JPS62202044A - Manufacture of sintered alloy superior in high temperature wear resistance - Google Patents

Manufacture of sintered alloy superior in high temperature wear resistance

Info

Publication number
JPS62202044A
JPS62202044A JP4461786A JP4461786A JPS62202044A JP S62202044 A JPS62202044 A JP S62202044A JP 4461786 A JP4461786 A JP 4461786A JP 4461786 A JP4461786 A JP 4461786A JP S62202044 A JPS62202044 A JP S62202044A
Authority
JP
Japan
Prior art keywords
weight
powder
alloy
copper
wear resistance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4461786A
Other languages
Japanese (ja)
Inventor
Yukio Kadota
門田 幸男
Akira Manabe
直鍋 明
Sadataka Obuchi
大渕 貞孝
Masao Ito
伊東 正男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NIPPON FUNMATSU GOKIN KK
Toyota Motor Corp
Original Assignee
NIPPON FUNMATSU GOKIN KK
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NIPPON FUNMATSU GOKIN KK, Toyota Motor Corp filed Critical NIPPON FUNMATSU GOKIN KK
Priority to JP4461786A priority Critical patent/JPS62202044A/en
Publication of JPS62202044A publication Critical patent/JPS62202044A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain the titled alloy superior in high temp. strength at a prescribed porosity value or less, by liquid phase sintering a compact of iron material powder contg. one or two kinds among Co alloy powder, low m.p. such as iron phosphide, triiron monophosphide and Cu. CONSTITUTION:Iron metal powder contg. one or two kinds among Co alloy powder contg. respective prescribed quantities of Mo, Cr, Si, etc., phosphor alloy powder selected from phosphor alloy powder such as copper phosphide, triiron monophosphide and Cu is compacted. Next, the compact is brought into contact with molten infiltrating agent while being heated to a temp. higher than liquid phase forming temp. of iron metal powder by 0-50 deg.C. In this way, the infiltrating agent is infiltrated into pores in compact, and the compact is sintered to obtain the aimed sintered alloy having <=3% porosity.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、高温耐摩耗性に優れた焼結合金の製造方法に
関する。高温耐摩耗性に優れた焼結合金の代表的な用途
としては、内燃機関に使用される動弁部材例えばバルブ
シートがあげられる。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for producing a sintered alloy with excellent high-temperature wear resistance. Typical applications of sintered alloys with excellent high-temperature wear resistance include valve train members used in internal combustion engines, such as valve seats.

バルブシートは、内燃機関のシリンダヘッドに組み込ま
れている部材である。バルブシートにエンジンバルブが
着座すると、混合ガスや燃焼ガスがシールされる。この
バルブシートは苛酷な条件下で作動するため、高温強度
、高温耐摩耗性等が特に要求される。
A valve seat is a member incorporated into a cylinder head of an internal combustion engine. When the engine valve is seated on the valve seat, the mixed gas and combustion gas are sealed. Since this valve seat operates under severe conditions, high-temperature strength and high-temperature wear resistance are particularly required.

[従来の技術) 内燃機関に用いられるバルブシー1−等の動弁部材は、
工具鋼系や高速度##系等の合金鋼粉末を圧縮成形して
圧密成形体を形成プる工程、圧密成形体を所定の温度に
加熱して焼結し焼結合金を形成する工程から製造される
ことが多い。最近の内燃機関の高性能化に伴い、動弁部
材の高温強度、高温耐摩耗性等を尚一層内上させる必要
性が高まっている。
[Prior Art] Valve train members such as the valve seat 1 used in internal combustion engines are
From the process of compression molding alloy steel powder such as tool steel type or high speed ## type to form a compacted compact, and the process of heating the compacted compact to a predetermined temperature and sintering it to form a sintered alloy. Often manufactured. With the recent improvement in the performance of internal combustion engines, there is an increasing need to further improve the high-temperature strength, high-temperature wear resistance, etc. of valve train members.

かかる要求を考慮し、例えば本出願人は、自己の公開特
許昭60−215736号および昭60−218451
@において、合金鋼粉末の成形体を焼結して、その中の
残留気孔をできるだけ少なくし、かつその残留気孔中に
銅を溶浸することによって高温における強度と潤滑性お
よび耐摩耗性を向上させた焼結合金の製造方法を開発し
た。さらに、本出願人は、特願昭59−15346号に
おいて、銅粉と合金鋼粉末を混合し、かつ焼結させる製
造方法を開示し、製造工程の削減とコストダウンを達成
でき、しかも溶浸法によって製造した焼結合金と同等の
特性を得ることができる新しい製造方法を開発した。
In consideration of such requirements, for example, the present applicant has published his published patents No. 60-215736 and No. 60-218451.
At @, we sinter a compact of alloy steel powder to minimize residual pores, and infiltrate copper into the residual pores to improve strength, lubricity, and wear resistance at high temperatures. We have developed a method for manufacturing sintered alloys. Furthermore, in Japanese Patent Application No. 59-15346, the present applicant has disclosed a manufacturing method in which copper powder and alloy steel powder are mixed and sintered, thereby achieving reduction in manufacturing steps and costs, and in addition to infiltration. We have developed a new manufacturing method that can obtain properties equivalent to those of sintered alloys manufactured by the method.

[発明が解決しようとする問題点] 本発明は上記の本出願人自身の発明に係る焼結合金の製
造方法の一環として開発されたものであり、高温強度、
高温耐摩耗性の特性ににすぐれた焼結合金を形成し得る
製造方法を提供することを目的とするものである。
[Problems to be Solved by the Invention] The present invention was developed as part of the above-mentioned method for manufacturing a sintered alloy according to the applicant's own invention.
The object of the present invention is to provide a manufacturing method capable of forming a sintered alloy with excellent high-temperature wear resistance properties.

[発明の構成] (問題点を解決するための手段) 本発明の高温耐摩耗性に優れた焼結合金の製造方法は、
コバルト系合金粉末と、リン化鉄、−リン化三鉄等の低
融点化合物と銅のうち一種または二種を含む鉄系金属粉
末とからなる原料粉末成形体を形成する第一の工程と、 該成形体を加熱して液相を生ぜしめて液相焼結を行い、
気孔率3%以下の焼結合金を形成する第二の工程とから
なることを特徴とするものである。
[Structure of the Invention] (Means for Solving the Problems) The method for producing a sintered alloy with excellent high-temperature wear resistance of the present invention includes:
A first step of forming a raw material powder compact consisting of a cobalt-based alloy powder, a low-melting point compound such as iron phosphide and triiron phosphide, and an iron-based metal powder containing one or two of copper; heating the molded body to generate a liquid phase to perform liquid phase sintering;
This method is characterized by comprising a second step of forming a sintered alloy with a porosity of 3% or less.

銅を溶浸法により添加する場合には、銅の融点以上で、
かつ該鉄系金属粉末の液相生成温度より0〜50℃高い
温度に該成形体を加熱しつつ溶融した溶浸剤を接触させ
該溶浸剤を成形体の気孔に溶浸させるとともに、該成形
体の本焼結を行い、気孔率3%以下の焼結合金を形成す
る第三の工程を追加する。
When copper is added by infiltration, the temperature is above the melting point of copper,
and while heating the compact to a temperature 0 to 50°C higher than the liquid phase formation temperature of the iron-based metal powder, contact with a molten infiltrant to infiltrate the pores of the compact with the infiltrant, and A third step is added in which main sintering is performed to form a sintered alloy with a porosity of 3% or less.

すなわち、本発明の高温耐摩耗性にすぐれた焼結合金の
製造方法は、従来用いられている合#L鋼粉末中に、コ
バルト系合金粉末を混合して、焼結時にコバルト系合金
粉末が溶解して、多孔質基材中の炭化物のまわりに溶出
し基材と炭化物の結合を強めるようにしたものである。
That is, the method of manufacturing a sintered alloy with excellent high-temperature wear resistance according to the present invention involves mixing a cobalt-based alloy powder into the conventionally used composite #L steel powder, and removing the cobalt-based alloy powder during sintering. It dissolves and elutes around the carbide in the porous base material to strengthen the bond between the base material and the carbide.

特にコバルト系合金は!’[lでの強度にすぐれており
、600〜700℃での摺動摩擦状態でも炭化物を基材
に保持覆る効果が大ぎく、いわゆる耐摩粒子の敷石効果
による耐摩耗性向上に大きく寄与する特性をちっており
、本発明は、この点に着眼してなされたものである。
Especially cobalt alloys! It has excellent strength at 100°C, and has a great effect of retaining and covering carbides on the base material even under sliding friction conditions at 600 to 700°C, and has characteristics that greatly contribute to improving wear resistance due to the so-called cobblestone effect of wear-resistant particles. The present invention has been made with this point in mind.

(発明の構成の詳細な説明) 本発明は、成形体を形成する第一の工程と、液相焼結を
行う第二の工程から構成されている。銅に溶浸を行う第
三の工程が追加される。
(Detailed Description of the Structure of the Invention) The present invention is comprised of a first step of forming a molded body and a second step of performing liquid phase sintering. A third step is added to infiltrate the copper.

第一の工程では、コバルト系合金粉末と、リン化銅、−
リン化三鉄等の低融点化合物と銅の一種または二種を含
む鉄系金属粉末とから成形体を形成する。低融点化合物
としては、リン化銅、−リン化三鉄等のリン合金粉末か
ら選択することができる。前記成形体は、一般に気孔の
多い多孔質体である。
In the first step, cobalt alloy powder, copper phosphide, -
A molded body is formed from a low melting point compound such as triiron phosphide and iron-based metal powder containing one or two types of copper. The low melting point compound can be selected from phosphorus alloy powders such as copper phosphide and triiron phosphide. The molded body is generally a porous body with many pores.

上記コバルト系合金粉末の組成は、モリブデン10〜3
0重量%、クロム0.5〜15重量%、シリコン0.5
〜3.01ffi%、残部コバルトの組成に加えて、タ
ングステン0.5〜10重足%、バナジウム0.2〜5
重最重量ニオ10.05〜3.0重重%のうち一種ある
いは二種以上を含むものからなる。
The composition of the above cobalt-based alloy powder is molybdenum 10-3
0% by weight, chromium 0.5-15% by weight, silicon 0.5
~3.01 ffi%, balance of cobalt, plus 0.5 to 10 ffi% of tungsten, 0.2 to 5 ffi of vanadium
It consists of one or more of 10.05 to 3.0% by weight of the heaviest niobium.

この組成中、クロム及びモリブデンは炭化物を形成し、
耐摩耗性に寄与する。またこれらは基材にも若干固溶し
て強度、特に高温強度を向上させる。上記の如く限定さ
れた容凹の下限以下では効果が少なく、上限を越えると
相手材を損傷させる度合が増加する。シリコンは炭化物
の球状化や焼結温度の低下に効果があるが、限定値を越
えて用いられると逆に焼結性の低下や強度の低下をきた
す。タングステン、バナジウム及びニオブは炭化物を形
成し、耐摩耗性の向上に寄与するが、限定値未満では効
果が少なく、限定値を越えると炭化物が苛酷となり好ま
しくない。
In this composition, chromium and molybdenum form carbides,
Contributes to wear resistance. They also form a slight solid solution in the base material to improve strength, particularly high-temperature strength. Below the lower limit of the limited concavity as described above, there is little effect, and when the upper limit is exceeded, the degree of damage to the mating material increases. Silicon is effective in making carbides spheroidal and lowering the sintering temperature, but if it is used in excess of a limited value, it will cause a decrease in sinterability and strength. Tungsten, vanadium, and niobium form carbides and contribute to improving wear resistance, but if the value is less than the limit value, the effect is small, and if the limit value is exceeded, the carbide becomes harsh and undesirable.

上記鉄系金属粉末は、焼結合金の種類、用途に応じて種
々その組成を選択するが1.一般的には、工具鋼系、高
速度鋼系のものを用いることができる。鉄系金属粉末の
粒径や粒の形状は必要に応じて選択するが、−100メ
ツシユ程度のものを用いることができる。また、噴霧粉
を用いることが出来る。
The above-mentioned iron-based metal powder has a variety of compositions selected depending on the type of sintered alloy and its use.1. Generally, tool steel type or high speed steel type can be used. The particle size and shape of the iron-based metal powder may be selected as required, but particles of about -100 mesh can be used. Also, spray powder can be used.

低融点化合物を含む鉄系金属粉末は、クロム2゜5〜2
5重置%、炭素0.2〜3.0重鎖%、不可避の不純物
、残部鉄の組成をもつ合金鋼粉末とリン化鋼、−リン化
三鉄等の低融点合金粉末とを混合した混合粉末から構成
されており、混合粉末中リンが0.1〜0.8重I%で
あることが好ましい。
Iron-based metal powder containing low melting point compounds contains chromium 2.5~2
An alloy steel powder having a composition of 5% heavy chain, 0.2 to 3.0% heavy chain carbon, unavoidable impurities, and the balance iron is mixed with a low melting point alloy powder such as steel phosphide or triiron phosphide. It is composed of a mixed powder, and it is preferable that phosphorus in the mixed powder is 0.1 to 0.8% by weight.

銅は、純銅を用いる場合には市販の電解銅粉を用いるこ
とができる。また、銅を60重堕%以上含む銅合金粉末
を用いても良い。
When using pure copper, commercially available electrolytic copper powder can be used as the copper. Further, a copper alloy powder containing 60% or more of copper may be used.

第二の工程では、成形体を加熱して液相を生ぜしめて液
相焼結を行う。かかる第二の工程を行えば、成形体を構
成する粉末粒子の結合を強固なものとすることができ、
従って通常の焼結を行った場合に比べ、粉末粒子同志の
ネックの結合をより強固にすることができる。
In the second step, the molded body is heated to generate a liquid phase to perform liquid phase sintering. By performing this second step, the bonding of the powder particles constituting the compact can be strengthened,
Therefore, compared to the case where normal sintering is performed, the necks of the powder particles can be bonded more strongly.

尚、低融点の液相が生じる温度は、低融点化合物の成分
、組成によって種々異なるが、成形体中に低融点の液相
が部分的に生じたときには成形体の膨張曲線が急激に変
化するため、液相生成温度は、この膨張曲線の変化度合
から決定することができる。
The temperature at which a low melting point liquid phase occurs varies depending on the components and composition of the low melting point compound, but when a low melting point liquid phase is partially formed in the molded article, the expansion curve of the molded article changes rapidly. Therefore, the liquid phase formation temperature can be determined from the degree of change in this expansion curve.

第三の工程は、銅を溶浸法によって添加する場合に行う
が、銅の融点以上の温度に成形体を加熱して、溶浸剤を
成形体の気孔に溶浸させると共に、成形体の本焼結を行
い気孔率3%以下の焼結合金を形成する。
The third step is performed when copper is added by infiltration, and the molded body is heated to a temperature higher than the melting point of copper to infiltrate the pores of the molded body with the infiltrant, and the main body of the molded body is heated. Sintering is performed to form a sintered alloy with a porosity of 3% or less.

第三の工程を行えば、成形体中に生じた低融点液相によ
り溶浸を促進することができ、従って、焼結合金の緻密
化を一層図り得、気孔率3%以下、例えば後述する実施
例で示すように1.5〜2゜8%と著しく低下させ得る
If the third step is performed, the infiltration can be promoted by the low melting point liquid phase generated in the compact, and therefore the sintered alloy can be further densified, and the porosity is 3% or less, for example as described below. As shown in the examples, it can be significantly reduced by 1.5 to 2.8%.

銅を主体とする溶浸剤は、純銅あるいは銅を60重量%
以上含む銅合金を焼結と同時に溶浸するが、その溶浸開
が焼結合金中占める割合は¥i伍比でおよそ5〜15%
が好ましい。銅を混合粉末に添加する場合も同様である
。15%を越えると基材の強度低下を招き、更に粒界の
脆化等による高温度低下も著しくなるので好ましくない
Infiltration agent mainly composed of copper is pure copper or 60% by weight of copper.
The copper alloy containing the above is infiltrated at the same time as sintering, but the proportion of the infiltration opening in the sintered alloy is approximately 5 to 15% in terms of the sintered alloy.
is preferred. The same applies when adding copper to the mixed powder. If it exceeds 15%, the strength of the base material decreases, and furthermore, the high temperature decrease due to embrittlement of grain boundaries becomes significant, which is not preferable.

[発明の効果] 本発明のTl4J造方法によれば、後述する実施例の試
験値で示すように、気孔率が2.8%以下、圧環強度が
105kgf/mm2以上、高温耐摩耗性での摩耗幅が
シート材13μm以下、バルブ材2.2μm以下の特性
をもつ高温耐摩耗性にすぐれた焼結合金を製造すること
ができる。
[Effects of the Invention] According to the Tl4J manufacturing method of the present invention, the porosity is 2.8% or less, the radial crushing strength is 105 kgf/mm2 or more, and the high-temperature wear resistance is improved, as shown by the test values in the examples described later. It is possible to produce a sintered alloy with excellent high-temperature wear resistance and a wear width of 13 μm or less for the sheet material and 2.2 μm or less for the valve material.

[実施例] まず、実施例1について説明する。[Example] First, Example 1 will be explained.

重量比でクロムニ12%、炭素=1.5%、モリブデン
:1%、バナジウムニQ、8%、シリコン:0.2%、
マンガン0.3%、酸素:0.04%、残部鉄および1
%以下の不純物からなる噴霧合金鋼粉末(−100メツ
シユ)を用いた。またコバルト系合金粉末にはコバルト
系合金粉末全体を1(’10111%としたときに重量
比でモリブデン=28%、クロム8%、シリコン=2%
、残部コバルト及び1%以下の不純物からなる噴霧合金
粉末(−200メツシユ)を用いた。そして粉末全体で
100重量重鎖なるように、基材合金鋼粉末にコバルト
系合金粉末=10%、グラファイト粉末=1.1%(−
350メツシユ)−リン化三鉄粉末:1.5%(−20
0メツシユ)、銅粉末二8%(−145メツシユ)を加
え、更に組成外で潤滑剤としてステアリン酸亜鉛0.8
%を用いて混合し、混合粉末を形成した。この混合粉末
を7゜0 t/cm2で圧縮成形してφ10R1Il+
、φ25111゜長さ20+1111の圧粉体(成形体
)とした。
By weight: chromium 12%, carbon 1.5%, molybdenum: 1%, vanadium niQ 8%, silicon: 0.2%,
Manganese 0.3%, oxygen: 0.04%, balance iron and 1
Spray alloyed steel powder (-100 mesh) consisting of impurities of less than % was used. In addition, in the cobalt-based alloy powder, the entire cobalt-based alloy powder is 1 ('10111%), and the weight ratio is molybdenum = 28%, chromium 8%, silicon = 2%.
, the balance being cobalt, and an atomized alloy powder (-200 mesh) consisting of 1% or less of impurities. Then, so that the whole powder has a heavy chain weight of 100%, cobalt alloy powder = 10% and graphite powder = 1.1% (-
350 mesh) - Saniron phosphide powder: 1.5% (-20
0 mesh), copper powder 28% (-145 mesh) was added, and zinc stearate 0.8% was added as a lubricant outside the composition.
% to form a mixed powder. This mixed powder was compression molded at 7°0 t/cm2 to form φ10R1Il+
A green compact (molded body) having a diameter of 25111° and a length of 20+1111 was obtained.

圧粉体をアンモニア分解ガス雰囲気中において1140
℃で30分間加熱し、低融点の液相を生ぜしめ、液相焼
結を行った。こうして焼結合金製の試験片を製造した。
The green compact was placed in an ammonia decomposition gas atmosphere at 1140°C.
C. for 30 minutes to generate a low melting point liquid phase to perform liquid phase sintering. In this way, a test piece made of sintered alloy was manufactured.

また、同様な方法で実施例2〜5の試験片を表1及び表
2に示す条件下r:製造した。実施例1.4は混合法に
より、一方実施例3と5は銅を溶浸法により添加してい
るが、後者の方法は純銅粉(M解銅粉)又は銅合金粉末
を圧縮成形してφ10III11φ25m転長さ3m階
の圧粉体とし、前記鉄系混合粉末製の圧粉体に重ねて設
置し、この状態でアンモニア分解ガス雰囲気中において
、30分間加熱し、以って液相を生じさせつつ焼結同時
溶浸を行い、これにより焼結合金製の試験片を製造した
In addition, test pieces of Examples 2 to 5 were manufactured in the same manner under the conditions shown in Tables 1 and 2. In Examples 1.4, copper was added by a mixing method, while in Examples 3 and 5, copper was added by an infiltration method, but the latter method added copper by compression molding pure copper powder (M-copper powder) or copper alloy powder. A green compact with a diameter of 10III 11φ25 m and a length of 3 m was placed over the powder compact made of the iron-based mixed powder, and heated in this state for 30 minutes in an ammonia decomposition gas atmosphere to form a liquid phase. Simultaneous sintering and infiltration were carried out under the same conditions, thereby producing a test piece made of a sintered alloy.

なお比較例の試料は、実施例1に示した試料からコバル
ト系金属粉末を除いた組成とし、実施例と同様の方法で
試験片を製造した。
Note that the sample of the comparative example had the same composition as the sample shown in Example 1 except that the cobalt-based metal powder was removed, and a test piece was manufactured in the same manner as in the example.

(試験) 実1M例1〜5の試験片について 実施例1〜5の試験片について、気孔率、高温(500
℃)圧環強さ、高温耐摩耗性を調査した。
(Test) Regarding the test pieces of Examples 1 to 5, the porosity and high temperature (500
℃) The radial crushing strength and high temperature wear resistance were investigated.

その結果を表3に示す。高温耐摩耗性は、φ14mm、
φ18mm、長さ15IIImの試験片を試作し、試験
片を2mmの振幅で1分間に1200回上下させ、その
端面を面圧45kOf/mm2で平面状のバルブ相当材
に押し当て、さらにバルブ相当材を5rpmで回転させ
Ul1粍試験を行った。摩耗試験は、バルブ相当材の表
面を500℃に加熱し、ガソリンエンジンの排気ガスを
試験片接触部に導入して行った。また、1回の試験時間
は7時間とした。
The results are shown in Table 3. High temperature wear resistance is φ14mm,
A test piece with a diameter of 18 mm and a length of 15 III m was fabricated. The test piece was moved up and down 1200 times per minute with an amplitude of 2 mm, and its end face was pressed against a planar valve-equivalent material with a surface pressure of 45 kOf/mm2. was rotated at 5 rpm and an Ul1 test was conducted. The wear test was carried out by heating the surface of the valve-equivalent material to 500° C. and introducing exhaust gas from a gasoline engine into the contact portion of the test piece. Moreover, the time for one test was 7 hours.

各試験結果を表3に示す。気孔率は、実施例1で1.8
%、実施例2で2.5%、実施例3で1゜5%、実施例
4で2.3%、実施例5で2.8%であった。高温圧環
強さく500℃)は、実施例1では115kgf/mm
! 、実施例2では130kOf/mm2、実施例3で
は110kOf/mmz、実施例4では105kgf/
mm2 、実表3 試験結実 施例5では105kgf/mm’ であった。マタ、高
温耐摩耗性試験での摩耗幅は、実施例1でシート材11
μm、バルブ材1.5μm1実施例2でシート材4μm
、バルブ材2.2μm、実施例3でシート材8μm1バ
ルブ材2.0μm1実施例4でシート材10μm1バル
ブ材1.7μm1実施例5でシート材13μm1バルブ
材1.5μmであった。
The results of each test are shown in Table 3. The porosity is 1.8 in Example 1.
%, 2.5% in Example 2, 1.5% in Example 3, 2.3% in Example 4, and 2.8% in Example 5. The high temperature radial pressure strength (500°C) was 115 kgf/mm in Example 1.
! , 130kOf/mm2 in Example 2, 110kOf/mmz in Example 3, and 105kgf/mmz in Example 4.
mm2, Actual Table 3 Test Results In Example 5, it was 105 kgf/mm'. The wear width in the high temperature abrasion resistance test was 11 for the sheet material in Example 1.
μm, valve material 1.5 μm, sheet material 4 μm in Example 2
In Example 3, the sheet material was 8 μm; the valve material was 2.0 μm; in Example 4, the sheet material was 10 μm; the valve material was 1.7 μm; in Example 5, the sheet material was 13 μm; the valve material was 1.5 μm.

比較例の試験結果は、気孔率3.4%、高温圧環強さ1
20kQf/mm21高温耐摩耗性試験での摩耗幅はシ
ート材18μm1バルブ材2.5μmであった。
The test results of the comparative example are that the porosity is 3.4% and the high temperature radial crushing strength is 1.
The wear width in the 20 kQf/mm21 high temperature abrasion resistance test was 18 μm for the seat material and 2.5 μm for the valve material.

手続補正書(自発) 昭和61年4月3 日 昭和61年特許願第044617号 2、発明の名称 高温耐摩耗性に優れた焼結合金の製造方法3、補正をす
る者 事件との関係  特許出願人 愛知県豊田市トヨタ町1番地 (320)トヨタ自動車株式会社 代表者 松 本  清 くはか1名) 4、代理人 〒450愛知県名古屋市中村区名駅3 丁目3番の4 5、補正の対像 明細書の発明の詳細な説明の欄 6、補正の内容 (1)明細書の第6頁の第20行目の[銅jから第7頁
の第1行目にある(−に溶浸を・・・・・・追加される
。」とある「銅」と「に溶浸を・・・・・・追加される
。」との間に「を溶浸法によって添加する場合には、焼
結と同時」を挿入します。
Procedural amendment (voluntary) April 3, 1985 Patent Application No. 044617 of 1985 2, Title of invention Method for producing sintered alloy with excellent high-temperature wear resistance 3, Relationship with the person making the amendment Patent Applicant: 1 Toyotacho, Toyota City, Aichi Prefecture (320) Toyota Motor Corporation Representative: Kiyohaka Matsumoto (1 person) 4. Agent: 3-3-4 Meieki, Nakamura-ku, Nagoya City, Aichi Prefecture 450 5. Column 6 of the detailed description of the invention in the counter specification of the amendment, contents of the amendment (1) Line 20 of page 6 of the specification [copper j to line 1 of page 7 (- When "copper" is added by the infiltration method between "copper" and "infiltration is added to..." Insert "simultaneously with sintering".

(2)明細書の第10頁の第13行目にある1温度低下
」とある「温」と1度低下」との間に「強」を挿入しま
す。
(2) Insert "strong" between "temperature decrease" and "temperature decrease by 1 degree" on page 10, line 13 of the specification.

Claims (6)

【特許請求の範囲】[Claims] (1)コバルト系合金粉末と、リン化鉄、−リン化三鉄
等の低融点化合物と銅のうち一種または二種を含む鉄系
金属粉末とからなる原料粉末より成形体を形成する第1
の工程と、該成形体を加熱して液相を生ぜしめて液相焼
結を行い、気孔率3%以下の焼結合金を形成する第二の
工程とからなる高温耐摩耗性に優れた焼結合金の製造方
法。
(1) A first step for forming a compact from raw material powder consisting of a cobalt alloy powder, a low melting point compound such as iron phosphide or triiron phosphide, and an iron metal powder containing one or two of copper.
A sintered alloy with excellent high-temperature wear resistance consists of a second step of heating the compact to generate a liquid phase and performing liquid phase sintering to form a sintered alloy with a porosity of 3% or less. Manufacturing method of bonded metal.
(2)銅を溶浸法により添加する場合には、銅の融点以
上で、かつ該鉄系金属粉末の液相生成温度より0〜50
℃高い温度に該成形体を加熱しつつ溶融した溶浸剤を接
触させ該溶浸剤を成形体の気孔に溶浸させるとともに、
該成形体の本焼結を行い、気孔率3%以下の焼成合金を
形成する第三の工程を追加する特許請求の範囲第一項記
載の高温耐摩耗性に優れた焼結合金の製造方法。
(2) When copper is added by infiltration, the temperature is higher than the melting point of copper and 0 to 50° lower than the liquid phase formation temperature of the iron-based metal powder.
While heating the molded body to a high temperature, contacting the molded body with a molten infiltrant to infiltrate the pores of the molded body with the infiltrant,
The method for producing a sintered alloy with excellent high-temperature wear resistance as set forth in claim 1, which adds a third step of performing main sintering of the compact to form a sintered alloy with a porosity of 3% or less. .
(3)コバルト合金粉末は、モリブデン10〜30重量
%、クロム0.5〜15重量%、シリコン0.5〜3.
0重量%、残部コバルトの組成に加えてタングステン0
.5〜10重量%、バナジウム0.2〜5重量%、ニオ
ブ0.05〜3.0重量%のうち一種あるいは二種以上
を含む合金であり、タングステン、バナジウム、ニオブ
の合計が18重量%以下である特許請求の範囲第一項記
載の高温耐摩耗性に優れた焼結合金の製造方法。
(3) The cobalt alloy powder contains 10 to 30% by weight of molybdenum, 0.5 to 15% by weight of chromium, and 0.5 to 3% by weight of silicon.
0% by weight, balance cobalt composition plus tungsten 0
.. It is an alloy containing one or more of 5 to 10% by weight, vanadium 0.2 to 5% by weight, and niobium 0.05 to 3.0% by weight, and the total of tungsten, vanadium, and niobium is 18% by weight or less. A method for producing a sintered alloy having excellent high-temperature wear resistance according to claim 1.
(4)鉄系金属粉末は、クロム2.5〜25重量%、炭
素0.2〜3.0重量%、不可避の不純物、残部鉄の組
成をもつ合金鋼粉末と、リン化銅、−リン化三鉄等の低
融点化合物とを混合した混合粉末から構成されており、
混合粉末中リンが0.1〜0.8重量%である特許請求
の範囲第一項記載の高温耐摩耗性に優れた焼結合金の製
造方法。
(4) The iron-based metal powder consists of an alloy steel powder with a composition of 2.5 to 25% by weight of chromium, 0.2 to 3.0% by weight of carbon, unavoidable impurities, and the balance iron, copper phosphide, and -phosphorus. It is composed of a mixed powder mixed with low melting point compounds such as saniron oxide.
The method for producing a sintered alloy with excellent high-temperature wear resistance according to claim 1, wherein the mixed powder contains 0.1 to 0.8% by weight of phosphorus.
(5)溶浸材粉末は、純銅あるいは銅を60重量%以上
含む銅合金粉末である特許請求の範囲第二項記載の高温
耐摩耗性に優れた焼結合金の製造方法。
(5) The method for producing a sintered alloy with excellent high-temperature wear resistance according to claim 2, wherein the infiltrant powder is pure copper or a copper alloy powder containing 60% by weight or more of copper.
(6)合金鋼粉末は、モリブデン0.3〜6.5重量%
、タングステン0.5〜12重量%、バナジウム0.2
5〜5.5重量%、ニオブ0.05〜3.0重量%のう
ち一種または二種以上含み、かつモリブデン、タングス
テン、バナジウム、ニオブの合計が16重量%以下であ
る特許請求の範囲第四項記載の高温耐摩耗性に優れた焼
結合金の製造方法。
(6) Alloy steel powder contains molybdenum 0.3 to 6.5% by weight
, tungsten 0.5-12% by weight, vanadium 0.2
Claim 4 contains one or more of 5 to 5.5% by weight, 0.05 to 3.0% by weight of niobium, and the total amount of molybdenum, tungsten, vanadium, and niobium is 16% by weight or less. A method for producing a sintered alloy with excellent high-temperature wear resistance as described in 2.
JP4461786A 1986-02-28 1986-02-28 Manufacture of sintered alloy superior in high temperature wear resistance Pending JPS62202044A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4461786A JPS62202044A (en) 1986-02-28 1986-02-28 Manufacture of sintered alloy superior in high temperature wear resistance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4461786A JPS62202044A (en) 1986-02-28 1986-02-28 Manufacture of sintered alloy superior in high temperature wear resistance

Publications (1)

Publication Number Publication Date
JPS62202044A true JPS62202044A (en) 1987-09-05

Family

ID=12696395

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4461786A Pending JPS62202044A (en) 1986-02-28 1986-02-28 Manufacture of sintered alloy superior in high temperature wear resistance

Country Status (1)

Country Link
JP (1) JPS62202044A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007061890A (en) * 2005-09-02 2007-03-15 Yanmar Co Ltd Method for casting cast iron, and method for manufacturing cylinder head of internal combustion engine using the same
CN109267094A (en) * 2018-10-19 2019-01-25 温州大学 A kind of Heteroatom doping porous carbon/phosphatization iron composite material

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007061890A (en) * 2005-09-02 2007-03-15 Yanmar Co Ltd Method for casting cast iron, and method for manufacturing cylinder head of internal combustion engine using the same
JP4565561B2 (en) * 2005-09-02 2010-10-20 ヤンマー株式会社 Method for casting cast iron and method for manufacturing cylinder head for internal combustion engine using the method
CN109267094A (en) * 2018-10-19 2019-01-25 温州大学 A kind of Heteroatom doping porous carbon/phosphatization iron composite material

Similar Documents

Publication Publication Date Title
JP2687125B2 (en) Sintered metal compact used for engine valve parts and its manufacturing method.
JP4891421B2 (en) Powder metallurgy mixture and method for producing powder metallurgy parts using the same
EP0167034B1 (en) Valve-seat insert for internal combustion engines and its production
JP2741199B2 (en) High density sintered iron alloy
JP2799235B2 (en) Valve seat insert for internal combustion engine and method of manufacturing the same
US5031878A (en) Valve seat made of sintered iron base alloy having high wear resistance
JP2004520486A (en) Copper-containing sintered iron material
JPH0210311B2 (en)
GB2345295A (en) Sintered alloy material and valve seat
KR20040066937A (en) Sinterable metal powder mixture for the production of sintered components
JP2001505255A (en) Iron-based powder
JPS5918463B2 (en) Wear-resistant sintered alloy and its manufacturing method
JP3378012B2 (en) Manufacturing method of sintered product
KR100691097B1 (en) Sintered steel material
JPH1171651A (en) Ferrous sintered alloy for valve seat
JP2003119553A (en) Sinterd alloy material for valve seat and manufacturing method therefor
JP3340908B2 (en) Sintered sliding member and manufacturing method thereof
JPS62202044A (en) Manufacture of sintered alloy superior in high temperature wear resistance
JPS60147514A (en) High-temperature abrasion resistant valve seat
JPH10219410A (en) High density sintered alloy material, and its production
JPS61174354A (en) Manufacture of copper-containing sintered alloy excellent in high-temperature wear resistance
JPS58224154A (en) Sintered fe alloy for valve seat of internal combustion engine
JP3331963B2 (en) Sintered valve seat and method for manufacturing the same
JPS60215736A (en) Production of sintered alloy having excellent resistance to wear at high temperature
JP2643743B2 (en) High strength valve seat made of lead impregnated iron-based sintered alloy for internal combustion engine