツクの樹
脂化反応はフエノール類とアルデヒド類を触媒の
存在下重合させる通常の反応全てであり、フエノ
ール類とはフエノール、クレゾール、キシレノー
ル、レゾルシン等のフエノール性水酸基を持つも
の全般、アルデヒド類とは、ホルムアルデヒド、
ベンズアルデヒド、パラホルムアルデヒド等のア
ルデヒド基を持つもの全般、又触媒とは塩酸、蓚
酸、硫酸等のノボラツク化反応触媒全般のことを
いう。通常フエノール類(P)とアルデヒド類(A)
のモル比がA/P=0.50〜1.0の範囲で酸性触媒
の存在下還流反応させ、その後脱水工程を経てフ
エノールノボラツク樹脂は製造される。本発明は
これら製造工程の後に高純度化のための精製工程
を組み合わせるものである。以下比較例及び実施
例によつて説明する。 比較例 1 フエノール282gと88%のパラホルムアルデヒ
ド102gを蓚酸3gの存在下2時間還流反応を行
つた後、脱水工程に入り4時間で150℃まで昇温
して取出した。得られた樹脂の特性は表−1の通
りであるが、本発明による実施例の樹脂に比べる
と不純物が極めて多量に含まれていることが判
る。 比較例 2 フエノール282gと37%ホルマリン195gを30%
塩酸1gの存在下比較例1と同様に反応させ150
℃まで昇温した。この後、さらに6時間かけて
260℃まで昇温し取出した。樹脂の特性は表−1
の通りである。比較例1に比べると未反応フエノ
ール量及び未反応アルデヒド量は少なくなつてい
るが実施例に比べると不純物及び異物はかなり多
い。 比較例 3 フエノール282gと37%ホルマリン195gを蓚酸
3gの存在下比較例1と同様に反応させて150℃
まで昇温した。この後水蒸気吹き込みを2時間行
ない精製後樹脂を取り出した。樹脂の特性は表−
1の通りであり、比較例1に比べると未反応フエ
ノール量及び未反応アルデヒド量は少なくなつて
いるが実施例に比べると不純物及び異物はかなり
多い。 比較例 4 フエノール282gと37%ホルマリン195gを硫酸
1gの存在下比較例1と同様に反応させて150℃
まで昇温した。(但しこの場合100℃において水酸
化バリウムを添加し硫酸を中和した。)得られた
樹脂の特性は表−1の通りであり実施例の樹脂に
比べると不純物及び異物が極めて多量に含まれて
いることが判る。 実施例 1 フエノール282gと88%パラホルムアルデヒド
102gを蓚酸3gの存在下比較例1と同様に反応
させ150℃まで昇温した。この後、釜内の空気を
炭酸ガスで置換した後6時間かけて260℃まで昇
温した。260℃で20mmHgまで減圧し2時間かけて
樹脂中の不純物を取り除いた後、炭酸ガスを再度
吹き込み温度を150℃まで下げた。ここで蒸留水
を釜内に入れると同時に水蒸気を吹き込み水蒸気
蒸留を1時間行つた。さらに蒸留水を入れ90℃ま
で下げ水層と樹脂層を分離し水を除去した。最後
に再度3時間かけて150℃まで昇温し水を完全に
除去し樹脂を取り出した。得られた樹脂の特性は
表−1の通りであり、比較例に比べはるかに純度
の高いことが判る。 実施例 2 比較例3と同様に反応させた樹脂を窒素ガス雰
囲気下6時間かけて260℃まで昇温し、不純物を
取り除いた。この後150℃まで温度を下げ樹脂を
取り出した。得られた樹脂の特性は表−1の通り
であり比較例に比べはるかに純度が高い。 【表】
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing a phenolic novolak resin with few impurities and foreign substances, and its feature is that impurities and foreign substances are removed in the final step of the resin formation reaction. Conventionally, phenolic novolak resin has been mixed with hexamethylenetetramine, etc., and used as a phenolic resin molding material, a phenolic resin for molds, etc. In these applications, impurities and foreign substances in the phenol novolac resin did not pose much of a problem. However, recently, phenol novolak resin has been used as a raw material for phenol novolak type epoxy resin and as a curing agent for epoxy resin compositions (molding materials and laminates), and impurities and foreign substances in phenol novolak resin have become a problem. It's starting to be done. Phenol novolac type epoxy resins and epoxy resin compositions are used for semiconductor encapsulation and electric circuit board applications, that is, in electrical and electronic fields, so electrical performance (insulating properties) and moisture resistance are required, and the raw materials themselves are Purity must be improved. Problems with these electrical and electronic materials are electrolytes and foreign substances. Electrolyte impairs insulation and deteriorates electrical performance, and foreign matter impairs uniformity and poses problems in terms of reliability. Foreign objects of 300 microns or more are particularly problematic. This is because in the case of a molding material, unfilled defects may occur, and in the case of a laminate, the strength of the foreign material may deteriorate or the appearance may be poor. The present invention provides these high purity phenolic resins for electrical and electronic applications. The gist is that unreacted phenols are 1% by weight or less, unreacted aldehydes are 0.5% by weight or less, electrolyte inorganic ions are 10% by weight or less, organic acids are 0.1% by weight or less, and the particle size is 300 microns or more. This is a method for producing phenolic resin characterized by the absence of foreign substances. The manufacturing method is characterized by the fact that at the final stage of the resin-forming reaction, a firing step at 200°C or higher in an inert gas atmosphere and a water washing step at lower than 180°C are performed. Impurities in phenol novolak resin are mainly unreacted reactants (phenols, aldehydes),
These are catalysts, and most of the foreign substances are resin gels. In order to remove unreacted raw materials such as phenols and aldehydes, especially aldehydes, it is necessary to raise the temperature to 200°C or higher under an inert gas atmosphere. This is because unreacted aldehydes are not simple substances but polymers, such as formaldehyde, which has changed into formaldehyde and needs to be decomposed into simple substances. This decomposition requires a temperature of 200° C. or higher, and it is necessary to carry out the decomposition under an inert gas atmosphere to prevent the generation of gelled products (oxides).
Furthermore, if the reaction is carried out under reduced pressure at this time, the removal of impurities (unreacted raw materials and catalyst) will be further promoted, making it more efficient. Most of the unreacted raw materials are removed in this step. Furthermore, in order to remove foreign substances such as inorganic ions (dissociation products of catalysts and impurities such as Na + , K + , SO 4 2- ) and gelled products, it is necessary to wash the phenol novolak resin with water. The temperature at this time needs to be less than 180°C. If the temperature exceeds 180℃, side reactions may occur and the resin may change in quality. Furthermore, it is desirable to use water with few impurities, such as distilled water or pure water (ion-exchanged water). This step removes most of the ionic impurities contained in the catalyst and raw materials. By combining these high-temperature firing steps and water washing steps, most of the impurities and foreign substances in the phenolic novolac resin can be removed, and a high-purity phenolic resin, which is the gist of the present invention, can be obtained. Further, it is preferable that the high-temperature firing step and the water washing step be performed in this order. This is because side reactions (oxidation, rearrangement, etc.) may occur when heated at high temperatures. The resinization reaction of phenol novolak, which is the object of the present invention, is all the usual reactions in which phenols and aldehydes are polymerized in the presence of a catalyst. In general, aldehydes include formaldehyde,
The term "catalyst" refers to all compounds having an aldehyde group such as benzaldehyde and paraformaldehyde, and all novolacification reaction catalysts such as hydrochloric acid, oxalic acid, and sulfuric acid. Usually phenols (P) and aldehydes (A)
A phenol novolac resin is produced by carrying out a reflux reaction in the presence of an acidic catalyst at a molar ratio of A/P in the range of 0.50 to 1.0, followed by a dehydration step. The present invention combines a purification step for high purity after these manufacturing steps. This will be explained below using comparative examples and examples. Comparative Example 1 After refluxing 282 g of phenol and 102 g of 88% paraformaldehyde in the presence of 3 g of oxalic acid for 2 hours, a dehydration step was started and the temperature was raised to 150° C. over 4 hours and taken out. The properties of the obtained resin are shown in Table 1, and it can be seen that it contains extremely large amounts of impurities compared to the resins of Examples according to the present invention. Comparative example 2 282g of phenol and 195g of 37% formalin at 30%
The reaction was carried out in the same manner as in Comparative Example 1 in the presence of 1 g of hydrochloric acid.
The temperature was raised to ℃. After that, another 6 hours
The temperature was raised to 260°C and taken out. Table 1 shows the properties of the resin.
It is as follows. Compared to Comparative Example 1, the amount of unreacted phenol and unreacted aldehyde is smaller, but compared to Examples, the amount of impurities and foreign substances is considerably larger. Comparative Example 3 282 g of phenol and 195 g of 37% formalin were reacted in the same manner as in Comparative Example 1 in the presence of 3 g of oxalic acid at 150°C.
The temperature rose to Thereafter, water vapor was blown into the flask for 2 hours, and the purified resin was taken out. The properties of the resin are shown in the table.
1, and the amount of unreacted phenol and unreacted aldehyde is smaller than Comparative Example 1, but the amount of impurities and foreign substances is considerably larger than that of Example. Comparative Example 4 282 g of phenol and 195 g of 37% formalin were reacted in the same manner as in Comparative Example 1 in the presence of 1 g of sulfuric acid at 150°C.
The temperature rose to (However, in this case, barium hydroxide was added at 100°C to neutralize the sulfuric acid.) The properties of the obtained resin are shown in Table 1, and compared to the resin of the example, it contained extremely large amounts of impurities and foreign substances. It can be seen that Example 1 282g of phenol and 88% paraformaldehyde
102 g was reacted in the same manner as in Comparative Example 1 in the presence of 3 g of oxalic acid, and the temperature was raised to 150°C. Thereafter, the air in the pot was replaced with carbon dioxide gas, and the temperature was raised to 260° C. over 6 hours. After reducing the pressure to 20 mmHg at 260°C and removing impurities in the resin over 2 hours, carbon dioxide gas was blown in again to lower the temperature to 150°C. Here, distilled water was put into the pot and at the same time steam was blown into the pot to carry out steam distillation for 1 hour. Further, distilled water was added and the temperature was lowered to 90°C, and the water layer and resin layer were separated and the water was removed. Finally, the temperature was raised again to 150°C over 3 hours, water was completely removed, and the resin was taken out. The properties of the obtained resin are shown in Table 1, and it can be seen that the purity is much higher than that of the comparative example. Example 2 A resin reacted in the same manner as in Comparative Example 3 was heated to 260° C. over 6 hours under a nitrogen gas atmosphere to remove impurities. Thereafter, the temperature was lowered to 150°C and the resin was taken out. The properties of the obtained resin are shown in Table 1, and the purity is much higher than that of the comparative example. 【table】

Claims (1)

【特許請求の範囲】[Claims] 1 フエノール類とアルデヒド類を触媒の存在下
で、還流更に脱水工程を経て製造する樹脂化反応
の最終段階で不活性ガス雰囲気下における200℃
以上の焚き上げ工程及び180℃未満での水洗工程
を行うことを特徴とするフエノール樹脂の製造方
法。
1 At 200℃ under an inert gas atmosphere in the final stage of the resinization reaction, in which phenols and aldehydes are produced through reflux and dehydration steps in the presence of a catalyst.
A method for producing a phenolic resin, which comprises performing the above-mentioned firing step and a water washing step at a temperature below 180°C.
JP16197683A 1983-09-05 1983-09-05 High-purity phenolic resin and its preparation Granted JPS6053516A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16197683A JPS6053516A (en) 1983-09-05 1983-09-05 High-purity phenolic resin and its preparation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16197683A JPS6053516A (en) 1983-09-05 1983-09-05 High-purity phenolic resin and its preparation

Publications (2)

Publication Number Publication Date
JPS6053516A JPS6053516A (en) 1985-03-27
JPS6220205B2 true JPS6220205B2 (en) 1987-05-06

Family

ID=15745654

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16197683A Granted JPS6053516A (en) 1983-09-05 1983-09-05 High-purity phenolic resin and its preparation

Country Status (1)

Country Link
JP (1) JPS6053516A (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61221279A (en) * 1985-03-28 1986-10-01 Nippon Retsuku Kk One-pack type insulating adhesive for metal and flexible film
JPS627723A (en) * 1985-07-03 1987-01-14 Shin Etsu Chem Co Ltd Epoxy resin composition
JPS6259626A (en) * 1985-09-10 1987-03-16 Shin Etsu Chem Co Ltd Epoxy resin composition
JPH0680119B2 (en) * 1986-06-27 1994-10-12 日本ゼオン株式会社 Purification method of novolak resin
JPH02173026A (en) * 1988-12-26 1990-07-04 Sumitomo Durez Co Ltd Production of silicone-modified novolac resin
JP2638191B2 (en) * 1989-03-17 1997-08-06 株式会社日立製作所 Method for producing high-purity phenolic resin, method for producing the resin composition, and method for producing a semiconductor device using the resin composition
JPH05148335A (en) * 1991-11-28 1993-06-15 Shin Kobe Electric Mach Co Ltd Phenol resin molding material
JP2769087B2 (en) * 1993-04-06 1998-06-25 日本エヌエスシー株式会社 Manufacturing method of wastewater treatment agent
JP6635575B2 (en) * 2014-04-25 2020-01-29 日鉄ケミカル&マテリアル株式会社 Phenolic compound having good stability and method for producing the same

Also Published As

Publication number Publication date
JPS6053516A (en) 1985-03-27

Similar Documents

Publication Publication Date Title
JPS6220205B2 (en)
TWI465488B (en) Novolac resin and method for producing the same
TWI466965B (en) Method for producing novolak resin and novolak resin
JP3833940B2 (en) Phenol polymer, process for producing the same, and epoxy resin curing agent using the same
CN106279586B (en) A kind of phosphorous linear phenol-aldehyde resin as epoxy curing agent and preparation method thereof
JP4275380B2 (en) Method for producing high molecular weight cresol novolac resin
JP2663103B2 (en) Method for producing glycidyl ether of novolak resin
JPH032169B2 (en)
JPH0277416A (en) Production of high-purity novolak resin
JPS62212409A (en) Production of high-purity phenolic resin
KR0139273B1 (en) Method for manufacturing novolac epoxy resin
JPH0572939B2 (en)
KR0171932B1 (en) Preparation process of novolac epoxy resin
JPH0593038A (en) Epoxy resin composition
JP4076710B2 (en) Hydroxynaphthalene resin and method for producing the same
JPS6134009A (en) Production of high-purity novolak resin
JPS6051496B2 (en) Method for producing phenolic resin for laminates
JP3118494B2 (en) Curing agent for epoxy resin and epoxy resin composition
JPH032172B2 (en)
JPH0593035A (en) Epoxy resin composition
JP2002003570A (en) Epoxy resin and its production method
JPH09124759A (en) Phenol novolak resin composition
JP2001158665A (en) Method of producing glassy carbon
JPH0627169B2 (en) Epoxy resin manufacturing method
JPH0532760A (en) Epoxy resin composition