JP2002003570A - Epoxy resin and its production method - Google Patents
Epoxy resin and its production methodInfo
- Publication number
- JP2002003570A JP2002003570A JP2000189137A JP2000189137A JP2002003570A JP 2002003570 A JP2002003570 A JP 2002003570A JP 2000189137 A JP2000189137 A JP 2000189137A JP 2000189137 A JP2000189137 A JP 2000189137A JP 2002003570 A JP2002003570 A JP 2002003570A
- Authority
- JP
- Japan
- Prior art keywords
- formula
- epoxy resin
- resin
- parts
- hydroxynaphthalene
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Epoxy Resins (AREA)
Abstract
Description
【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION
【0001】[0001]
【発明の属する技術分野】本発明は、分子量分布が狭い
エポキシ樹脂およびその製造方法に関し、電子材料用樹
脂、成形材料用樹脂として優れた流動性、耐熱性を有す
るエポキシ樹脂を提供するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an epoxy resin having a narrow molecular weight distribution and a method for producing the same, and provides an epoxy resin having excellent fluidity and heat resistance as a resin for electronic materials and a resin for molding materials. .
【0002】[0002]
【従来の技術】従来より、ヒドロキシナフタレン類とア
ルデヒド類を酸触媒の存在下で反応させてヒドロキシナ
フタレン樹脂が得られることは知られており、ヒドロキ
シナフタレン類としてはナフトールが一般的に使用され
ている。例えば、特公平08−26111号公報「熱硬
化性樹脂組成物及び縮合多環芳香族樹脂の製造方法」に
は、縮合多環芳香族化合物にアルデヒド基を1個以上持
つ芳香族化合物を連結材として加え、酸性触媒の存在下
で加熱することで得られる熱硬化性樹脂組成物、および
その製造方法について記載されている。2. Description of the Related Art It has been known that hydroxynaphthalene resins can be obtained by reacting hydroxynaphthalenes and aldehydes in the presence of an acid catalyst, and naphthol is commonly used as hydroxynaphthalenes. I have. For example, Japanese Patent Publication No. 08-26111, entitled "Method of Manufacturing Thermosetting Resin Composition and Condensed Polycyclic Aromatic Resin", discloses that a condensed polycyclic aromatic compound has an aromatic compound having at least one aldehyde group as a linking material. And a thermosetting resin composition obtained by heating in the presence of an acidic catalyst, and a method for producing the same.
【0003】しかしながら、酸性触媒の存在下で反応さ
せることによって得られるこのようなナフトール樹脂は
分子量分布が広いものであり、高分子量成分が含まれる
ため溶融粘度が高く、ハンドリングが困難になるという
欠点がある。However, such a naphthol resin obtained by reacting in the presence of an acidic catalyst has a wide molecular weight distribution, and has a high melt viscosity due to the inclusion of a high molecular weight component, making handling difficult. There is.
【0004】このようなナフトール樹脂をエポキシ樹脂
原料やエポキシ樹脂硬化剤として用い、半導体チップの
樹脂封止に使用することも検討されてきたが、上述のよ
うに分子量分布が広く高分子量成分が含まれるため粘度
が高くなり、ハンドリングが困難になるという欠点があ
る。Although the use of such a naphthol resin as an epoxy resin raw material or an epoxy resin curing agent for resin encapsulation of a semiconductor chip has been studied, it has a wide molecular weight distribution and contains a high molecular weight component as described above. Therefore, there is a disadvantage that the viscosity becomes high and handling becomes difficult.
【0005】[0005]
【発明が解決しようとする課題】本発明の目的は、電子
材料用樹脂、成形材料用樹脂として優れた流動性、耐熱
性を示し、特に半導体封止材用樹脂として好適に使用さ
れうる分子量分布が狭いエポキシ樹脂およびその製造方
法を提供することにある。SUMMARY OF THE INVENTION An object of the present invention is to provide a resin for an electronic material and a resin for a molding material which exhibit excellent fluidity and heat resistance, and in particular, a molecular weight distribution which can be suitably used as a resin for a semiconductor encapsulant. To provide an epoxy resin having a narrow width and a method for producing the same.
【0006】[0006]
【課題を解決するための手段】本発明者は、上記目的を
達成するために鋭意検討を重ねた結果、本発明を完成す
るに至った。すなわち本発明は、式(1)で表されるエ
ポキシ樹脂を70重量%以上含み、かつ式(1)より高
分子量である成分の含有割合が10重量%以下であるエ
ポキシ樹脂Means for Solving the Problems The present inventors have made intensive studies to achieve the above object, and as a result, completed the present invention. That is, the present invention provides an epoxy resin containing 70% by weight or more of the epoxy resin represented by the formula (1) and containing 10% by weight or less of a component having a higher molecular weight than the formula (1).
【化5】 (式中、mは1〜2の整数を示し、nは0〜1の整数を
示す。)に関し、更には、式(3)で表されるヒドロキ
シナフタレン化合物と、式(4)で表される芳香族アル
デヒド化合物を塩基性触媒の存在下で反応させた後、エ
ピクロルヒドリンでエポキシ化することをることを特徴
とする式(1)で表されるエポキシ樹脂の製造方法に関
するものである。Embedded image (Wherein m represents an integer of 1 to 2 and n represents an integer of 0 to 1). Further, a hydroxynaphthalene compound represented by the formula (3) and a hydroxynaphthalene compound represented by the formula (4) A method for producing an epoxy resin represented by the formula (1), characterized in that an aromatic aldehyde compound is reacted in the presence of a basic catalyst and then epoxidized with epichlorohydrin.
【化6】 (式中、mは1〜2の整数を示す。)Embedded image (In the formula, m represents an integer of 1 to 2.)
【化7】 (式中、nは0〜1の整数を示す。)Embedded image (In the formula, n represents an integer of 0 to 1.)
【0007】本発明において、式(1)より高分子量で
ある成分とは式(5)で表されるエポキシ樹脂をいう。In the present invention, the component having a higher molecular weight than the formula (1) means an epoxy resin represented by the formula (5).
【化8】 (式中、xは2以上の整数を示す。)Embedded image (In the formula, x represents an integer of 2 or more.)
【0008】本発明の式(1)で表されるエポキシ樹脂
は、その樹脂中に70重量%以上含有することが分子量
分布が狭いという本発明の目的のために好ましく、特に
80重量%以上が低溶融粘度又は耐熱性のために好まし
い。式(1)で表されるエポキシ樹脂がその樹脂中で7
0重量%より小さい場合、狭分子量分布という本発明の
特徴が不十分となり、必然的に他の成分が増加する。す
なわち他の成分とは式(1)より高分子量である成分、
または1官能のエポキシ成分である。The epoxy resin represented by the formula (1) of the present invention is preferably contained in the resin in an amount of 70% by weight or more for the purpose of the present invention in that the molecular weight distribution is narrow, and particularly preferably 80% by weight or more. Preferred for low melt viscosity or heat resistance. The epoxy resin represented by the formula (1)
When the content is less than 0% by weight, the feature of the present invention, that is, a narrow molecular weight distribution, becomes insufficient, and other components necessarily increase. That is, the other component is a component having a higher molecular weight than the formula (1),
Or a monofunctional epoxy component.
【0009】式(1)より高分子量である成分が増えた
場合は溶融粘度が大きくなり、流動性が損なわれてしま
う。また1官能のエポキシ成分が増えた場合は耐熱性が
損なわれてしまい、半導体封止材用樹脂として用いた場
合に硬化性の低下を招く要因となる。According to the formula (1), when the component having a high molecular weight increases, the melt viscosity increases, and the fluidity is impaired. Further, when the monofunctional epoxy component is increased, heat resistance is impaired, and when it is used as a resin for a semiconductor encapsulant, it becomes a factor of inducing curability.
【0010】式(1)より高分子量である成分、すなわ
ち式(5)で表されるエポキシ樹脂は10重量%以下が
好ましい。式(5)で表されるエポキシ樹脂が10重量
%より大きい場合、樹脂の分子量、及び溶融粘度が大き
くなり、流動性が損なわれてしまう。The content of the component having a higher molecular weight than the formula (1), that is, the epoxy resin represented by the formula (5) is preferably 10% by weight or less. When the epoxy resin represented by the formula (5) is more than 10% by weight, the molecular weight and the melt viscosity of the resin increase, and the fluidity is impaired.
【0011】式(1)で表されるエポキシ樹脂が、式
(2)で表される化合物である場合、すなわち、式
(3)で表されるヒドロキシナフタレン化合物がβ−ナ
フトールで、式(4)で表される芳香族アルデヒド化合
物がベンズアルデヒドであり、これらを塩基性触媒の存
在下で反応させた後、エピクロルヒドリンでエポキシ化
させて得られるエポキシ樹脂の場合において、樹脂の分
子量分布が狭いという本発明の特徴がより顕著にあらわ
れ、更により優れた低溶融粘度、耐熱性を獲得すること
ができる。When the epoxy resin represented by the formula (1) is a compound represented by the formula (2), that is, when the hydroxynaphthalene compound represented by the formula (3) is β-naphthol, The aromatic aldehyde compound represented by the formula (1) is a benzaldehyde, which is reacted in the presence of a basic catalyst and then epoxidized with epichlorohydrin. The features of the invention are more remarkably exhibited, and further excellent low melt viscosity and heat resistance can be obtained.
【0012】次に本発明のエポキシ樹脂の製造方法につ
いて説明する。式(3)で表されるヒドロキシナフタレ
ン化合物に、式(4)で表される芳香族アルデヒド化合
物を加え、必要に応じて溶媒を添加する。この系に塩基
性触媒を加え加熱、昇温し反応させる。反応終了後、塩
基性触媒を酸で中和し水洗除去した後、更に昇温し系内
の反応によって生成した水、未反応のモノマー類を蒸留
除去して狭分子量分布ヒドロキシナフタレン樹脂を得
る。この樹脂を水酸化ナトリウム水溶液の存在下、過剰
のエピクロルヒドリンと反応させることで本発明のエポ
キシ樹脂を得る。Next, the method for producing the epoxy resin of the present invention will be described. An aromatic aldehyde compound represented by the formula (4) is added to the hydroxynaphthalene compound represented by the formula (3), and a solvent is added as necessary. A basic catalyst is added to this system, and the mixture is heated and heated to react. After completion of the reaction, the basic catalyst is neutralized with an acid and washed and removed with water. The temperature is further increased, and water and unreacted monomers generated by the reaction in the system are removed by distillation to obtain a narrow molecular weight distribution hydroxynaphthalene resin. The epoxy resin of the present invention is obtained by reacting this resin with an excess of epichlorohydrin in the presence of an aqueous sodium hydroxide solution.
【0013】式(3)で表されるヒドロキシナフタレン
化合物としては、α−ナフトール、β−ナフトール、
1,4−ジヒドロキシナフタレン、1,5−ジヒドロキ
シナフタレン、1,6−ジヒドロキシナフタレン、2,
3−ジヒドロキシナフタレン、2,6−ジヒドロキシナ
フタレン、2,7−ジヒドロキシナフタレン等が挙げら
れる。これらのヒドロキシナフタレン化合物は単独また
は2種以上を組み合わせて使用しても良い。これらの化
合物の中で特に狭分子量分布樹脂が得やすく、経済的に
も有利なβ−ナフトールが好ましい。The hydroxynaphthalene compound represented by the formula (3) includes α-naphthol, β-naphthol,
1,4-dihydroxynaphthalene, 1,5-dihydroxynaphthalene, 1,6-dihydroxynaphthalene, 2,
Examples thereof include 3-dihydroxynaphthalene, 2,6-dihydroxynaphthalene, and 2,7-dihydroxynaphthalene. These hydroxynaphthalene compounds may be used alone or in combination of two or more. Among these compounds, β-naphthol, which is particularly easy to obtain a narrow molecular weight distribution resin and is economically advantageous, is preferred.
【0014】式(4)で表される芳香族アルデヒド化合
物としては、ベンズアルデヒド、サリチルアルデヒド、
パラヒドロキシベンズアルデヒド等が挙げられる。これ
らの芳香族アルデヒド化合物は単独または2種以上を組
み合わせて使用しても良い。これらの化合物の中で特に
狭分子量分布樹脂が得やすいベンズアルデヒドが好まし
い。As the aromatic aldehyde compound represented by the formula (4), benzaldehyde, salicylaldehyde,
Parahydroxybenzaldehyde and the like. These aromatic aldehyde compounds may be used alone or in combination of two or more. Among these compounds, particularly preferred is benzaldehyde, from which a narrow molecular weight distribution resin is easily obtained.
【0015】芳香族アルデヒド化合物のモル数はヒドロ
キシナフタレン化合物1モルに対して0.5モル以上
1.5モル以下の割合で反応させることが好ましく、特
に0.8モル以上1.0モル以下の割合が好ましい。ヒ
ドロキシナフタレン化合物のモル数に対する芳香族アル
デヒド化合物のモル数が0.5未満の場合、未反応のヒ
ドロキシナフタレン化合物が大量に残存し、これを除去
するのに長時間の蒸留工程を要し、また歩留まりも低下
するので経済的に不利である。ヒドロキシナフタレン化
合物のモル数に対する芳香族アルデヒド化合物のモル数
が1.5を越えると、未反応の芳香族アルデヒド化合物
が残存し、これを除去するのに長時間の蒸留工程を要
し、また歩留まりも低下するので経済的に不利である。The number of moles of the aromatic aldehyde compound is preferably 0.5 to 1.5 moles per mole of the hydroxynaphthalene compound, and more preferably 0.8 to 1.0 moles. Ratios are preferred. When the number of moles of the aromatic aldehyde compound relative to the number of moles of the hydroxynaphthalene compound is less than 0.5, a large amount of unreacted hydroxynaphthalene compound remains, and a long distillation step is required to remove this, and This is economically disadvantageous because the yield decreases. When the number of moles of the aromatic aldehyde compound exceeds 1.5 with respect to the number of moles of the hydroxynaphthalene compound, unreacted aromatic aldehyde compound remains, and a long distillation step is required to remove the unreacted aromatic aldehyde compound. Is economically disadvantageous.
【0016】上記の割合のヒドロキシナフタレン化合物
と芳香族アルデヒド化合物に対し、必要に応じて溶媒を
添加する。一般的にヒドロキシナフタレン化合物は常温
で固体であるため、溶媒添加により反応系を均一にする
ことが望ましい。特に芳香族アルデヒド化合物が常温で
固体のパラヒドロキシベンズアルデヒドの場合は溶媒を
添加することが好ましい。本発明で使用する溶媒として
は、反応に不活性な溶媒を使用し、具体的にはブタノー
ル、オクタノール等のアルコール類、メチルエチルケト
ン、メチルイソブチルケトン等のケトン類、水、等が挙
げられる。これらの溶媒の中では容易に入手でき経済的
に有利な水が好ましい。溶媒の使用量はヒドロキシナフ
タレン化合物に対し100重量部以下の範囲が好まし
い。100重量部を越える場合は溶媒除去に長時間要
し、廃棄量が増えることになり経済的に不利である。A solvent is added to the hydroxynaphthalene compound and the aromatic aldehyde compound in the above proportions, if necessary. Generally, a hydroxynaphthalene compound is solid at room temperature, and it is therefore desirable to make the reaction system uniform by adding a solvent. In particular, when the aromatic aldehyde compound is parahydroxybenzaldehyde which is solid at room temperature, it is preferable to add a solvent. As the solvent used in the present invention, a solvent inert to the reaction is used, and specific examples thereof include alcohols such as butanol and octanol, ketones such as methyl ethyl ketone and methyl isobutyl ketone, and water. Among these solvents, water, which is easily available and economically advantageous, is preferred. The amount of the solvent used is preferably in the range of 100 parts by weight or less based on the hydroxynaphthalene compound. If the amount exceeds 100 parts by weight, it takes a long time to remove the solvent, and the amount of waste increases, which is economically disadvantageous.
【0017】ヒドロキシナフタレン化合物、芳香族アル
デヒド化合物、及び溶媒の系を加熱、昇温し、系内の温
度が60〜80℃に到達した時点で塩基性触媒を加え
る。系内の温度が60℃未満の場合、ヒドロキシナフタ
レン化合物や芳香族アルデヒド化合物が完全に溶解して
いない場合があるので好ましくない。また系内の温度が
80℃を越える場合、反応が急激に進行し突沸の危険性
があり好ましくない。本発明で使用する塩基性触媒とし
ては水酸化ナトリウム、水酸化バリウム、水酸化カルシ
ウム等の無機塩基の水溶液、1,8−ジアザビシクロ
〔5,4,0〕ウンデセン−7等の有機強塩基が挙げら
れる。これらの塩基性触媒の中で特に狭分子量分布樹脂
が得やすい水酸化ナトリウム水溶液、1,8−ジアザビ
シクロ〔5,4,0〕ウンデセン−7が好ましい。The system of the hydroxynaphthalene compound, the aromatic aldehyde compound and the solvent is heated and heated, and when the temperature in the system reaches 60 to 80 ° C., a basic catalyst is added. If the temperature in the system is lower than 60 ° C., the hydroxynaphthalene compound and the aromatic aldehyde compound may not be completely dissolved, which is not preferable. On the other hand, when the temperature in the system exceeds 80 ° C., the reaction rapidly proceeds, and there is a risk of bumping, which is not preferable. Examples of the basic catalyst used in the present invention include aqueous solutions of inorganic bases such as sodium hydroxide, barium hydroxide and calcium hydroxide, and strong organic bases such as 1,8-diazabicyclo [5,4,0] undecene-7. Can be Among these basic catalysts, an aqueous solution of sodium hydroxide, 1,8-diazabicyclo [5,4,0] undecene-7, which is particularly easy to obtain a narrow molecular weight distribution resin, is preferable.
【0018】塩基性触媒の使用量はヒドロキシナフタレ
ン化合物1モルに対して0.2モル以上0.8モル以
下、好ましくは0.3モル以上0.6モル以下の範囲で
ある。塩基性触媒の使用量がヒドロキシナフタレン化合
物1モルに対して0.2モル未満の場合、反応性が乏し
く未反応のモノマー類が多く残存する。塩基性触媒の使
用量がヒドロキシナフタレン化合物1モルに対して0.
8モルを越える場合、反応における問題はないが触媒除
去工程に長時間を要し廃棄する触媒量が増えることにな
り経済的に不利である。The amount of the basic catalyst used ranges from 0.2 mol to 0.8 mol, preferably from 0.3 mol to 0.6 mol, per 1 mol of the hydroxynaphthalene compound. When the amount of the basic catalyst used is less than 0.2 mol per 1 mol of the hydroxynaphthalene compound, the reactivity is poor and many unreacted monomers remain. The basic catalyst is used in an amount of 0.1 to 1 mol of the hydroxynaphthalene compound.
If it exceeds 8 moles, there is no problem in the reaction, but it takes a long time in the catalyst removing step, and the amount of catalyst to be discarded increases, which is economically disadvantageous.
【0019】仮に酸性触媒を用いた場合には分子量分布
が広い樹脂が一般的に得られるが、反応条件によっては
狭分子量分布樹脂となる場合がある。しかしこの場合は
式(6)で表されるような水酸基どうしが縮合したキサ
ンテン構造となり、水酸基がなくなってしまうのでエポ
キシ樹脂原料に使用できなくなり好ましくない。If an acidic catalyst is used, a resin having a wide molecular weight distribution can be generally obtained, but a resin having a narrow molecular weight distribution may be obtained depending on the reaction conditions. However, in this case, a xanthene structure in which the hydroxyl groups represented by the formula (6) are condensed is formed, and the hydroxyl groups are lost.
【化9】 Embedded image
【0020】塩基性触媒を加えた後、系内を加熱、昇温
して100〜120℃で3〜20時間反応させる。反応
温度が100℃未満の場合、反応の進行が遅くなり未反
応モノマーの残存量が多くなるので好ましくない。ま
た、溶媒あるいは反応により生成する縮合水が還流する
ことにより反応温度が120℃を越えることは起こらな
い。After adding the basic catalyst, the inside of the system is heated and heated to react at 100 to 120 ° C. for 3 to 20 hours. When the reaction temperature is lower than 100 ° C., the progress of the reaction is slowed, and the amount of the unreacted monomer remaining is undesirably increased. Further, the reaction temperature does not exceed 120 ° C. due to reflux of the solvent or the condensed water generated by the reaction.
【0021】反応終了後、塩基性触媒を酸で中和し水洗
除去する。本発明で使用される酸は塩基性触媒と中和塩
を生成できるものであれば特に限定されるものではない
が、樹脂中のイオン性不純物の原因とならない有機酸が
好ましく、特に酢酸が好適に使用される。酸の使用量は
塩基性触媒に対して当量が好ましい。After completion of the reaction, the basic catalyst is neutralized with an acid and washed and removed with water. The acid used in the present invention is not particularly limited as long as it can generate a basic catalyst and a neutralized salt, but an organic acid that does not cause ionic impurities in the resin is preferable, and acetic acid is particularly preferable. Used for The amount of the acid used is preferably equivalent to the basic catalyst.
【0022】水洗の方法は、樹脂を含む有機層と中和塩
を含む水層に分離した後水層を系外に除去できればよ
く、特に限定されるものではないが、好ましくはメチル
イソブチルケトン等の有機溶媒で樹脂層を溶解させ、水
層と分離させるのが効率的で好ましい。The method of washing with water is not particularly limited as long as it can be separated into an organic layer containing a resin and an aqueous layer containing a neutralizing salt, and then the aqueous layer can be removed outside the system. It is efficient and preferable to dissolve the resin layer with the above organic solvent and separate it from the aqueous layer.
【0023】水洗終了後、未反応のヒドロキシナフタレ
ン化合物、芳香族アルデヒド化合物を蒸留除去する。蒸
留の方法は一般的な減圧蒸留除去、さらには水蒸気を系
内に吹き込み共沸除去させる方法が好ましい。系内の温
度は150℃以上が好ましい。150℃未満の場合、未
反応のヒドロキシナフタレン化合物、芳香族アルデヒド
化合物が十分に除去されず樹脂中に残存するようにな
る。After washing, unreacted hydroxynaphthalene compound and aromatic aldehyde compound are distilled off. The method of distillation is preferably a general method of distillation under reduced pressure, and furthermore, a method of azeotropic removal by blowing steam into the system. The temperature in the system is preferably 150 ° C. or higher. When the temperature is lower than 150 ° C., unreacted hydroxynaphthalene compound and aromatic aldehyde compound are not sufficiently removed and remain in the resin.
【0024】次に、得られた樹脂のエポキシ化を常法に
より行う。すなわち得られた樹脂にエピクロルヒドリン
を2〜10倍重量添加し、必要に応じてイソプロピルア
ルコール等の溶媒を適宜加えた後、20〜50℃で水酸
化ナトリウム水溶液をエピクロルヒドリンに対して0.
1〜0.5モル添加する。50〜80℃で反応させた
後、大過剰の水で水洗し、副生塩、過剰の水酸化ナトリ
ウムを除去し、減圧下で過剰のエピクロルヒドリンを蒸
留除去する。Next, the obtained resin is epoxidized by a conventional method. That is, epichlorohydrin is added to the obtained resin in an amount of 2 to 10 times by weight, a solvent such as isopropyl alcohol is appropriately added as needed, and then an aqueous solution of sodium hydroxide is added to epichlorohydrin at 20 to 50 ° C.
1-0.5 mol is added. After the reaction at 50 to 80 ° C, the reaction product is washed with a large excess of water to remove by-product salts and excess sodium hydroxide, and the excess epichlorohydrin is distilled off under reduced pressure.
【0025】以上のようにして本発明のエポキシ樹脂を
得ることができる。得られたエポキシ樹脂の組成(重量
%)分析は東ソー製GPCカラム(G1000HXL:
1本、(G2000HXL:2本、G3000HXL:
1本)を用い、流量1.0ml/分、溶出溶媒テトラヒ
ドロフラン、カラム温度40℃の分析条件で測定し、得
られたピーク面積の割合より求めた。As described above, the epoxy resin of the present invention can be obtained. The composition (% by weight) of the obtained epoxy resin was analyzed using a GPC column (G1000HXL:
One, (G2000HXL: two, G3000HXL:
1), the flow rate was 1.0 ml / min, the elution solvent was tetrahydrofuran, and the column temperature was 40 ° C.
【0026】[0026]
【実施例】以下、本発明を実施例により説明する。本発
明はこれらの実施例によって限定されるものではない。
また、製造例、実施例及び比較例等に記載されている
「部」及び「%」は、すべて「重量部」及び「重量%」
を示す。The present invention will be described below with reference to examples. The present invention is not limited by these examples.
Further, “parts” and “%” described in Production Examples, Examples and Comparative Examples are all “parts by weight” and “% by weight”.
Is shown.
【0027】製造例1 攪拌装置、還流冷却器及び温度計を備えた反応器にβ−
ナフトール100部、ベンズアルデヒド59部、水25
部を仕込み、昇温し系内の温度が70℃に達した時に、
50%水酸化ナトリウム水溶液30部を徐々に加えた。
その後さらに昇温し系内の温度を110℃に保ち3時間
反応させた。次に酢酸を22部加え中和させた後、メチ
ルイソブチルケトン100部、水120部を加え10分
間攪拌した後、静置し有機層と水層を分離させた。水層
を系外に除去した後、系内を150℃まで昇温しながら
水、メチルイソブチルケトンを蒸留除去させた。さらに
系内の温度を150℃に保ったまま水蒸気を500ml
/時間の割合で系内に2時間吹き込み、未反応のβ−ナ
フトールを除去した。得られた樹脂を反応器より取り出
して、粘度が0.1Pa・s(200℃)の樹脂51部
を得た。この樹脂をGPC測定したところ式(2)で表
されるヒドロキシナフタレン樹脂に相当するピークが8
0%であり、かつこれより高分子量である成分は1%で
あった。Production Example 1 β-β was added to a reactor equipped with a stirrer, a reflux condenser and a thermometer.
Naphthol 100 parts, benzaldehyde 59 parts, water 25
When the temperature in the system reaches 70 ° C.
30 parts of a 50% aqueous sodium hydroxide solution was gradually added.
Thereafter, the temperature was further raised, and the temperature in the system was kept at 110 ° C. to cause a reaction for 3 hours. Next, 22 parts of acetic acid was added to neutralize, 100 parts of methyl isobutyl ketone and 120 parts of water were added, and the mixture was stirred for 10 minutes. After removing the aqueous layer outside the system, water and methyl isobutyl ketone were distilled off while heating the inside of the system to 150 ° C. Further, while maintaining the temperature in the system at 150 ° C., 500 ml of steam is
/ Hour was blown into the system for 2 hours to remove unreacted β-naphthol. The obtained resin was taken out of the reactor to obtain 51 parts of a resin having a viscosity of 0.1 Pa · s (200 ° C.). GPC measurement of this resin showed that the peak corresponding to the hydroxynaphthalene resin represented by the formula (2) was 8
0% and the higher molecular weight component was 1%.
【0028】製造例2 β−ナフトール100部を2、6−ジヒドロキシナフタ
レン100部に、ベンズアルデヒド59部をサリチルア
ルデヒド61部に、及び50重量%水酸化ナトリウム水
溶液30部を1,8−ジアザビシクロ〔5,4,0〕ウ
ンデセン−7、38部に変えた以外は製造例1と同様に
して、粘度が0.2Pa・s(200℃)の樹脂49部
を得た。この樹脂をGPC測定したところ式(1)で表
されるヒドロキシナフタレン樹脂に相当するピークが7
5%であり、かつこれより高分子量である成分は2%で
あった。Preparation Example 2 100 parts of β-naphthol in 100 parts of 2,6-dihydroxynaphthalene, 59 parts of benzaldehyde in 61 parts of salicylaldehyde, and 30 parts of a 50% by weight aqueous sodium hydroxide solution in 1,8-diazabicyclo [5 , 4,0] undecene-7, and 49 parts of a resin having a viscosity of 0.2 Pa · s (200 ° C.) was obtained in the same manner as in Production Example 1 except that 38 parts were used. GPC measurement of this resin showed a peak corresponding to the hydroxynaphthalene resin represented by the formula (1) of 7
5% and higher molecular weight components were 2%.
【0029】製造例3 製造例1と同様の反応装置にα−ナフトール100部、
ベンズアルデヒド59部、水25部、及びパラトルエン
スルホン酸5部を仕込み、昇温し系内の温度を100℃
に保ち3時間反応させた。次にメチルイソブチルケトン
100部、水120部を加え10分間攪拌した後、静置
し有機層と水層を分離させた。水層を系外に除去した
後、系内を200℃まで昇温しながら水、メチルイソブ
チルケトン、未反応のモノマーを蒸留除去させ、粘度が
1.1Pa・s(200℃)の樹脂50部を得た。この
樹脂をGPC測定したところ式(1)で表されるヒドロ
キシナフタレン樹脂に相当するピークが36%であり、
かつこれより高分子量である成分は57%であった。Production Example 3 100 parts of α-naphthol were placed in the same reactor as in Production Example 1,
59 parts of benzaldehyde, 25 parts of water and 5 parts of p-toluenesulfonic acid were charged, and the temperature was raised to 100 ° C.
And reacted for 3 hours. Next, 100 parts of methyl isobutyl ketone and 120 parts of water were added, and the mixture was stirred for 10 minutes, and then allowed to stand to separate an organic layer and an aqueous layer. After removing the water layer out of the system, water, methyl isobutyl ketone and unreacted monomer were distilled off while heating the system to 200 ° C., and 50 parts of a resin having a viscosity of 1.1 Pa · s (200 ° C.) I got GPC measurement of this resin showed that the peak corresponding to the hydroxynaphthalene resin represented by the formula (1) was 36%,
And the component having a higher molecular weight than this was 57%.
【0030】実施例1 攪拌装置、還流冷却器及び温度計を備えた反応器に製造
例1で得られた樹脂100部、エピクロルヒドリン28
0部、及びイソプロピルアルコール100部を仕込み、
攪拌し溶解させた後、系内の温度を35℃に保ち、50
重量%水酸化ナトリウム水溶液56部を1時間かけて添
加した。その間系内の温度は徐々に上昇し添加終了時は
65℃となるようにした。系内の温度を65℃に保った
まま1時間反応させた後、水350部を加え水洗し、副
生塩、過剰の水酸化ナトリウムを除去した。次に減圧下
で過剰のエピクロルヒドリン、及びイソプロピルアルコ
ールを蒸留除去して、エポキシ当量245g/eqのエ
ポキシ樹脂125部を得た。Example 1 In a reactor equipped with a stirrer, a reflux condenser and a thermometer, 100 parts of the resin obtained in Production Example 1 and epichlorohydrin 28 were added.
0 parts, and 100 parts of isopropyl alcohol,
After stirring and dissolving, the temperature in the system is maintained at 35 ° C.
56 parts by weight of an aqueous sodium hydroxide solution were added over 1 hour. During that time, the temperature in the system was gradually increased to 65 ° C. at the end of the addition. After reacting for 1 hour while maintaining the temperature in the system at 65 ° C., 350 parts of water was added and washed with water to remove by-product salts and excess sodium hydroxide. Next, excess epichlorohydrin and isopropyl alcohol were distilled off under reduced pressure to obtain 125 parts of an epoxy resin having an epoxy equivalent of 245 g / eq.
【0031】実施例2 製造例1で得られた樹脂100部を製造例2で得られた
樹脂100部に変えた以外は製造例1と同様にして、エ
ポキシ当量202g/eqのエポキシ樹脂134部を得
た。Example 2 134 parts of an epoxy resin having an epoxy equivalent of 202 g / eq in the same manner as in Production Example 1 except that 100 parts of the resin obtained in Production Example 1 was changed to 100 parts of the resin obtained in Production Example 2. I got
【0032】比較例 製造例1で得られた樹脂100部を製造例3で得られた
樹脂100部に変えた以外は製造例1と同様にして、エ
ポキシ当量236g/eqのエポキシ樹脂118部を得
た。COMPARATIVE EXAMPLE In the same manner as in Production Example 1 except that 100 parts of the resin obtained in Production Example 1 was changed to 100 parts of the resin obtained in Production Example 3, 118 parts of an epoxy resin having an epoxy equivalent of 236 g / eq was used. Obtained.
【0033】応用例1、2及び比較応用例 実施例1、2及び比較例1で得られたエポキシ樹脂をそ
れぞれ用い、硬化剤にフェノール・pキシリレングリコ
ールジエチルエーテル重縮合物(住友デュレズ製PR−
54443)、トリフェニルホスフィン、溶融シリカ及
びステアリン酸を表1の配合量(部)でロール混練して
成形材料を得た。この成形材料を100kg/cm2 、
175℃、10分の条件で成形し、さらに180℃、6
時間の条件で後硬化して硬化成形物を得た。成形前の成
形材料のスパイラルフロー、及び硬化成形物のガラス転
位温度、曲げ強度、曲げ弾性率を測定した結果を表1に
示す。Application Examples 1 and 2 and Comparative Application Example Each of the epoxy resins obtained in Examples 1 and 2 and Comparative Example 1 was used, and phenol / p-xylylene glycol diethyl ether polycondensate (PR from Sumitomo Durez) was used as a curing agent. −
54443), triphenylphosphine, fused silica, and stearic acid were roll-kneaded at the compounding amounts (parts) in Table 1 to obtain a molding material. 100 kg / cm 2 of this molding material,
Molded at 175 ° C for 10 minutes, and then
Post-curing was performed under the conditions of time to obtain a cured molded product. Table 1 shows the results of measuring the spiral flow of the molding material before molding, and the glass transition temperature, bending strength, and flexural modulus of the cured molded product.
【0034】[0034]
【表1】 [Table 1]
【0035】(測定及び評価方法) 1.スパイラルフロー:EMMI−I−66に準じたス
パイラルフロー測定用の金型を用い、金型温度175
℃、注入圧力70kg/cm2 、硬化時間2分で測定し
た。 2.ガラス転移温度:熱機械分析装置(TMA)を用い
て測定した。 3.曲げ強度及び曲げ弾性率:JIS K6911に従
い測定した。(Measurement and Evaluation Methods) Spiral flow: using a mold for measuring spiral flow according to EMMI-I-66, mold temperature 175
C., injection pressure 70 kg / cm 2 , and curing time 2 minutes. 2. Glass transition temperature: measured using a thermomechanical analyzer (TMA). 3. Flexural strength and flexural modulus: measured according to JIS K6911.
【0036】[0036]
【発明の効果】表1からも明らかなように、本発明のエ
ポキシ樹脂を用いたエポキシ樹脂組成物は、優れた流動
性をもち、かつ曲げ弾性率を維持したまま、曲げ強度が
向上しており、耐熱性に優れたものであることがわか
る。このことから本発明のエポキシ樹脂は、高性能な電
子部品のエポキシ樹脂封止材料に特に好適である。さら
にはエポキシ樹脂粉体塗料、及びエポキシ樹脂積層板用
などに好適であり、電子部品の性能向上に寄与するもの
と期待される。As is clear from Table 1, the epoxy resin composition using the epoxy resin of the present invention has excellent fluidity, and has improved flexural strength while maintaining flexural modulus. It can be seen that the composition had excellent heat resistance. For this reason, the epoxy resin of the present invention is particularly suitable for an epoxy resin sealing material for high-performance electronic components. Further, it is suitable for epoxy resin powder coatings, epoxy resin laminates, and the like, and is expected to contribute to improving the performance of electronic components.
Claims (6)
重量%以上含み、かつ式(1)より高分子量である成分
の含有割合が10重量%以下であるエポキシ樹脂。 【化1】 (式中、mは1〜2の整数を示し、nは0〜1の整数を
示す。)1. An epoxy resin represented by the formula (1)
An epoxy resin containing not less than 10% by weight and containing 10% by weight or less of a component having a higher molecular weight than the formula (1). Embedded image (In the formula, m represents an integer of 1 to 2, and n represents an integer of 0 to 1.)
(2)で表される化合物である請求項1記載のエポキシ
樹脂。 【化2】 2. The epoxy resin according to claim 1, wherein the epoxy resin represented by the formula (1) is a compound represented by the formula (2). Embedded image
ン化合物と、式(4)で表される芳香族アルデヒド化合
物を塩基性触媒の存在下で反応させた後、エピクロルヒ
ドリンでエポキシ化することを特徴とする請求項1記載
のエポキシ樹脂の製造方法。 【化3】 (式中、mは1〜2の整数を示す。) 【化4】 (式中、nは0〜1の整数を示す。)3. A method comprising reacting a hydroxynaphthalene compound represented by the formula (3) with an aromatic aldehyde compound represented by the formula (4) in the presence of a basic catalyst, followed by epoxidation with epichlorohydrin. The method for producing an epoxy resin according to claim 1, wherein: Embedded image (In the formula, m represents an integer of 1 to 2.) (In the formula, n represents an integer of 0 to 1.)
ン化合物がβ−ナフトールで、式(4)で表される芳香
族アルデヒド化合物がベンズアルデヒドである請求項3
記載のエポキシ樹脂の製造方法。4. The hydroxynaphthalene compound represented by the formula (3) is β-naphthol, and the aromatic aldehyde compound represented by the formula (4) is benzaldehyde.
The method for producing the epoxy resin described in the above.
または1,8−ジアザビシクロ〔5,4,0〕ウンデセ
ン−7である請求項3または4記載のエポキシ樹脂の製
造方法。5. The basic catalyst is an aqueous sodium hydroxide solution,
5. The method for producing an epoxy resin according to claim 3, wherein the method is 1,8-diazabicyclo [5,4,0] undecene-7.
レン化合物1モルに対して0.2モル以上かつ0.8モ
ル以下である請求項3、4または5記載のエポキシ樹脂
の製造方法。6. The method for producing an epoxy resin according to claim 3, wherein the number of moles of the basic catalyst is at least 0.2 mol and at most 0.8 mol per 1 mol of the hydroxynaphthalene compound.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000189137A JP2002003570A (en) | 2000-06-23 | 2000-06-23 | Epoxy resin and its production method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000189137A JP2002003570A (en) | 2000-06-23 | 2000-06-23 | Epoxy resin and its production method |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2002003570A true JP2002003570A (en) | 2002-01-09 |
Family
ID=18688802
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2000189137A Pending JP2002003570A (en) | 2000-06-23 | 2000-06-23 | Epoxy resin and its production method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2002003570A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013087173A (en) * | 2011-10-17 | 2013-05-13 | Mitsubishi Gas Chemical Co Inc | Novel epoxy compound and method for producing the same |
CN105073882A (en) * | 2012-12-26 | 2015-11-18 | 株式会社斗山 | Resin composition and metal core laminate comprising same |
KR20180065630A (en) * | 2016-12-08 | 2018-06-18 | 삼성에스디아이 주식회사 | Epoxy resin composition for encapsulating semiconductor device and semiconductor device encapsulated using the same |
-
2000
- 2000-06-23 JP JP2000189137A patent/JP2002003570A/en active Pending
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013087173A (en) * | 2011-10-17 | 2013-05-13 | Mitsubishi Gas Chemical Co Inc | Novel epoxy compound and method for producing the same |
CN105073882A (en) * | 2012-12-26 | 2015-11-18 | 株式会社斗山 | Resin composition and metal core laminate comprising same |
KR20180065630A (en) * | 2016-12-08 | 2018-06-18 | 삼성에스디아이 주식회사 | Epoxy resin composition for encapsulating semiconductor device and semiconductor device encapsulated using the same |
KR101980949B1 (en) * | 2016-12-08 | 2019-05-21 | 삼성에스디아이 주식회사 | Epoxy resin composition for encapsulating semiconductor device and semiconductor device encapsulated using the same |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TW201033255A (en) | Novolac resin and method for producing the same | |
JP3833940B2 (en) | Phenol polymer, process for producing the same, and epoxy resin curing agent using the same | |
JP2002003570A (en) | Epoxy resin and its production method | |
KR101335717B1 (en) | Novolac resin | |
JPH09291127A (en) | Naphthol-containing novolac resin, naphthol novolac epoxy resin, epoxy resin composition, and cured product thereof | |
JP4076710B2 (en) | Hydroxynaphthalene resin and method for producing the same | |
JP3395161B2 (en) | Method for producing phenolic novolak epoxy resin | |
JP2000212259A (en) | Liquid phenol resin and its preparation | |
JP3704081B2 (en) | Epoxy resin, its production method and its use | |
JPH11255868A (en) | Preparation of phenol aralkyl resin | |
JP2579405B2 (en) | Epoxy resin curing agent | |
JP3636409B2 (en) | Phenolic resins, epoxy resins, epoxy resin compositions and cured products thereof | |
JP3125056B2 (en) | Method for producing polyfunctional epoxy resin and intermediate thereof | |
JP2823455B2 (en) | New epoxy resin and method for producing the same | |
JP2865439B2 (en) | Epoxy resin and its cured product | |
EP0458417A2 (en) | Adducts of phenolic compounds and cyclic terpenes and derivatives of said adducts | |
US20230374213A1 (en) | Process for preparing branched phenolic novolak | |
JP3888915B2 (en) | Epoxy resin curing agent | |
JP2010070471A (en) | Phenolic polymer, method of producing the same, and use therefor | |
JPH04275317A (en) | New novolak type resin and its production | |
JPH0748425A (en) | Production of novolak resin glycidyl ether | |
JP3104915B2 (en) | Novolak resin manufacturing method | |
JP3325694B2 (en) | Epoxy resin and epoxy resin composition | |
JP2005179453A (en) | Epoxy resin and method for producing the same | |
JP6729863B2 (en) | Method for producing novolac type phenol resin, novolac type phenol resin, thermosetting resin composition and cured product |