JP4565561B2 - Method for casting cast iron and method for manufacturing cylinder head for internal combustion engine using the method - Google Patents

Method for casting cast iron and method for manufacturing cylinder head for internal combustion engine using the method Download PDF

Info

Publication number
JP4565561B2
JP4565561B2 JP2005254837A JP2005254837A JP4565561B2 JP 4565561 B2 JP4565561 B2 JP 4565561B2 JP 2005254837 A JP2005254837 A JP 2005254837A JP 2005254837 A JP2005254837 A JP 2005254837A JP 4565561 B2 JP4565561 B2 JP 4565561B2
Authority
JP
Japan
Prior art keywords
powder
chromium alloy
alloy powder
iron
cylinder head
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005254837A
Other languages
Japanese (ja)
Other versions
JP2007061890A (en
Inventor
利幸 本咲
保博 金井
正弘 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yanmar Co Ltd
Original Assignee
Yanmar Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yanmar Co Ltd filed Critical Yanmar Co Ltd
Priority to JP2005254837A priority Critical patent/JP4565561B2/en
Publication of JP2007061890A publication Critical patent/JP2007061890A/en
Application granted granted Critical
Publication of JP4565561B2 publication Critical patent/JP4565561B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は,鋳鉄による鋳造に際し,その一部における耐摩耗性及び耐熱性を向上するようにした鋳造方法と,この鋳造方法を使用した内燃機関用シリンダヘッドの製造方法とに関するものである。   The present invention relates to a casting method for improving wear resistance and heat resistance in a part of cast iron, and a method for manufacturing a cylinder head for an internal combustion engine using this casting method.

従来,内燃機関におけるシリンダヘッド等のように,部分的に耐摩耗性及び耐熱性が必要な部分には,耐摩耗性及び耐熱性を有する合金製の部材を,冷し嵌めにて固着するか,鋳込むようにしていたが,前記部材のガタ付き及び脱落が発生するおそれがあるばかりか,コストの大幅なアップ等を招来するという問題があった。   Conventionally, an alloy member having wear resistance and heat resistance, such as a cylinder head in an internal combustion engine, which is partially required for wear resistance and heat resistance, is fixed with a cold fit. However, there has been a problem that the above-mentioned members may be loose and fall off, and the cost may be significantly increased.

そこで,本発明者達は,先の特許出願(特願2004−059455号)において以下に述べるようにした鋳造方法を提案した。   Therefore, the present inventors have proposed a casting method as described below in a previous patent application (Japanese Patent Application No. 2004-059455).

すなわち、この先願の鋳造方法は,
「鋳鉄の鋳造を行う鋳物型内に,0.5〜1.5wt%の黒鉛粉末と,3〜10wt%の銅粉末と,10〜20wt%のニッケル粉末と,10〜15wt%の鉄−クロム合金粉末と,15〜30wt%のコバルト−モリブデン−クロム合金粉末と,残りが純鉄粉末を混合し固め成形して成る金属粉末圧粉体を配設し,次いで,前記鋳物型内に,溶融した鋳鉄を注ぎ込み,この溶融した鋳鉄の熱を利用して前記金属粉末圧粉体を焼結及び拡散させることにより,鋳造時に,鋳造物の一部に前記金属粉末圧粉体による焼結層を生成するとともに,その焼結層を鋳造物の母材に結合する。」
というものである。
In other words, the casting method of this prior application is
“In a casting mold for casting cast iron, 0.5 to 1.5 wt% graphite powder, 3 to 10 wt% copper powder, 10 to 20 wt% nickel powder, and 10 to 15 wt% iron-chromium An alloy powder, 15 to 30 wt% cobalt-molybdenum-chromium alloy powder, and the rest of the metal powder compact formed by mixing and compacting pure iron powder are disposed, and then molten into the casting mold. By pouring the cast iron, and using the heat of the molten cast iron to sinter and diffuse the metal powder compact, a sintered layer of the metal powder compact is formed on a part of the cast during casting. As it is formed, the sintered layer is bonded to the cast matrix. "
That's it.

この先願の鋳造方法において,前記金属粉末圧粉体に対する黒鉛粉末の添加は,焼結の促進及び鋳造物のうち前記金属粉末圧粉体の母材組織を耐熱性を有するオーステナイトにする効果を図るためであるが,その配合比が0.5wt%未満では焼結促進の効果が少なく,その配合比が1.5wt%を超えると炭化物の生成が多くなり靱性の低下及び被削性の低下が生じる。   In the casting method of the prior application, the addition of graphite powder to the metal powder green compact facilitates sintering and has the effect of making the base metal structure of the metal powder green compact into heat-resistant austenite in the cast product. However, if the blending ratio is less than 0.5 wt%, the effect of promoting the sintering is small, and if the blending ratio exceeds 1.5 wt%, the formation of carbides increases, resulting in a decrease in toughness and machinability. Arise.

前記金属粉末圧粉体に対する銅粉末の添加は,融点の低い銅による液相の発生にて焼結を促進する効果を図るためであるが,その配合比が3wt%未満では焼結促進の効果が少なく他の合金粉末における未拡散の部分が多く残り,その配合比が10wt%を超えると液相の発生量が多くなるため焼結層の変形が生じて寸法精度が悪くなる。   The addition of copper powder to the metal powder compact is intended to promote sintering by the generation of a liquid phase with copper having a low melting point. However, if the blending ratio is less than 3 wt%, the effect of promoting sintering is achieved. However, if the blending ratio exceeds 10 wt%, the amount of liquid phase generated increases and the sintered layer is deformed, resulting in poor dimensional accuracy.

前記金属粉末圧粉体に対するニッケル粉末の添加は,純鉄粉末に拡散して鋳造物のうち前記金属粉末圧粉体の母材組織を耐熱性を有するオーステナイトにする効果を図るためであるが,その配合比が10wt%未満ではオーステナイト生成量が少なくなる一方,純鉄粉末が未拡散のままで残る部分におけるフェライト(このフェライトが多くなると,その分だけ前記オーステナイト生成量が少なくなる)及び黒鉛粉末だけが拡散している状態のままで残る部分におけるパーライト(このパーライトが多くなると,その分だけ前記オーステナイト生成量が少なくなる)が多くなって,耐熱性が低下することになり,また,その配合比が20wt%を超えると添加量に見合った効果が得られない。   The addition of nickel powder to the metal powder green compact is intended to diffuse the pure iron powder to make the base metal structure of the metal powder green compact of the cast into austenite having heat resistance. When the blending ratio is less than 10 wt%, the amount of austenite produced decreases, while the ferrite in the portion where pure iron powder remains undiffused (the more ferrite, the less austenite is produced) and graphite powder. The amount of pearlite in the part that remains in a diffuse state (the more pearlite increases, the less austenite is generated), which leads to a decrease in heat resistance. If the ratio exceeds 20 wt%, an effect commensurate with the amount added cannot be obtained.

前記金属粉末圧粉体に対する鉄−クロム合金粉末の添加は,クロムの一部が純鉄粉末に拡散して鋳造物のうち前記金属粉末圧粉体の母材組織を耐熱性を有するオーステナイトにする効果と,未拡散の鉄−クロム合金粉末による耐摩耗性の向上の効果とを図るためであるが,その配合比が10wt%未満ではオーステナイト生成量が少なくなる一方,純鉄粉末が未拡散のままで残る部分におけるフェライト及び黒鉛粉末だけが拡散している状態のままで残る部分におけるパーライトが多くなって,耐熱性が低下することになり,また,その配合比が15wt%を超えると添加量に見合った効果が得られないばかりか,金属粉末圧粉体への固め成形性が悪化する。   The addition of the iron-chromium alloy powder to the metal powder green compact allows a part of chromium to diffuse into the pure iron powder to make the base metal structure of the metal powder green compact of the cast into austenite having heat resistance. This is to achieve the effect and the effect of improving the wear resistance by the non-diffusion iron-chromium alloy powder. When the blending ratio is less than 10 wt%, the austenite generation amount is reduced, while the pure iron powder is not diffused. The amount of pearlite in the part that remains in the state where only the ferrite and graphite powder in the remaining part is diffused increases, resulting in a decrease in heat resistance, and the addition amount exceeds 15 wt%. In addition to being able to obtain an effect commensurate with the above, it is difficult to compact into metal powder compacts.

前記金属粉末圧粉体に対するコバルト−モリブデン−クロム合金粉末の添加は,このコバルト−モリブデン−クロム合金は高硬度の硬質粒子であることから,これを分散することによる耐摩耗性の向上の効果と,コバルト及び/又はクロムの一部が純鉄粉末に拡散して鋳造物のうち前記金属粉末圧粉体の母材組織を耐熱性を有するオーステナイトにする効果とを図るためであるが,その配合比が15wt%未満では耐摩耗性向上の効果が少なく,その配合比が30wt%を超えると金属粉末圧粉体への固め成形性が悪化するために鋳造に際して十分な焼結が得られずに耐摩耗性が低下する。   The addition of cobalt-molybdenum-chromium alloy powder to the metal powder compact is effective in improving wear resistance by dispersing the cobalt-molybdenum-chromium alloy because it is a hard particle with high hardness. In order to achieve the effect that a part of cobalt and / or chromium is diffused into pure iron powder and the base metal structure of the metal powder compact in the cast is made austenite having heat resistance. If the ratio is less than 15 wt%, the effect of improving wear resistance is small, and if the blending ratio exceeds 30 wt%, the compactibility to metal powder compacts deteriorates, so that sufficient sintering cannot be obtained during casting. Wear resistance is reduced.

そして,金属粉末圧粉体に対する純鉄粉末の添加は,粉末の混合物を所定の形状に固め成形するときにおける成形性向上の効果と,固め成形後における多孔質の密度を高くし空隙率を低くする効果とを図るためのである。   The addition of pure iron powder to the metal powder compact has the effect of improving formability when the powder mixture is compacted into a predetermined shape, and increases the density of the porous material after compaction and decreases the porosity. It is for aiming at the effect to do.

ところで,前記先願の鋳造方法においては,前記鉄−クロム合金粉末の配合比が10wt%未満の場合には,耐熱性を有するオーステナイトの生成量が少なくなる一方,純鉄粉末が未拡散のままで残る部分におけるフェライト及び黒鉛粉末だけが拡散している状態で残る部分におけるパーライトが多くなって,耐熱性が低下することになるから,前記鉄−クロム合金粉末の配合比の下限値を10wt%に規定しており,その一方で,前記コバルト−モリブデン−クロム合金粉末の配合比が,30wt%を超える場合には,金属粉末圧粉体への固め成形性が悪化するために十分を焼結が得られずに耐摩耗性が低下することになるから,前記コバルト−モリブデン−クロム合金粉末の配合比の上限値を30wt%に規定していた。   By the way, in the casting method of the prior application, when the mixing ratio of the iron-chromium alloy powder is less than 10 wt%, the amount of heat-resistant austenite is reduced, while the pure iron powder remains undiffused. Since the pearlite in the remaining portion increases in the state where only the ferrite and graphite powder in the remaining portion is diffused, the heat resistance is lowered, so the lower limit of the mixing ratio of the iron-chromium alloy powder is 10 wt%. On the other hand, when the blending ratio of the cobalt-molybdenum-chromium alloy powder exceeds 30 wt%, sufficient compaction is required to reduce the compactibility of the metal powder compact. Therefore, the wear resistance is lowered without obtaining the above, so the upper limit value of the blending ratio of the cobalt-molybdenum-chromium alloy powder is regulated to 30 wt%.

つまり,前記先願の鋳造方法においては,金属粉末圧粉体による耐摩耗性の向上は,前記コバルト−モリブデン−クロム合金粉末の配合比を30wt%を超えることがないように添加する場合が限度であり,耐摩耗性をこれ以上に向上することはできないと考えられていたのであった。   That is, in the casting method of the prior application, the improvement of the wear resistance by the metal powder compact is limited to the case where the blending ratio of the cobalt-molybdenum-chromium alloy powder is added so as not to exceed 30 wt%. Therefore, it was thought that the wear resistance could not be improved further.

本発明は,前記先願の鋳造方法を基本的に踏襲するものの,金属粉末圧粉体による耐摩耗性を,更に向上することを技術的課題とするものである。   Although the present invention basically follows the casting method of the prior application, it is a technical object to further improve the wear resistance by the metal powder compact.

この技術的課題を達成するため本発明における鋳造方法は,請求項1に記載したように,
「鋳鉄の鋳造を行う鋳物型内に,黒鉛粉末と,銅粉末と,ニッケル粉末と,鉄−クロム合金粉末と,コバルト−モリブデン−クロム合金粉末と,残りが純鉄粉末を混合し固め成形して成る金属粉末圧粉体を設置し,次いで,前記鋳物型内に,溶融した鋳鉄を注ぎ込み,この溶融した鋳鉄の熱を利用して前記金属粉末圧粉体を焼結及び拡散させることにより,鋳造時に,鋳造物の一部に前記金属粉末圧粉体による焼結層を生成するとともに,その焼結層を鋳造物の母材に結合するようにした鋳造方法において,
前記黒鉛粉末の配合比を0.5〜1.5wt%に,前記銅粉末の配合比を3〜10wt%に,前記ニッケル粉末の配合比を10〜20wt%に,前記鉄−クロム合金粉末の配合3wt%以上10wt%未満に,そして,コバルト−モリブデン−クロム合金粉末の配合比を15wt%超70%以下にする一方,前記鉄−クロム合金粉末における粒径を,前記コバルト−モリブデン−クロム合金粉末における粒径よりも小さくする。」
ことを特徴としている。
In order to achieve this technical problem, the casting method according to the present invention is as described in claim 1,
“In a casting mold that casts cast iron, graphite powder, copper powder, nickel powder, iron-chromium alloy powder, cobalt-molybdenum-chromium alloy powder, and the remaining pure iron powder are mixed and molded. Next, by pouring molten cast iron into the casting mold, and sintering and diffusing the metal powder green compact using the heat of the molten cast iron, In a casting method in which, during casting, a sintered layer of the metal powder compact is formed on a part of the casting, and the sintered layer is bonded to the base material of the casting.
The composition ratio of the graphite powder is 0.5 to 1.5 wt%, the composition ratio of the copper powder is 3 to 10 wt%, the composition ratio of the nickel powder is 10 to 20 wt%, The blending ratio is set to 3 wt% or more and less than 10 wt%, and the blending ratio of the cobalt-molybdenum-chromium alloy powder is set to more than 15 wt% and 70% or less, while the particle size of the iron-chromium alloy powder is set to the cobalt-molybdenum- The particle size is made smaller than that of the chromium alloy powder. "
It is characterized by that.

また,本発明における鋳造方法は,請求項2に記載したように,
「前記請求項1の記載において,前記コバルト−モリブデン−クロム合金粉末における粒径が149ミクロン以下であるに対して,前記鉄−クロム合金粉末における粒径が74ミクロン以下である。」
ことを特徴としている。
Further, the casting method in the present invention, as described in claim 2,
"In the description of the claim 1, wherein the cobalt - molybdenum - against particle diameter in the chromium alloy powder is less than 1 49 microns, wherein the iron - particle size in the chromium alloy powder is less than 7 4 microns."
It is characterized by that.

次に,本発明におけるシリンダヘッドの製造方法は,請求項3に記載したように,
「前記請求項1又は2の記載において,前記金属粉末圧粉体をリング状にして,このリング状の金属粉末圧粉体を,内燃機関におけるシリンダヘッドを鋳造する鋳造型内のうち,当該シリンダヘッドにおける吸気ポート及び排気ポートのいずれか一方又は両方における弁座部に設置し,この状態でシリンダヘッドを鋳造し,鋳造後に前記弁座部を,前記金属粉末圧粉体における焼結層がバルブシートに露出するように機械加工する。」
ことを特徴としている。
Next, a cylinder head manufacturing method according to the present invention includes:
“In the first or second aspect of the present invention, the metal powder green compact is formed into a ring shape, and the ring-shaped metal powder green compact is used as a cylinder in a casting mold for casting a cylinder head in an internal combustion engine. The cylinder head is cast in this state at one or both of the intake port and the exhaust port of the head, and the cylinder head is cast in this state. Machined to expose the sheet. "
It is characterized by that.

前記金属粉末圧粉体に対する鉄−クロム合金粉末の配合比の上限値を10wt%未満にした場合には,前記したように,耐熱性を有するオーステナイトの生成量が少なくなる一方,純鉄粉末が未拡散のままで残る部分におけるフェライト及び黒鉛粉末だけが拡散している部分が未拡散のままで残るパーライトが多くなるものの,これは前記鉄−クロム合金粉末における粒径を前記コバルト−モリブデン−クロム合金粉末における粒径と同じくした場合であり,前記鉄−クロム合金粉末における粒径を,前記金属粉末圧粉体に対して同時に添加するコバルト−モリブデン−クロム合金粉末における粒径よりも小さくすることにより,この鉄−クロム合金粉末における全体の表面積が,その粒径を前記コバルト−モリブデン−クロム合金粉末と同じくした場合よりも,増大するから,クロムにおける純鉄粉末への拡散が促進し,前記金属粉末圧粉体の母材組織のオーステナイト生成量を,配合比を10wt%未満と少なくした場合においても,増大することができる一方,純鉄粉末が未拡散のままで残る部分におけるフェライト及び黒鉛粉末だけが拡散している状態のままで残る部分におけるパーライトを少なくすることができる。   When the upper limit of the mixing ratio of the iron-chromium alloy powder to the metal powder compact is less than 10 wt%, as described above, the amount of heat-resistant austenite produced is reduced, while the pure iron powder Although there is more pearlite in the part where only the ferrite and graphite powder are diffused in the part that remains undiffused, the particle size in the iron-chromium alloy powder is reduced by the cobalt-molybdenum-chromium. This is the same as the particle size in the alloy powder, and the particle size in the iron-chromium alloy powder is made smaller than the particle size in the cobalt-molybdenum-chromium alloy powder added simultaneously to the metal powder compact. Therefore, the total surface area of the iron-chromium alloy powder is the same as that of the cobalt-molybdenum-chromium alloy powder. Therefore, even if the austenite generation amount of the base metal structure of the metal powder compact is reduced to less than 10 wt%, the diffusion to the pure iron powder in chromium is promoted. On the other hand, it is possible to reduce the pearlite in the portion where only the ferrite and graphite powder remain in the state where the pure iron powder remains undiffused.

一方,前記鉄−クロム合金粉末の配合比を10wt%未満と少なくする一方,この鉄−クロム合金粉末における粒径を,前記金属粉末圧粉体に対して同時に添加するコバルト−モリブデン−クロム合金粉末における粒径よりも小さくすることにより,前記コバルト−モリブデン−クロム合金粉末の配合比を,先願発明における上限値である30wt%を超えて多くした場合における金属粉末圧粉体への固め成形性の悪化を確実に回避することができ,換言すると,前記コバルト−モリブデン−クロム合金粉末の配合比を,金属粉末圧粉体への固め成形性の悪化を招来することなく,ひいては,鋳造に際して十分な焼結を得ることがきる状態のもとで,30wt%を超えるように多くすることができるから,耐摩耗性及び耐熱性を,先願発明の場合よりも大幅に向上できる。 On the other hand, while the mixing ratio of the iron-chromium alloy powder is reduced to less than 10 wt%, the cobalt-molybdenum-chromium alloy powder is prepared by simultaneously adding the particle size of the iron-chromium alloy powder to the metal powder compact. When the blending ratio of the cobalt-molybdenum-chromium alloy powder is increased beyond the upper limit of 30 wt% in the invention of the prior application, the compactibility to the metal powder compact is reduced. In other words, the blending ratio of the cobalt-molybdenum-chromium alloy powder can be reduced to the metal powder green compact without incurring deterioration of the moldability and, therefore, sufficient in casting. such under sintering as possible out to obtain a state, since it is possible to much exceeds 30 wt%, the abrasion resistance and heat resistance, the preceding invention It can be significantly improved as compared to the case.

この場合,請求項2に記載したように,前記鉄−クロム合金粉末における粒径は,前記コバルト−モリブデン−クロム合金粉末における粒径が149ミクロン以下である場合,略半分の74ミクロン以下にすることが好ましい。 In this case, as described in claim 2, wherein the iron - the particle size of the chromium alloy powder, the cobalt - molybdenum - if the particle size of the chromium alloy powder is less than 1 49 microns, substantially half or less of 7 4 microns It is preferable to make it.

また,請求項3に記載した製造方法によると,吸気ポート及び排気ポートのいずれか一方又は両方の弁座部における耐熱性を向上し,且つ,前記弁座部におけるバルブシートの耐摩耗性と,このバルブシートに着座を繰り返すバルブ側における耐摩耗性との両方を同時に向上したシリンダヘッドを,低コストで製造することができる。   Further, according to the manufacturing method described in claim 3, the heat resistance of the valve seat portion of either one or both of the intake port and the exhaust port is improved, and the wear resistance of the valve seat in the valve seat portion, A cylinder head that simultaneously improves both the wear resistance on the valve side that repeatedly sits on the valve seat can be manufactured at low cost.

以下,本発明の実施の形態を,内燃機関における鋳鉄製のシリンダヘッドを鋳造することに適用した場合について説明する。   Hereinafter, the case where the embodiment of the present invention is applied to casting of a cast iron cylinder head in an internal combustion engine will be described.

図1及び図2は,内燃機関における鋳鉄製のシリンダヘッド1を示し,このシリンダヘッド1は,従来から良く知られているように,その内部に,吸気ポート2及び排気ポート3と,冷却水ジャケット4とが形成され,前記吸気ポート2におけるシリンダヘッド1の下面1aへの開口部には,ポペット型の吸気バルブ5が着座するバルブシート6aを有する弁座部6が,前記排気ポート3におけるシリンダヘッド1の下面1aへの開口部には,ポペット型の排気バルブ7が着座するバルブシート8aを有する弁座部8が各々設けられている。   FIGS. 1 and 2 show a cast iron cylinder head 1 in an internal combustion engine. The cylinder head 1 includes an intake port 2 and an exhaust port 3 and cooling water, as is well known in the art. A valve seat 6 having a valve seat 6a on which a poppet type intake valve 5 is seated is formed at the opening to the lower surface 1a of the cylinder head 1 in the intake port 2. Valve seat portions 8 each having a valve seat 8a on which a poppet type exhaust valve 7 is seated are provided at openings on the lower surface 1a of the cylinder head 1.

図3は,前記シリンダヘッド1を鋳造するための鋳造型Aを示す,この鋳造型Aは,前記シリンダヘッド1における下面を形成する下型A1と,前記シリンダヘッド1の上面を形成する上型A2と,前記吸気ポート2を形成する中子A3と,前記排気ポート3を形成する中子A4と,前記冷却水ジャケット4を形成する中子A5とによって構成されており,この鋳物型Aにおける空間部に,溶融した鋳鉄を注ぎ込むことにより,前記シリンダヘッド1を鋳造するように構成している。   FIG. 3 shows a casting mold A for casting the cylinder head 1. The casting mold A includes a lower mold A1 that forms the lower surface of the cylinder head 1 and an upper mold that forms the upper surface of the cylinder head 1. A 2, a core A 3 that forms the intake port 2, a core A 4 that forms the exhaust port 3, and a core A 5 that forms the cooling water jacket 4. The cylinder head 1 is cast by pouring molten cast iron into the space.

この鋳造に際しては,前記吸気ポート2用の中子A3及び排気ポート3用の中子A4のうち,前記弁座部6,7の箇所に,図4に示すように,以下に述べる各種の金属粉末の混合物を多孔質のリング状に固め成形して成る金属粉末圧粉体Bを,当該金属粉末圧粉体Bが前記中子A3,A4の表面から突出するようにして固定装着しておき,この状態で,前記溶融した鋳鉄を注ぎ込むことで,この溶融した鋳鉄の熱を利用して前記金属粉末圧粉体を焼結及び拡散させることにより,鋳造時に,前記シリンダヘッド1のうち吸気ポート2及び排気ポート3における弁座部6,7の部分に前記金属粉末圧粉体Bによる焼結層を生成するとともに,その焼結層を鋳造物の母材に結合するようにする。   At the time of casting, as shown in FIG. 4, various kinds of metals described below are provided at the valve seat portions 6 and 7 in the core A3 for the intake port 2 and the core A4 for the exhaust port 3. A metal powder compact B formed by compacting a powder mixture into a porous ring shape is fixedly mounted so that the metal powder compact B protrudes from the surfaces of the cores A3 and A4. In this state, the molten cast iron is poured, and the metal powder green compact is sintered and diffused using the heat of the molten cast iron, so that the intake port of the cylinder head 1 is cast during casting. 2 and the valve seats 6 and 7 in the exhaust port 3 are formed with a sintered layer of the metal powder green compact B, and the sintered layer is bonded to the base material of the casting.

図5及び図6は,鋳造後におけるシリンダヘッド1を示すものであり,この鋳造されたシリンダヘッド1には,その下面1aを二点鎖線D1で示すようにする機械加工するとともに,その吸気ポート2及び排気ポート3における前記下面1aに対する開口部内を二点鎖線D2で示すようにする機械加工することにより,前記金属粉末圧粉体Bによる焼結層を,前記吸気ポート2及び排気ポート3の弁座部6,8における円錐形のバルブシート6a,8aに露出するのであり,これにより,前記吸気ポート2及び排気ポート3の弁座部6,8における耐摩耗性及び耐熱性を向上できる。   5 and 6 show the cylinder head 1 after casting. The cast cylinder head 1 is machined so that its lower surface 1a is indicated by a two-dot chain line D1, and its intake port is shown in FIG. 2 and the exhaust port 3 are machined so that the inside of the opening with respect to the lower surface 1 a is indicated by a two-dot chain line D 2, so that the sintered layer of the metal powder compact B is formed on the intake port 2 and the exhaust port 3. The valve seats 6 and 8 are exposed to the conical valve seats 6a and 8a, whereby the wear resistance and heat resistance of the valve seats 6 and 8 of the intake port 2 and the exhaust port 3 can be improved.

ところで,前記金属粉末圧粉体Bは,黒鉛粉末と,銅粉末と,ニッケル粉末と,鉄−クロム合金粉末と,コバルト−モリブデン−クロム合金粉末と,残りが純鉄粉末を混合して,多孔質に固め成形して成るものであり,その各種粉末の配合比は,前記黒鉛粉末を0.5〜1.5wt%に,前記銅粉末を3〜10wt%に,前記ニッケル粉末を10〜20wt%に,前記鉄−クロム合金粉末を10wt%未満にし,そして,前記コバルト−モリブデン−クロム合金粉末を15wt%を超えて多くする一方,前記鉄−クロム合金粉末における粒径を,前記コバルト−モリブデン−クロム合金粉末における粒径よりも小さくしている。   By the way, the metal powder green compact B is composed of graphite powder, copper powder, nickel powder, iron-chromium alloy powder, cobalt-molybdenum-chromium alloy powder, and the remainder mixed with pure iron powder. The composition ratio of various powders is 0.5 to 1.5 wt% for the graphite powder, 3 to 10 wt% for the copper powder, and 10 to 20 wt% for the nickel powder. %, The iron-chromium alloy powder is made less than 10 wt%, and the cobalt-molybdenum-chromium alloy powder is increased to more than 15 wt%, while the particle size in the iron-chromium alloy powder is increased to the cobalt-molybdenum. -It is smaller than the particle size in the chromium alloy powder.

ここにおいて,前記黒鉛粉末の添加は,焼結の促進及びシリンダヘッド1のうち前記弁座部6,8の付近における母材組織を耐熱性を有するオーステナイトにする効果を図るためであり,その配合比が0.5wt%未満では焼結促進の効果が少なく,その配合比が1.5wt%を超えると炭化物の生成が多くなり靱性の低下及び被削性の低下が生じる。   Here, the addition of the graphite powder is for the purpose of promoting the sintering and making the base material structure in the vicinity of the valve seat parts 6 and 8 of the cylinder head 1 austenite having heat resistance. If the ratio is less than 0.5 wt%, the effect of promoting the sintering is small, and if the blending ratio exceeds 1.5 wt%, the formation of carbides increases, resulting in a decrease in toughness and a machinability.

前記銅粉末の添加は,融点の低い銅による液相の発生にて焼結を促進する効果を図るためのであり,その配合比が3wt%未満では焼結促進の効果が少なく他の合金粉末における未拡散の部分が多く残り,その配合比が10wt%を超えると液相の発生量が多くなるため焼結層の変形が生じて寸法精度が悪くなる。   The addition of the copper powder is for the purpose of promoting the sintering by generating a liquid phase with copper having a low melting point. When the blending ratio is less than 3 wt%, the effect of promoting the sintering is small, and other alloy powders are used. If many undiffused portions remain and the blending ratio exceeds 10 wt%, the amount of liquid phase generated increases, so that the sintered layer is deformed, resulting in poor dimensional accuracy.

前記ニッケル粉末の添加は,純鉄粉末に拡散してシリンダヘッド1のうち前記弁座部6,8の付近における母材組織を耐熱性を有するオーステナイトにする効果を図るためであり,その配合比が10wt%未満ではオーステナイト生成量が少なくなる一方,純鉄粉末が未拡散のままで残る部分におけるフェライト及び黒鉛粉末だけが拡散している状態のままで残る部分におけるパーライトが多くなって,耐熱性が低下することになり,また,その配合比が20wt%を超えると添加量に見合った効果が得られない。   The addition of the nickel powder is to diffuse into the pure iron powder and to make the base material structure in the vicinity of the valve seat portions 6 and 8 of the cylinder head 1 into austenite having heat resistance, and its blending ratio Is less than 10 wt%, the amount of austenite is reduced, while the ferrite in the part where the pure iron powder remains undiffused and the pearlite in the part where only the graphite powder remains diffused increase, and the heat resistance In addition, if the blending ratio exceeds 20 wt%, an effect commensurate with the amount added cannot be obtained.

前記鉄−クロム合金粉末の添加は,クロムの一部がシリンダヘッド1のうち前記弁座部6,8の付近における母材組織に拡散して,この部分における母材組織を耐熱性を有するオーステナイトにする効果と,未拡散の鉄−クロム合金粉末による耐摩耗性の向上の効果とを図るためである。   The addition of the iron-chromium alloy powder causes a part of chromium to diffuse into the base material structure in the vicinity of the valve seat portions 6 and 8 in the cylinder head 1, and the base material structure in this part is austenite having heat resistance. This is to achieve the effect of improving the wear resistance by the non-diffusion iron-chromium alloy powder.

前記コバルト−モリブデン−クロム合金粉末の添加は,このコバルト−モリブデン−クロム合金は高硬度の硬質粒子であることから,これを分散することによる耐摩耗性の向上の効果と,コバルト及び/又はクロムの一部がシリンダヘッド1のうち前記弁座部6,8の付近における母材組織に拡散して前記硬質粒子の母材組織への結合を強固にするとともに、前記母材組織をオーステナイト化する効果とを図るためである。   The cobalt-molybdenum-chromium alloy powder is added because the cobalt-molybdenum-chromium alloy is a hard particle having high hardness. Is diffused into the base material structure in the vicinity of the valve seats 6 and 8 in the cylinder head 1 to strengthen the bonding of the hard particles to the base material structure and to austenite the base material structure. This is to achieve an effect.

そして,前記純鉄粉末の添加は,粉末の混合物を所定の形状に固め成形するときにおける成形性向上の効果と,固め成形後における多孔質の密度を高くし空隙率を低くする効果とを図るためである。   The addition of the pure iron powder is intended to improve the formability when the powder mixture is compacted into a predetermined shape, and to increase the porosity density and reduce the porosity after compaction. Because.

この場合において,前記した先願発明は,前記黒鉛粉末における配合比を0.5〜1.5wt%に,前記銅粉末における配合比を3〜10wt%に,前記ニッケル粉末における配合比を10〜20wt%に,前記鉄−クロム合金粉末における配合比を10〜15wtに,そして,前記コバルト−モリブデン−クロム合金粉末における配合比を15〜30wt%に規定していた。   In this case, in the above-mentioned prior application, the blending ratio in the graphite powder is 0.5 to 1.5 wt%, the blending ratio in the copper powder is 3 to 10 wt%, and the blending ratio in the nickel powder is 10 to 10 wt%. The blending ratio in the iron-chromium alloy powder was specified as 10 to 15 wt%, and the blending ratio in the cobalt-molybdenum-chromium alloy powder was defined as 15 to 30 wt%.

すなわち,前記した先願発明においては,前記鉄−クロム合金粉末における粒径を約149ミクロンにするというように,前記コバルト−モリブデン−クロム合金粉末における粒径の約149ミクロンと同じにしたために,この鉄−クロム合金粉末における配合比を,オーステナイト生成量が少なくなる一方,純鉄粉末が未拡散のままで残る部分におけるフェライト及び黒鉛粉末だけが拡散している状態のままで残る部分におけるパーライトが多くなることを回避するために10〜15wt%と可成り多くする一方,このように鉄−クロム合金粉末における配合比を多くしたことによって,金属粉末圧粉体への固め成形性が悪化することを回避するために,前記コバルト−モリブデン−クロム合金粉末における配合比を15〜30wt%に規定しければならないから,前記コバルト−モリブデン−クロム合金粉末による耐摩耗性の向上は,コバルト−モリブデン−クロム合金粉末を,上限値で30wt%添加する場合が限度であった。   That is, in the above-mentioned prior invention, the particle size in the iron-chromium alloy powder is set to about 149 microns, so that the particle size in the cobalt-molybdenum-chromium alloy powder is about 149 microns. The mixing ratio in this iron-chromium alloy powder is such that the austenite generation amount is reduced, while the ferrite in the part where the pure iron powder remains undiffused and the pearlite in the part where only the graphite powder remains diffused. In order to avoid the increase, it is considerably increased to 10 to 15 wt%. On the other hand, the increase in the compounding ratio in the iron-chromium alloy powder deteriorates the compactibility of the metal powder compact. Therefore, the blending ratio in the cobalt-molybdenum-chromium alloy powder is regulated to 15 to 30 wt%. Because must Shikere, said cobalt - molybdenum - improvement of the wear resistance by chromium alloy powder, cobalt - molybdenum - chromium alloy powder, may be added 30 wt% at the upper limit was the limit.

これに対して,本発明においては,前記鉄−クロム合金粉末における粒径を,前記コバルト−モリブデン−クロム合金粉末における粒径より小さくするものである。   On the other hand, in the present invention, the particle size in the iron-chromium alloy powder is made smaller than the particle size in the cobalt-molybdenum-chromium alloy powder.

このように,前記鉄−クロム合金粉末における粒径を,前記コバルト−モリブデン−クロム合金粉末における粒径よりも小さくすることにより,この鉄−クロム合金粉末における全体の表面積が,その粒径を前記コバルト−モリブデン−クロム合金粉末と同じくした場合よりも,増大するから,クロムにおける純鉄粉末への拡散が促進し,前記金属粉末圧粉体Bの母材組織のオーステナイト生成量を,配合比を10wt%未満と少なくした場合においても,増大することができる一方,純鉄粉末が未拡散のままで残る部分におけるフェライト及び黒鉛粉末だけが拡散している状態のままで残る部分におけるパーライトを少なくすることができる。   Thus, by making the particle size of the iron-chromium alloy powder smaller than the particle size of the cobalt-molybdenum-chromium alloy powder, the total surface area of the iron-chromium alloy powder is reduced to the particle size of the iron-chromium alloy powder. Since it increases compared with the case of cobalt-molybdenum-chromium alloy powder, the diffusion of chromium into pure iron powder is promoted, and the austenite generation amount of the base metal structure of the metal powder compact B is determined by the blending ratio. Even if it is reduced to less than 10 wt%, it can be increased, while reducing the pearlite in the part where only the ferrite and graphite powder remain in the state where the pure iron powder remains undiffused. be able to.

一方,前記鉄−クロム合金粉末の配合比を10wt%未満と少なくする一方,この鉄−クロム合金粉末における粒径を,前記コバルト−モリブデン−クロム合金粉末における粒径よりも小さくすることにより,前記コバルト−モリブデン−クロム合金粉末における配合比を,先願発明において上限値である30wt%を超えて多くした場合における金属粉末圧粉体への固め成形性の悪化を確実に回避することができ,換言すると,前記コバルト−モリブデン−クロム合金粉末の配合比を,金属粉末圧粉体Bへの固め成形性の悪化を招来することなく,ひいては,鋳造に際して十分な焼結を得ることがきる状態のもとで,30wt%を超えるように多くすることができるから,耐摩耗性及び耐熱性を,先願発明の場合よりも大幅に向上できるのである。 On the other hand, while reducing the blending ratio of the iron-chromium alloy powder to less than 10 wt%, the particle size in the iron-chromium alloy powder is made smaller than the particle size in the cobalt-molybdenum-chromium alloy powder, When the compounding ratio in the cobalt-molybdenum-chromium alloy powder is increased beyond the upper limit of 30 wt% in the prior invention, it is possible to reliably avoid the deterioration of the compactibility of the metal powder compact, in other words, the cobalt - molybdenum - compounding ratio of chromium alloy powder, without causing deterioration of the compacted molding of the metal powder compact B, therefore, as possible out to obtain a sufficient sintering during casting state Therefore, the wear resistance and heat resistance can be greatly improved as compared with the invention of the prior application. It is.

次に,耐摩耗性の評価を,本発明による実施例1及び実施例2と,前記先願発明による比較例とについて,以下に述べる実物単体摩擦試験によって実施した。   Next, the abrasion resistance was evaluated by the actual single-piece friction test described below for Examples 1 and 2 according to the present invention and the comparative example according to the prior invention.

この実物単体摩擦試験は,前記弁座部6の部分を200℃にした状態で,この弁座部6におけるバルブシート6aに対して,バネにて閉に付勢されるポペット型の吸気バルブ5を,モータ駆動の回転カムにてその一回転当たり一回着座することを,前記回転カムにおける毎分の回転数を1200にして16時間にわたって継続することによって,前記バルブシート6aにおける摩耗量と,この着座する吸気バルブ5側における摩耗量との両方を測定するという実験である。   In the actual single body friction test, a poppet type intake valve 5 that is biased by a spring against a valve seat 6a in the valve seat portion 6 with the valve seat portion 6 at 200 ° C. Is continuously seated once per rotation with a motor-driven rotary cam for 16 hours with a rotation speed per minute of the rotary cam of 1200, and the amount of wear on the valve seat 6a, This is an experiment in which both the wear amount on the seated intake valve 5 side is measured.

この実験において,前記実施例1,実施例2及び比較例に使用する各種粉末における成分は,表1の通りにした。
In this experiment, the components in the various powders used in Examples 1 and 2 and Comparative Example were as shown in Table 1.

また,前記各種粉末における粒径は,黒鉛粉末を除いて,表2の通りにした。   The particle sizes of the various powders were as shown in Table 2 except for the graphite powder.

そして,実施例1,実施例2及び比較例において,各種粉末の配合比は,表3の通りにした。   And in Example 1, Example 2, and the comparative example, the compounding ratio of various powder was made into Table 3. FIG.

そして,これら,実施例1,実施例2及び比較例の各々についての「実物単体摩擦試験」の結果は,図7の通りであった。   The results of the “actual single body friction test” for each of Examples 1, 2 and Comparative Example are as shown in FIG.

すなわち,前記実施例1及び実施例2のように,鉄−クロム合金粉末における粒径を,コバルト−モリブデン−クロム合金粉末における粒径よりも小さくすることにより,前記鉄−クロム合金粉末における配合比を,先願発明における下限値よりも少なくすることができる一方で,前記コバルト−モリブデン−クロム合金粉末における配合比を,先願発明における上限値よりも多くすることができ,これにより,前記弁座部6におけるバルブシート面6a側における耐摩耗性,及び,このバルブシート面6aに対して繰り返して着座するバルブ側における耐摩耗性との両方を,先願発明の場合(比較例)よりも大幅に向上できるのであった。   That is, as in Example 1 and Example 2, by making the particle size in the iron-chromium alloy powder smaller than the particle size in the cobalt-molybdenum-chromium alloy powder, the blending ratio in the iron-chromium alloy powder is reduced. Can be made lower than the lower limit value in the invention of the prior application, while the blending ratio in the cobalt-molybdenum-chromium alloy powder can be made higher than the upper limit value in the invention of the prior application. Both the wear resistance on the valve seat surface 6a side in the seat portion 6 and the wear resistance on the valve side repeatedly seated on the valve seat surface 6a are more than in the case of the prior invention (comparative example). It was possible to greatly improve.

しかも,バルブシート面6aの耐摩耗性及びバルブ側における耐摩耗性の向上は,前記コバルト−モリブデン−クロム合金粉末における配合比の増大に比例するのであった。   Moreover, the improvement of the wear resistance of the valve seat surface 6a and the wear resistance on the valve side is proportional to the increase in the blending ratio in the cobalt-molybdenum-chromium alloy powder.

なお,前記した実験において,前記鉄−クロム合金粉末における配合比の下限値は,3wt%であり,これより未満に少なくした場合には,鉄−クロム合金粉末を添加する効果を認めることはできなかった。   In the experiment described above, the lower limit of the blending ratio in the iron-chromium alloy powder is 3 wt%, and if it is less than this, the effect of adding the iron-chromium alloy powder cannot be recognized. There wasn't.

また,前記した実験において,前記コバルト−モリブデン−クロム合金粉末における配合比の上限値は,70wt%以下であり,これを超えて多くした場合は,前記鉄−クロム合金粉末における粒径を小さくしたことによる固め成形性の改善を認めることができないのであった。   In the above-described experiment, the upper limit of the blending ratio in the cobalt-molybdenum-chromium alloy powder is 70 wt% or less, and if the amount exceeds this, the particle size in the iron-chromium alloy powder is reduced. It was not possible to recognize an improvement in compaction moldability due to the above.

内燃機関用シリンダヘッドにおける一部を示す縦断正面図である。It is a vertical front view which shows a part in the cylinder head for internal combustion engines. 図1の要部拡大図である。It is a principal part enlarged view of FIG. 前記シリンダヘッドにおける鋳物型の一部を示す縦断正面図である。It is a vertical front view which shows a part of casting mold in the said cylinder head. 前記鋳物型に装填する金属粉末圧粉体の斜視図である。It is a perspective view of the metal powder compact to be loaded into the casting mold. 鋳造したシリンダヘッドの一部を示す縦断正面図である。It is a vertical front view which shows a part of cast cylinder head. 図5の要部拡大図である。It is a principal part enlarged view of FIG. 実物単体摩擦試験の結果を示す図である。It is a figure which shows the result of a real single-piece | unit friction test.

1 シリンダヘッド
2 吸気ポート
3 排気ポート
4 冷却水ジャケット
5 吸気バルブ
7 排気バルブ
6,8 弁座部
6a,8a バルブシート面
A 鋳物型
A1 下型
A2 上型
A3,A4,A5 中子
B 金属粉末圧粉体
1 Cylinder head 2 Intake port 3 Exhaust port 4 Cooling water jacket 5 Intake valve 7 Exhaust valve 6, 8 Valve seat 6a, 8a Valve seat surface A Casting mold A1 Lower mold A2 Upper mold A3, A4, A5 Core B Metal powder Green compact

Claims (3)

鋳鉄の鋳造を行う鋳物型内に,黒鉛粉末と,銅粉末と,ニッケル粉末と,鉄−クロム合金粉末と,コバルト−モリブデン−クロム合金粉末と,残りが純鉄粉末を混合し固め成形して成る金属粉末圧粉体を設置し,次いで,前記鋳物型内に,溶融した鋳鉄を注ぎ込み,この溶融した鋳鉄の熱を利用して前記金属粉末圧粉体を焼結及び拡散させることにより,鋳造時に,鋳造物の一部に前記金属粉末圧粉体による焼結層を生成するとともに,その焼結層を鋳造物の母材に結合するようにした鋳造方法において,
前記黒鉛粉末の配合比を0.5〜1.5wt%に,前記銅粉末の配合比を3〜10wt%に,前記ニッケル粉末の配合比を10〜20wt%に,前記鉄−クロム合金粉末の配合3wt%以上10wt%未満に,そして,コバルト−モリブデン−クロム合金粉末の配合比を15wt%超70wt%以下にする一方,前記鉄−クロム合金粉末における粒径を,前記コバルト−モリブデン−クロム合金粉末における粒径よりも小さくすることを特徴とする鋳鉄の鋳造方法。
In a casting mold that casts cast iron, graphite powder, copper powder, nickel powder, iron-chromium alloy powder, cobalt-molybdenum-chromium alloy powder, and the rest are mixed and solidified. The metal powder green compact is installed, and then the molten cast iron is poured into the casting mold, and the metal powder green compact is sintered and diffused by using the heat of the molten cast iron. In some cases, in the casting method, a sintered layer of the metal powder compact is formed on a part of the casting, and the sintered layer is bonded to the base material of the casting.
The composition ratio of the graphite powder is 0.5 to 1.5 wt%, the composition ratio of the copper powder is 3 to 10 wt%, the composition ratio of the nickel powder is 10 to 20 wt%, While the blending ratio is set to 3 wt% or more and less than 10 wt%, and the blending ratio of the cobalt-molybdenum-chromium alloy powder is set to more than 15 wt% and 70 wt% or less, the particle size of the iron-chromium alloy powder is set to the cobalt-molybdenum- A casting method for cast iron, characterized in that it is smaller than the particle size of the chromium alloy powder.
前記請求項1の記載において,前記コバルト−モリブデン−クロム合金粉末における粒径が149ミクロン以下であるに対して,前記鉄−クロム合金粉末における粒径が74ミクロン以下であることを特徴とする鋳鉄の鋳造方法。 In the description of the claim 1, wherein the cobalt - and wherein the particle size of the chromium alloy powder is less than 7 4 microns - molybdenum - against particle diameter in the chromium alloy powder is less than 1 49 microns, wherein the iron Cast iron casting method. 前記請求項1又は2の記載において,前記金属粉末圧粉体をリング状にして,このリング状の金属粉末圧粉体を,内燃機関におけるシリンダヘッドを鋳造する鋳造型内のうち,当該シリンダヘッドにおける吸気ポート及び排気ポートのいずれか一方又は両方における弁座部に設置し,この状態でシリンダヘッドを鋳造し,鋳造後に前記弁座部を,前記金属粉末圧粉体における焼結層がバルブシートに露出するように機械加工することを特徴とする内燃機関用シリンダヘッドの製造方法。   3. The cylinder head according to claim 1 or 2, wherein the metal powder green compact is formed into a ring shape, and the ring-shaped metal powder green compact is used in a casting mold for casting a cylinder head in an internal combustion engine. The cylinder head is cast in this state in one or both of the intake port and the exhaust port in the cylinder, and the cylinder head is cast in this state. A method of manufacturing a cylinder head for an internal combustion engine, wherein the machining is performed so as to be exposed to
JP2005254837A 2005-09-02 2005-09-02 Method for casting cast iron and method for manufacturing cylinder head for internal combustion engine using the method Expired - Fee Related JP4565561B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005254837A JP4565561B2 (en) 2005-09-02 2005-09-02 Method for casting cast iron and method for manufacturing cylinder head for internal combustion engine using the method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005254837A JP4565561B2 (en) 2005-09-02 2005-09-02 Method for casting cast iron and method for manufacturing cylinder head for internal combustion engine using the method

Publications (2)

Publication Number Publication Date
JP2007061890A JP2007061890A (en) 2007-03-15
JP4565561B2 true JP4565561B2 (en) 2010-10-20

Family

ID=37924701

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005254837A Expired - Fee Related JP4565561B2 (en) 2005-09-02 2005-09-02 Method for casting cast iron and method for manufacturing cylinder head for internal combustion engine using the method

Country Status (1)

Country Link
JP (1) JP4565561B2 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62202044A (en) * 1986-02-28 1987-09-05 Toyota Motor Corp Manufacture of sintered alloy superior in high temperature wear resistance
JPH01306065A (en) * 1988-06-01 1989-12-11 Daido Steel Co Ltd Overlay method for casting
JP2003119553A (en) * 2001-09-10 2003-04-23 Hyundai Motor Co Ltd Sinterd alloy material for valve seat and manufacturing method therefor

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62202044A (en) * 1986-02-28 1987-09-05 Toyota Motor Corp Manufacture of sintered alloy superior in high temperature wear resistance
JPH01306065A (en) * 1988-06-01 1989-12-11 Daido Steel Co Ltd Overlay method for casting
JP2003119553A (en) * 2001-09-10 2003-04-23 Hyundai Motor Co Ltd Sinterd alloy material for valve seat and manufacturing method therefor

Also Published As

Publication number Publication date
JP2007061890A (en) 2007-03-15

Similar Documents

Publication Publication Date Title
JP4115826B2 (en) Iron-based sintered body excellent in aluminum alloy castability and manufacturing method thereof
JP3191665B2 (en) Metal sintered body composite material and method for producing the same
JP2003268414A (en) Sintered alloy for valve seat, valve seat and its manufacturing method
KR20040030358A (en) Process for producing valve seat made of Fe-based sintered alloy
EP3162475B1 (en) Sintered valve seat and method for manufacturing same
JP6265474B2 (en) Valve seat made of iron-based sintered alloy for internal combustion engines with excellent thermal conductivity and method for producing the same
JP2011157845A (en) Valve seat for internal combustion engine, superior in cooling power
JP3784926B2 (en) Ferrous sintered alloy for valve seat
JP6871361B2 (en) Valve seat made of iron-based sintered alloy for internal combustion engine with excellent thermal conductivity
JP3763782B2 (en) Method for producing wear-resistant iron-based sintered alloy material for valve seat
JP4565561B2 (en) Method for casting cast iron and method for manufacturing cylinder head for internal combustion engine using the method
JP4270973B2 (en) Iron-based sintered body for valve seats with excellent light metal alloy castability
JP4646227B2 (en) Method for casting cast iron and method for manufacturing cylinder head for internal combustion engine using the method
WO2018181015A1 (en) Heat-resistant sintered material having excellent oxidation resistance, wear resistance at high temperatures and salt damage resistance, and method for producing same
JP4360540B2 (en) Casting method and cylinder head manufacturing method using the same
JPH0233848B2 (en) KOONTAIMAMOSEIBARUBUSHIITO
JP3225649B2 (en) Wear resistant iron-based sintered alloy
JP5100486B2 (en) Method for manufacturing turbocharger turbo parts
KR101636762B1 (en) Method for manufacturing a vehicle engine piston joined with a combined sintered insert ring, and an engine piston made by it
JP4223817B2 (en) Valve seat for light metal alloy casting
JPH0137466B2 (en)
JPH06346110A (en) Valve guide member made of fe base sintered alloy excellent in wear resistance
JPH0641699A (en) Valve guide member made of fe-base sintered alloy excellent in wear resistance
JP2004149819A (en) Ferrous sintered body for valve seat
JP2012251177A (en) Valve seat excellent in thermal conductivity

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071128

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100420

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100428

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100607

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100728

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100730

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130813

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130813

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130813

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140813

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees