JP2011157845A - Valve seat for internal combustion engine, superior in cooling power - Google Patents

Valve seat for internal combustion engine, superior in cooling power Download PDF

Info

Publication number
JP2011157845A
JP2011157845A JP2010018885A JP2010018885A JP2011157845A JP 2011157845 A JP2011157845 A JP 2011157845A JP 2010018885 A JP2010018885 A JP 2010018885A JP 2010018885 A JP2010018885 A JP 2010018885A JP 2011157845 A JP2011157845 A JP 2011157845A
Authority
JP
Japan
Prior art keywords
side layer
valve seat
surface side
face
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010018885A
Other languages
Japanese (ja)
Inventor
Satoshi Ikemi
聡史 池見
Kenichi Sato
佐藤  賢一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Piston Ring Co Ltd
Original Assignee
Nippon Piston Ring Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Piston Ring Co Ltd filed Critical Nippon Piston Ring Co Ltd
Priority to JP2010018885A priority Critical patent/JP2011157845A/en
Publication of JP2011157845A publication Critical patent/JP2011157845A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a valve seat for an internal combustion engine, having a two-layer structure having superior wear resistance and high thermal conductivity. <P>SOLUTION: A face surface-side layer 1a has a base with hard particles dispersed into a base phase. The base is formed of iron-based sintered alloy having a composition containing C: 0.2-2.0 mass% and containing &le;40% in total of one or more kinds selected from among Co, Mo, Si, Cr, Ni, Mn, W, V, S, Ca and F and a composition formed by dispersing the hard particles into the base phase by 5-40 mass% with respect to the total amount of the face surface-side layer 1a. A seating surface-side layer 1b is formed of iron-based sintered alloy having a composition containing C: 0.2-2.0 mass% and composed of the residual Fe and unavoidable impurities. The face surface-side layer 1a is formed into a thin-walled shape occupying 10-45 vol% with respect to the total amount of a valve seat, and also a two-layer boundary surface is adjusted to a surface formed into a shape having an angle within a range from 20&deg; to 90&deg; at an average angle between a valve seat shaft and the two-layer boundary surface. <P>COPYRIGHT: (C)2011,JPO&amp;INPIT

Description

本発明は、内燃機関に使用される2層形式のバルブシートに係り、とくに熱伝導性の向上、すなわちバルブシートの冷却能向上に関する。   The present invention relates to a two-layer type valve seat used for an internal combustion engine, and more particularly to improvement of thermal conductivity, that is, improvement of cooling performance of the valve seat.

内燃機関において、吸気口、排気口を開閉するバルブを着座させるバルブシートには、燃焼室の気密性を保持することができるとともに、バルブの繰返し当接による摩耗に十分に耐えられる耐摩耗性と、バルブの放熱などとくに燃焼室まわりの温度上昇を抑制できる優れた冷却能とを保持することが要求されている。とくに、このバルブシートの冷却能は、エンジン出力に大きく影響するため、バルブシートの保持すべき重要な性能となっている。   In an internal combustion engine, a valve seat on which a valve for opening and closing an intake port and an exhaust port is seated can maintain the airtightness of the combustion chamber, and can withstand wear due to repeated contact of the valve. Therefore, it is required to maintain excellent cooling ability that can suppress a temperature rise around the combustion chamber, such as heat radiation of the valve. In particular, the cooling capacity of the valve seat has a significant effect on the engine output, and is therefore an important performance to be retained by the valve seat.

このため、近年では、異なる材料からなる2層構造のバルブシートが多用されるようになっている。この2層構造のバルブシートでは、バルブを着座させるフェイス面側に、耐摩耗性に優れた材料からなるフェイス面側層を、一方、シリンダヘッドに接する着座側に、熱伝導性に優れた材料からなる着座面側層を配し一体化した構造としている。このような2層構造のバルブシートは、寸法精度が高いこと、特殊な合金を使用できることなどから、最近ではほとんどが、粉末冶金を利用した焼結合金製となっている。しかし、フェイス面側層は、通常、耐摩耗性に優れた材料から構成され、多量の合金元素を含有しているため高価である。このため、材料コストの低減という観点から、2層構造のバルブシートにおいてはフェイス面側層を可能なかぎり薄肉化することが、従来から要望されている。   For this reason, in recent years, a valve seat having a two-layer structure made of different materials has been frequently used. In this two-layer valve seat, a face side layer made of a material having excellent wear resistance is provided on the face side on which the valve is seated, and a material having excellent thermal conductivity on the seat side in contact with the cylinder head. The seating surface side layer made of is arranged and integrated. Such a two-layered valve seat has recently been made of a sintered alloy using powder metallurgy because of its high dimensional accuracy and the use of a special alloy. However, the face side layer is usually made of a material having excellent wear resistance and contains a large amount of alloy elements, and thus is expensive. For this reason, from the viewpoint of reducing the material cost, it has been conventionally desired to make the face side layer as thin as possible in the two-layer valve seat.

このような要望に対し、例えば、特許文献1には、複合成形バルブシートが記載されている。特許文献1に記載されたバルブシートは、バルブ当たり面に特殊合金である第2焼結合金を配し、他の部分が一般的な低合金焼結合金である第1焼結合金を配し、第2焼結合金と第1焼結合金との境界面が、第1焼結合金の粉末安息曲線とほぼ相似することを特徴とする複合バルブシートである。特許文献1に記載された技術では、図3に示すように、段部10aを有するダイ10と下パンチ12とコアロッド11とで第1空間を形成し(図3(a))、該第1空間に第1粉末P1を充填したのち(図3(b))、ダイ10とコアロッド11を上昇させ、第1粉末の上面を粉末安息曲線に相似する形状とすることにより第2空間を形成して(図3(c))、該第2空間に第2粉末P2を充填し(図3(d))、バルブ当たり面の形状を有する上プレス13で圧縮成形する(図3(e))。これにより、特殊合金からなる第2焼結合金量を著しく低減できるとしている。しかし、特許文献1に記載された技術では、第2粉末層(フェイス面側層)の厚さを極薄にすると、第1粉末層(着座面側層)との境界面が乱れ、第2粉末層(フェイス面側層)の厚さが極端に薄くなり、バルブ当たり面に第1粉末層(着座面側層)がフェイス面に露出する場合があり、耐摩耗性が顕著に低下し、バルブシートとして機能しないという問題があった。   In response to such a demand, for example, Patent Document 1 describes a composite molded valve seat. In the valve seat described in Patent Document 1, a second sintered alloy, which is a special alloy, is disposed on the contact surface of the valve, and a first sintered alloy, which is a general low alloy sintered alloy, is disposed on the other part. The composite valve seat is characterized in that the boundary surface between the second sintered alloy and the first sintered alloy is substantially similar to the powder repose curve of the first sintered alloy. In the technique described in Patent Document 1, as shown in FIG. 3, a first space is formed by a die 10 having a stepped portion 10a, a lower punch 12, and a core rod 11 (FIG. 3A). After filling the space with the first powder P1 (FIG. 3 (b)), the die 10 and the core rod 11 are raised, and the upper surface of the first powder is shaped to resemble the powder repose curve to form the second space. (FIG. 3 (c)), the second space is filled with the second powder P2 (FIG. 3 (d)), and compression-molded by the upper press 13 having the shape of the valve contact surface (FIG. 3 (e)). . Thereby, the amount of the second sintered alloy made of a special alloy can be remarkably reduced. However, in the technique described in Patent Document 1, when the thickness of the second powder layer (face surface side layer) is extremely thin, the boundary surface with the first powder layer (seating surface side layer) is disturbed, and the second The thickness of the powder layer (face surface side layer) becomes extremely thin, and the first powder layer (sitting surface side layer) may be exposed on the face surface on the valve contact surface, and the wear resistance is significantly reduced. There was a problem of not functioning as a valve seat.

また、特許文献2には、複合バルブシートの製造方法が記載されている。特許文献2に記載された技術は、ダイ、コアロッド、上パンチ、下パンチとを有するプレス成形機を用い、下パンチを相対的に下降して形成された第1の圧縮空間(充填空間)に、第1粉末を充填し、ついで内周側に円錐状突出部を有する上パンチを下降して第1粉末を圧縮し、予備圧粉成形体を形成し、ついで、上パンチを上昇させるとともに、下パンチをダイに対して相対的に移動し、予備圧粉成形体上に第2の空間を形成して、第2の空間に第1粉末とは異なる第2粉末を充填したのち、内周側に円錐状突出部を有する上パンチにより一体的に圧縮成形して圧粉体とし、ついで焼結して2層構造のバルブシート(複合バルブシート)とする複合バルブシートの製造方法である。なお、特許文献2に記載された技術では、上パンチによる第1粉末への圧縮は、予備圧粉成形体の上面に上パンチの形状が残される程度とし、実質的な成形は行なわないとしている。これにより、第2焼結合金の相対量が低減できるとしている。しかし、特許文献2に記載された技術では、第1粉末への圧縮成形と、第2粉末への圧縮成形とで、使用するパンチが同一であり、バルブシートの設計における自由度が低いうえ、パンチの移動ストロークが長くなり、成形時間が長く生産性が低下するという問題があった。   Patent Document 2 describes a method for manufacturing a composite valve seat. The technique described in Patent Document 2 uses a press molding machine having a die, a core rod, an upper punch, and a lower punch, and a first compression space (filling space) formed by lowering the lower punch relatively. , Filling the first powder, then lowering the upper punch having a conical protrusion on the inner peripheral side to compress the first powder, forming a pre-compacted compact, and then raising the upper punch, After moving the lower punch relative to the die, forming a second space on the preliminary compacted body, and filling the second space with a second powder different from the first powder, the inner circumference This is a method of manufacturing a composite valve seat that is integrally compressed and molded into a green compact by an upper punch having a conical protrusion on the side, and then sintered into a two-layer valve seat (composite valve seat). In the technique described in Patent Document 2, the compression to the first powder by the upper punch is such that the shape of the upper punch remains on the upper surface of the pre-compacted compact, and no substantial molding is performed. . As a result, the relative amount of the second sintered alloy can be reduced. However, in the technique described in Patent Document 2, the punch used is the same in the compression molding to the first powder and the compression molding to the second powder, and the degree of freedom in designing the valve seat is low, There is a problem that the stroke of the punch becomes long, the molding time is long, and the productivity is lowered.

また、特許文献3には、バルブ当接層101とバックアップ層102とが異なる材料からなり、バルブ当接層側の端面にテーパ部101aを有し、しかもバルブ当接層とバックアップ層との境界面にテーパ部に沿う斜面が形成されていることを特徴とする、2層構造のバルブシートが記載されている。特許文献3に記載された技術では、ダイ10と、コアロッド11と、上パンチ14と、下第1パンチ12と、下第2パンチ13とを、有する粉末成形装置を利用して圧粉体を焼結して、上記した2層構造のバルブシート100を製造するとしている。特許文献3に記載された技術では、図4に示すように、まず、下第2パンチ13の上端面を、上端をテーパ面形状に形成した下第1パンチ12のテーパ面12a下端位置よりも上昇させて充填空間を形成しておき、下第1パンチ12上の該充填空間に第1の原料粉P1を充填する(図4(a))。ついで、下第2パンチ13を下第1パンチ12に対して相対的に下降させて、下第1パンチ12上の第1の原料粉P1の一部を、下第2パンチ13上に移動させる(図4(b))。さらに、下第1パンチ12および下第2パンチ13上に充填空間を形成し、該充填空間に第2の原料粉P2を充填する(図4(c))。そして、上パンチ14とコアロッド11およびダイ10とにより充填された原料粉を圧縮成形し圧粉体を形成する。この圧粉体を焼結して、上記したような2層構造のバルブシートが製造できるとしている。このような2層構造のバルブシートとすることにより、耐摩耗性を要するバルブ当接層が厚すぎず、高い熱伝導性を要するバックアップ層が十分な容積を有しているため、高い放熱性と耐摩耗性とを備えるバルブシートとすることができるとしている。   In Patent Document 3, the valve contact layer 101 and the backup layer 102 are made of different materials, have a tapered portion 101a on the end surface on the valve contact layer side, and the boundary between the valve contact layer and the backup layer. A valve seat having a two-layer structure is described in which a slope along the tapered portion is formed on the surface. In the technique described in Patent Document 3, a green compact is produced using a powder molding apparatus having a die 10, a core rod 11, an upper punch 14, a lower first punch 12, and a lower second punch 13. The valve seat 100 having the above-described two-layer structure is manufactured by sintering. In the technique described in Patent Document 3, as shown in FIG. 4, first, the upper end surface of the lower second punch 13 is set to be lower than the lower end position of the tapered surface 12a of the lower first punch 12 having the upper end formed in a tapered surface shape. A filling space is formed by raising the first raw material powder P1 in the filling space on the lower first punch 12 (FIG. 4A). Next, the lower second punch 13 is lowered relative to the lower first punch 12 to move a part of the first raw material powder P1 on the lower first punch 12 onto the lower second punch 13. (FIG. 4B). Further, a filling space is formed on the lower first punch 12 and the lower second punch 13, and the second raw material powder P2 is filled in the filling space (FIG. 4C). Then, the raw material powder filled with the upper punch 14, the core rod 11 and the die 10 is compression-molded to form a green compact. The green compact can be sintered to produce a valve seat having a two-layer structure as described above. By adopting such a two-layer valve seat, the valve contact layer that requires wear resistance is not too thick, and the backup layer that requires high thermal conductivity has a sufficient volume. And a wear-resistant valve seat.

また、特許文献4には、第一のフィーダーにより第一層目の粉末を充填する工程と、充填した第一層目を仮押しシリンダーで仮押しする仮押し工程と、第二のフィーダーで第二の粉末を充填する第二層目充填工程と、充填された第一層目の金属と第二層目の金属を加圧する加圧成形工程からなる粉末成形方法が記載されている。この方法によれば、第一層目を充填してから仮押しし、ついで第二層目を充填するため、境界線がはっきりして、粉末が混じることがなくなるとしている。   Further, Patent Document 4 includes a step of filling a first layer of powder with a first feeder, a step of temporarily pushing the filled first layer with a temporarily pushing cylinder, and a second feeder with a first feeder. A powder forming method comprising a second layer filling step of filling a second powder and a pressure forming step of pressing the filled first layer metal and second layer metal is described. According to this method, since the first layer is filled and then temporarily pressed and then the second layer is filled, the boundary line is clear and the powder is not mixed.

特開昭57−140802号公報JP-A-57-140802 特開昭58−215299号公報JP 58-215299 A 特開2004−351453号公報JP 2004-351453 A 特開2002−239793号公報JP 2002-239793 A

しかし、特許文献3に記載された技術では、バルブ当接層の厚さを極薄にすると、バックアップ層との境界面が乱れ、バルブ当接層(フェイス面側層)の厚さが極端に薄くなり、バルブ当たり面(フェイス面)にバックアップ層が露出する場合があり、耐摩耗性が顕著に低下するという問題があった。
また、特許文献4に記載された技術を使用して、高合金組成の薄肉第二層目を有する2層構造のバルブシートを製造すると、2層の境界面の形状が一定せず、フェイス面側層の薄肉化を安定して達成することができないため、例えばフラットパンチで圧縮した場合、フェイス面に第一層が露出することがあり、バルブシートの耐摩耗性が極度に低下するという問題を残していた。
However, in the technique described in Patent Document 3, when the thickness of the valve contact layer is extremely thin, the boundary surface with the backup layer is disturbed, and the thickness of the valve contact layer (face surface side layer) is extremely large. The back-up layer may be exposed on the valve contact surface (face surface), resulting in a problem that the wear resistance is remarkably reduced.
Further, when a two-layer valve seat having a thin second layer having a high alloy composition is manufactured using the technique described in Patent Document 4, the shape of the boundary surface between the two layers is not constant, and the face surface Since the thinning of the side layer cannot be stably achieved, for example, when compressed with a flat punch, the first layer may be exposed on the face surface, and the wear resistance of the valve seat is extremely reduced. Was leaving.

本発明は、かかる従来技術の問題を有利に解決し、従来に比べて格段に、薄肉のフェイス面側層を有し、内燃機関用として好適な、優れた耐摩耗性と高い熱伝導性を有する2層構造の内燃機関用バルブシートを提供することを目的とする。ここでいう「薄肉のフェイス面側層」とは、バルブシート全量に対する体積%で、10〜45%のフェイス面側層を有する場合をいうものとする。   The present invention advantageously solves the problems of the prior art, and has a much thinner face surface side layer than the conventional one, and is excellent in wear resistance and high thermal conductivity suitable for an internal combustion engine. An object is to provide a valve seat for an internal combustion engine having a two-layer structure. Here, the “thin face side layer” refers to a case where the face side layer is 10% to 45% by volume% with respect to the total amount of the valve seat.

本発明者らは、上記した目的を達成するため、2層境界面の安定形成に及ぼす各種要因について鋭意研究した。その結果、フェイス面側層の所望の薄肉化を安定して達成するためには、仮押しパンチの押圧面の形状を適正な面形状に選定することが肝要であることを見出した。そして、フェイス面側層と着座面側層との境界面をバルブシート軸に対する平均角度で、20°〜90°の適正範囲内の角度に調整する必要のあることを知見した。これにより、所望のフェイス面側層の薄肉化が達成でき、優れた耐摩耗性と優れた冷却能とを兼備するバルブシートを製造可能となった。境界面のバルブシート軸に対する平均角度が、上記した適正範囲を外れると、境界面が乱れ、着座面側層がバルブ当たり面(フェイス面)に露出し、耐摩耗性が低下し、所望のフェイス面側層の薄肉化を安定して達成できないことも見出した。   In order to achieve the above-mentioned object, the present inventors diligently studied various factors affecting the stable formation of the two-layer boundary surface. As a result, it has been found that in order to stably achieve the desired thinning of the face surface side layer, it is important to select an appropriate surface shape for the pressing surface of the temporary pressing punch. And it discovered that it was necessary to adjust the boundary surface of the face surface side layer and the seating surface side layer to an angle within an appropriate range of 20 ° to 90 ° with an average angle with respect to the valve seat axis. As a result, it is possible to reduce the thickness of the desired face side layer, and to manufacture a valve seat having both excellent wear resistance and excellent cooling ability. If the average angle of the boundary surface with respect to the valve seat axis is outside the above-mentioned appropriate range, the boundary surface is disturbed, the seating surface side layer is exposed to the valve contact surface (face surface), wear resistance is reduced, and the desired face It has also been found that the thickness reduction of the surface side layer cannot be achieved stably.

本発明は、かかる知見に基いて、さらに検討を加えて完成されたものである。すなわち、本発明の要旨は次のとおりである。
(1)フェイス面側層と着座面側層との2層を一体化してなる鉄基焼結合金製内燃機関用バルブシートであって、該バルブシートの少なくともバルブ当たり面が前記フェイス面側層で形成され、該フェイス面側層が、前記バルブシート全量に対する体積%で、10〜45%であることを特徴とする冷却能に優れた内燃機関用バルブシート。
The present invention has been completed based on such findings and further investigations. That is, the gist of the present invention is as follows.
(1) A valve seat for an internal combustion engine made of an iron-based sintered alloy in which two layers of a face surface side layer and a seating surface side layer are integrated, and at least a valve contact surface of the valve seat is the face surface side layer A valve seat for an internal combustion engine having an excellent cooling capacity, wherein the face side layer is 10% to 45% by volume with respect to the total amount of the valve seat.

(2)(1)において、前記フェイス面側層と前記着座面側層との境界面が、少なくともバルブ当たり面対応領域でバルブシート軸とのなす角度で20°以上90°以下の平均角度αを有する面とすることを特徴とする内燃機関用バルブシート。
(3)(2)において、前記境界面が、該境界面の平均位置を基準として、平均位置に対し直角方向の各位置で±300μm以下に調整されてなることを特徴とする内燃機関用バルブシート。
(2) In (1), the boundary surface between the face surface side layer and the seating surface side layer has an average angle α of not less than 20 ° and not more than 90 ° at an angle formed with the valve seat shaft at least in the valve contact surface corresponding region. A valve seat for an internal combustion engine, characterized in that the surface has a surface.
(3) The valve for an internal combustion engine according to (2), wherein the boundary surface is adjusted to ± 300 μm or less at each position perpendicular to the average position with reference to the average position of the boundary surface. Sheet.

(4)(1)ないし(3)のいずれかにおいて、前記フェイス面側層が、基地相中に硬質粒子が分散した基地部を有し、該基地部が、質量%で、C:0.2〜2.0%を含み、Co、Mo、Si、Cr、Ni、Mn、W、V、S、Ca、Fのうちから選ばれた1種または2種以上を合計で40%以下を含有し、残部Feおよび不可避的不純物からなる基地部組成と、前記基地相中に硬質粒子をフェイス面側層全量に対する質量%で、5〜40%分散させてなる基地部組織とを有する鉄系焼結合金製で、前記着座面側層が、質量%で、C:0.2〜2.0%を含み、残部Feおよび不可避的不純物からなる組成を有する鉄系焼結合金製であることを特徴とする内燃機関用バルブシート。   (4) In any one of (1) to (3), the face surface side layer has a base part in which hard particles are dispersed in a base phase, and the base part is in mass%, and C: 0.2 to Contains 2.0%, contains one or more selected from Co, Mo, Si, Cr, Ni, Mn, W, V, S, Ca, F in total, 40% or less, and the balance Fe And made of an iron-based sintered alloy having a base composition composed of unavoidable impurities and a base structure in which hard particles are dispersed in the matrix phase in a mass% with respect to the total amount of the face side layer by 5 to 40%. The valve seat for an internal combustion engine, wherein the seating surface side layer is made of an iron-based sintered alloy having a composition of C: 0.2 to 2.0% by mass and the balance Fe and unavoidable impurities. .

(5)(4)において、前記着座面側層が、前記組成に加えてさらに、質量%で、Mo、Si、Cr、Ni、Mn、W、V、S、P、Ca、Fのうちから選ばれた1種または2種以上を合計で20%以下、含有する組成とすることを特徴とする内燃機関用バルブシート。
(6)(4)または(5)において、前記フェイス面側層が、前記基地相中に前記硬質粒子に加えてさらに、固体潤滑剤粒子が分散した基地部を有し、前記基地部組織が前記硬質粒子に加えてさらに固体潤滑剤粒子をフェイス面側層全量に対する質量%で0.3〜5.0%分散させてなる基地部組織を有することを特徴とする内燃機関用バルブシート
(7)(5)または(6)において、前記着座面側層が、前記基地相中に固体潤滑剤粒子を着座面側層全量に対する質量%で0.3〜5.0%分散させてなる組織を有することを特徴とする内燃機関用バルブシート
(5) In (4), in addition to the composition, the seating surface side layer is further in mass%, and is selected from Mo, Si, Cr, Ni, Mn, W, V, S, P, Ca, and F. A valve seat for an internal combustion engine characterized by comprising a composition containing at least 20% in total of one or more selected ones.
(6) In (4) or (5), the face surface side layer further includes a base portion in which solid lubricant particles are dispersed in addition to the hard particles in the base phase, and the base portion structure is In addition to the hard particles, a valve seat for an internal combustion engine having a base part structure in which solid lubricant particles are dispersed in an amount of 0.3 to 5.0% by mass% with respect to the total amount of the face side layer (7) (5) Alternatively, in (6), the seating surface side layer has a structure in which solid lubricant particles are dispersed in the matrix phase in an amount of 0.3 to 5.0% by mass based on the total amount of the seating surface side layer. Valve seat

本発明によれば、従来に比べて格段に、薄肉のフェイス面側層を有する2層構造のバルブシートを安定して容易にしかも安価に製造でき、産業上格段の効果を奏する。本発明によれば、内燃機関用として好適な、優れた耐摩耗性と高い熱伝導性を兼備した、高い冷却能を有するバルブシートとすることができ、エンジン出力の向上に顕著に寄与するという効果もある。また、本発明によれば、バルブシートの径方向厚さを薄くすることもできる。   According to the present invention, a valve seat having a two-layer structure having a thin face side layer can be manufactured stably and easily at a low cost as compared with the prior art, and the industrial advantages are achieved. According to the present invention, it is possible to provide a valve seat having excellent cooling resistance and high heat conductivity, suitable for an internal combustion engine, and having a high cooling capacity, which contributes significantly to improvement in engine output. There is also an effect. Further, according to the present invention, the radial thickness of the valve seat can be reduced.

本発明のバルブシートの断面を模式的に示す概略説明図である。It is a schematic explanatory drawing which shows typically the cross section of the valve seat of this invention. 本発明のバルブシートの2層構造を模式的に示す概略説明図である。It is a schematic explanatory drawing which shows typically the 2 layer structure of the valve seat of this invention. 従来の2層構造バルブシートの製造工程の一例を示す概略説明図である。It is a schematic explanatory drawing which shows an example of the manufacturing process of the conventional 2 layer structure valve seat. 従来の2層構造バルブシートの製造工程の一例を示す概略説明図である。It is a schematic explanatory drawing which shows an example of the manufacturing process of the conventional 2 layer structure valve seat. 単体リグ試験機の概要を示す模式図である。It is a schematic diagram which shows the outline | summary of a single rig testing machine.

本発明の内燃機関用バルブシートは、図1に示すように、バルブと接触するフェイス面1aa側にフェイス面側層1aと、着座面1baと接する側に着座面側層1bとを有し、フェイス面側層1aと着座面側層1bとの2層を一体化してなる鉄基焼結合金製バルブシートである。本発明になるバルブシート1は、少なくともバルブ当たり面1caがフェイス面側層1aで形成され、フェイス面側層1aが、バルブシート1全量に対する体積%で、10〜45%となる構成とする。   As shown in FIG. 1, the valve seat for an internal combustion engine of the present invention has a face surface side layer 1a on the face surface 1aa side in contact with the valve, and a seating surface side layer 1b on the side in contact with the seating surface 1ba. It is an iron-based sintered alloy valve seat formed by integrating two layers of a face surface side layer 1a and a seating surface side layer 1b. The valve seat 1 according to the present invention has a configuration in which at least a valve contact surface 1ca is formed by a face surface side layer 1a, and the face surface side layer 1a is 10% to 45% by volume% with respect to the total amount of the valve seat 1.

フェイス面側層1aの体積率が、10%未満では、フェイス面側層が薄くなりすぎて、内燃機関用として所望の耐摩耗性が確保できなくなる。一方、フェイス面側層が、45%を超えて多量となると、エンジンが高回転、高負荷の場合に、シリンダーヘッド、とくに燃焼室まわりの温度が上昇しすぎて、ノッキング等が発生し、所望のエンジン出力を確保できなくなる。また、フェイス面側層が、45%を超えて多量となると、材料コストが高価となり、経済的に不利となる。なお、フェイス面側層の好ましい体積率は、バルブシート全量に対する体積%で、10〜30%である。   If the volume ratio of the face surface side layer 1a is less than 10%, the face surface side layer becomes too thin, and desired wear resistance for an internal combustion engine cannot be ensured. On the other hand, if the amount of the face side layer exceeds 45%, the temperature around the cylinder head, especially around the combustion chamber, rises too much when the engine is running at a high speed and high load, causing knocking, etc. The engine output of can not be secured. In addition, when the amount of the face side layer exceeds 45%, the material cost becomes expensive, which is economically disadvantageous. In addition, the preferable volume ratio of the face side layer is 10% to 30% by volume% with respect to the total amount of the valve seat.

本発明のバルブシートでは、フェイス面側層と前記着座面側層との境界面を、少なくともバルブ当たり面に対応する領域で、バルブシート軸とのなす角度で、20°以上90°以下の平均角度αを有する面とすることが好ましい。これにより、薄肉のフェイス面側層を達成でき、材料コストのより低減が可能となる。なお、境界面とバルブシート軸とのなす角は、図2に示すように、バルブシート軸を含む断面で境界面を観察し、断面における境界面の平均的な形状(線)を直線で近似し、バルブシート軸となす平均の角度αとして求めるものとする。   In the valve seat of the present invention, the boundary surface between the face surface side layer and the seating surface side layer is at least an area corresponding to the valve contact surface, and an angle between the valve seat shaft and an average of 20 ° or more and 90 ° or less. A plane having an angle α is preferable. Thereby, a thin face side layer can be achieved, and the material cost can be further reduced. As shown in FIG. 2, the angle between the boundary surface and the valve seat axis is observed on the cross section including the valve seat axis, and the average shape (line) of the boundary surface in the cross section is approximated by a straight line. The average angle α with the valve seat shaft is obtained.

境界面とバルブシート軸とのなす角αが、20°未満では、フェイス面側層が薄くなりすぎて、内燃機関用として、所望の耐摩耗性が確保できなくなる。一方、90°を超えて大きくなると、着座面側層の比率が小さくなり、熱伝導性が低下し、バルブシートによる冷却能が低下する。このため、本発明では、フェイス面側層と着座面側層との境界面を、バルブシート軸とのなす角度で、20°以上90°以下の平均角度αを有する面に限定した。   If the angle α formed by the boundary surface and the valve seat shaft is less than 20 °, the face surface side layer becomes too thin, and desired wear resistance cannot be secured for an internal combustion engine. On the other hand, if it exceeds 90 °, the ratio of the seating surface side layer decreases, the thermal conductivity decreases, and the cooling ability by the valve seat decreases. For this reason, in the present invention, the boundary surface between the face surface side layer and the seating surface side layer is limited to a surface having an average angle α of 20 ° or more and 90 ° or less as an angle formed with the valve seat shaft.

また、本発明のバルブシートでは、フェイス面側層1aと前記着座面側層1bとの境界面1abの平均位置を基準として、平均位置に対し直角方向の各位置で±300μm(=Δh)以下に調整されてなる均一な境界面とすることが好ましい。2層の境界面が、高さ方向で上記した範囲(±300μm)(=Δh)を外れ、波打ち状態になるなど大きく乱れると、フェイス面側層を薄肉にした本発明では、着座面側層がバルブ当たり面に露出したり、あるいは極端に薄い箇所が生じ、バルブシートの耐摩耗性が顕著に低下するという問題が生じる。   Further, in the valve seat of the present invention, ± 300 μm (= Δh) or less at each position perpendicular to the average position with reference to the average position of the boundary surface 1ab between the face surface side layer 1a and the seating surface side layer 1b. It is preferable to have a uniform boundary surface adjusted to the above. In the present invention in which the face surface side layer is thinned when the boundary surface of the two layers deviates from the above-described range (± 300 μm) (= Δh) in the height direction and is greatly disturbed such as in a wavy state, May be exposed to the contact surface of the valve or may be extremely thin, resulting in a problem that the wear resistance of the valve seat is significantly reduced.

つぎに、本発明になるバルブシートの好ましい組成および組織について説明する。以下、組成における質量%は、単に%で記す。
本発明になるバルブシートのフェイス面側層は、基地相中に硬質粒子が分散した基地部を有する、鉄系焼結合金製とする。基地相中に硬質粒子を分散させることにより、バルブシートの耐摩耗性が顕著に向上する。本発明では、フェイス面側層の基地相中に分散させる硬質粒子は、Co基金属間化合物粒子、ステライト系金属間化合物粒子、Fe−Mo系金属間化合物粒子のいずれか、またはそれらの複合とすることが好ましい。なかでも、Co基金属間化合物粒子は、比較的軟らかなCo基地中に硬さの高い金属間化合物が分散した粒子であり、相手攻撃性が低いという特徴がある。好ましいCo基金属間化合物粒子としては、Si−Cr−Mo系Co基金属間化合物粒子、Mo−Ni−Cr系Co基金属間化合物粒子等が例示できる。
Next, a preferred composition and structure of the valve seat according to the present invention will be described. Hereinafter, the mass% in the composition is simply expressed as%.
The face side layer of the valve seat according to the present invention is made of an iron-based sintered alloy having a base portion in which hard particles are dispersed in the base phase. By dispersing hard particles in the matrix phase, the wear resistance of the valve seat is significantly improved. In the present invention, the hard particles dispersed in the base phase of the face side layer are either Co-based intermetallic compound particles, stellite-based intermetallic compound particles, Fe-Mo-based intermetallic compound particles, or a composite thereof. It is preferable to do. Among them, the Co-based intermetallic compound particles are particles in which a high-hardness intermetallic compound is dispersed in a relatively soft Co matrix, and are characterized by low opponent attack. Examples of preferable Co-based intermetallic compound particles include Si—Cr—Mo-based Co-based intermetallic compound particles and Mo—Ni—Cr-based Co-based intermetallic compound particles.

フェイス面側層では、硬質粒子を、フェイス面側層全量に対する質量%で、5〜40%分散させることが好ましい。分散させる量が、5%未満では、所望の耐摩耗性が確保できない。一方、40%を超える分散は、効果が飽和し、添加量に見合う効果が期待できなくなる。このため、フェイス面側層における硬質粒子の分散量をフェイス面側層全量に対する質量%で、5〜40%の範囲に限定することが好ましい。なお、より好ましくは15〜25%である。   In the face side layer, it is preferable to disperse the hard particles in an amount of 5 to 40% by mass% based on the total amount of the face side layer. If the amount to be dispersed is less than 5%, desired wear resistance cannot be ensured. On the other hand, if the dispersion exceeds 40%, the effect is saturated and an effect commensurate with the amount added cannot be expected. For this reason, it is preferable to limit the dispersion amount of the hard particles in the face side layer to a range of 5 to 40% by mass% with respect to the total amount of the face side layer. More preferably, it is 15 to 25%.

なお、フェイス面側層では、上記した硬質粒子に加えて、さらに固体潤滑剤粒子をフェイス面側層全量に対する質量%で、0.3 〜5.0%含有させてもよい。含有量が、0.3%未満では、所望の潤滑効果が期待できないうえ、切削性が低下する。一方、5.0%を超える含有は、切削性向上効果が飽和するうえ、強度の低下を招く。このため、含有する場合には、0.3〜5.0%の範囲に限定することが好ましい。より好ましくは0.4〜1.0%の範囲である。固体潤滑剤としては、MnS、CaFが例示できる。 In the face side layer, in addition to the hard particles described above, solid lubricant particles may be further contained in an amount of 0.3 to 5.0% by mass% based on the total amount of the face side layer. If the content is less than 0.3%, a desired lubricating effect cannot be expected, and the machinability deteriorates. On the other hand, if the content exceeds 5.0%, the machinability improving effect is saturated and the strength is reduced. For this reason, when it contains, it is preferable to limit to 0.3 to 5.0% of range. More preferably, it is 0.4 to 1.0% of range. As solid lubricant, MnS, CaF 2 can be exemplified.

基地相と硬質粒子、あるいはさらに固体潤滑剤粒子を含む基地部は、C:0.2〜2.0%を含み、Co、Mo、Si、Cr、Ni、Mn、W、V、S、Ca、Fのうちから選ばれた1種または2種以上を合計で40%以下を含有し、残部Feおよび不可避的不純物からなる組成を有することが好ましい。
C:0.2〜2.0%
Cは、焼結体の強度、硬さを増加させ、焼結時に金属原子の拡散を容易にする元素であり、本発明では、0.2%以上含有させることが好ましい。一方、2.0%を超える含有は、基地中にセメンタイトが生成しやすくなるとともに、焼結時に液相が発生しやすく、寸法精度が低下するという問題がある。このため、Cは0.2〜2.0%の範囲に限定することが好ましい。なお、より好ましくは0.9〜1.1%である。
The base part including the base phase and the hard particles, or further the solid lubricant particles, includes C: 0.2 to 2.0%, among Co, Mo, Si, Cr, Ni, Mn, W, V, S, Ca, and F. It is preferable that one or two or more selected from the above be contained in a total of 40% or less, and have a composition composed of the remaining Fe and inevitable impurities.
C: 0.2-2.0%
C is an element that increases the strength and hardness of the sintered body and facilitates the diffusion of metal atoms during sintering. In the present invention, C is preferably contained in an amount of 0.2% or more. On the other hand, when the content exceeds 2.0%, cementite is likely to be generated in the matrix, and a liquid phase is likely to be generated during sintering, resulting in a problem that dimensional accuracy is lowered. For this reason, it is preferable to limit C to 0.2 to 2.0% of range. In addition, More preferably, it is 0.9 to 1.1%.

Co、Mo、Si、Cr、Ni、Mn、W、V、S、Ca、Fのうちから選ばれた1種または2種以上:合計で40%以下
Co、Mo、Si、Cr、Ni、Mn、W、V、S、Ca、Fはいずれも、焼結体の強度、硬さを増加させ、さらには耐摩耗性を向上させる元素であり、このような効果を得るためには、硬質粒子起因を含め、少なくとも1種を選択し合計で20%以上含有することが望ましい。一方、これらの元素の含有量が合計で40%を超えと、成形性を低下させ、強度も低下させる。このため、Co、Mo、Si、Cr、Ni、Mn、W、V、S、Ca、Fのうちから選ばれた1種または2種以上を合計で、40%以下に限定することが好ましい。なお、より好ましくは合計で25%以下である。
One or more selected from Co, Mo, Si, Cr, Ni, Mn, W, V, S, Ca, F: 40% or less in total
Co, Mo, Si, Cr, Ni, Mn, W, V, S, Ca, and F are all elements that increase the strength and hardness of the sintered body and further improve the wear resistance. In order to obtain such an effect, it is desirable to select at least one kind including hard particles and to contain 20% or more in total. On the other hand, when the content of these elements exceeds 40% in total, the formability is lowered and the strength is also lowered. For this reason, it is preferable to limit one or more selected from Co, Mo, Si, Cr, Ni, Mn, W, V, S, Ca, and F to a total of 40% or less. More preferably, the total is 25% or less.

上記した以外のフェイス面側層の残部は、Feおよび不可避的不純物からなる。
一方、本発明になるバルブシートの着座面側層は、フェイス面側層と同様に、鉄系焼結合金製で、焼結によりフェイス面側層と境界面を介して一体化されている。着座面側層は、バルブとは接触せず、フェイス面側層を支え、単にバルブシートとして所望の強度を確保できる組成とすることが好ましい。
The remainder of the face side layer other than those described above consists of Fe and inevitable impurities.
On the other hand, the seating surface side layer of the valve seat according to the present invention is made of an iron-based sintered alloy like the face surface side layer, and is integrated with the face surface side layer via the boundary surface by sintering. It is preferable that the seating surface side layer has a composition that does not contact the valve, supports the face surface side layer, and can simply secure a desired strength as a valve seat.

なお、着座面側層では、必要に応じて、基地相中にさらに固体潤滑剤粒子を着座面側層全量に対する質量%で、0.3〜5.0%含有させてもよい。含有量が、0.3%未満では、所望の潤滑効果が期待できないうえ、切削性が低下する。一方、5%を超える含有は、切削性向上効果が飽和するうえ、強度の低下を招く。このため、含有する場合には、0.3〜0.5%の範囲に限定することが好ましい。固体潤滑剤としては、MnS、CaFが例示できる。 In the seating surface side layer, solid lubricant particles may be further contained in the matrix phase in an amount of 0.3 to 5.0% by mass with respect to the total amount of the seating surface side layer, if necessary. If the content is less than 0.3%, a desired lubricating effect cannot be expected, and the machinability deteriorates. On the other hand, when the content exceeds 5%, the machinability improving effect is saturated and the strength is reduced. For this reason, when it contains, it is preferable to limit to 0.3 to 0.5% of range. As solid lubricant, MnS, CaF 2 can be exemplified.

本発明の着座面側層の基地相組成(なお、固体潤滑剤粒子が分散している場合には、それを含む基地部組成)は、C:0.2〜2.0%を含み、あるいはさらに、Mo、Si、Cr、Ni、Mn、W、V、S、P、Ca、Fのうちから選ばれた1種または2種以上を合計で20%以下、含有し、残部Feおよび不可避的不純物からなる組成とすることが好ましい。
C:0.2〜2.0%
Cは、焼結体の強度、硬さを増加させる元素であり、本発明では、バルブシートとして所望の強度、硬さを確保するために、着座面側層では0.2%以上含有することが望ましいが、2.0%を超える含有は、基地中にセメンタイトが生成しやすくなるとともに、焼結時に液相が発生しやすく、寸法精度が低下するという問題がある。このため、Cは0.2〜2.0%の範囲に限定することが好ましい。なお、より好ましくは0.9〜1.1%である。
The base phase composition of the seating surface side layer of the present invention (in the case where solid lubricant particles are dispersed, the base part composition including the base lubricant composition) includes C: 0.2 to 2.0%, or, further, Mo, A composition comprising one or more selected from Si, Cr, Ni, Mn, W, V, S, P, Ca, and F in a total of 20% or less, the balance being Fe and inevitable impurities It is preferable that
C: 0.2-2.0%
C is an element that increases the strength and hardness of the sintered body. In the present invention, in order to ensure desired strength and hardness as a valve seat, the seating surface side layer preferably contains 0.2% or more. However, when the content exceeds 2.0%, cementite is likely to be generated in the matrix, and a liquid phase is likely to be generated during sintering, resulting in a problem that dimensional accuracy is lowered. For this reason, it is preferable to limit C to 0.2 to 2.0% of range. In addition, More preferably, it is 0.9 to 1.1%.

上記した成分が着座面側層の基本の成分であるが、この基本成分に加えてさらに、選択元素として、Mo、Si、Cr、Ni、Mn、W、V、S、P、Ca、Fのうちから選ばれた1種または2種以上を合計で20%以下含有できる。
Mo、Si、Cr、Ni、Mn、W、V、S、P、Ca、Fのうちから選ばれた1種または2種以上:合計で20%以下
Mo、Si、Cr、Ni、Mn、W、V、S、Pはいずれも、着座面側層の強度、硬さを増加させる元素であり、必要に応じて選択して1種または2種以上を含有できる。このような効果を得るためには、合計で10%以上含有することが望ましいが、これら元素の含有量が合計で20%を超えると、成形性が低下し、また強度も低下する。このため、含有する場合には合計で20%以下に限定することが好ましい。なお、より好ましくは5〜15%である。
The above-mentioned components are basic components of the seating surface side layer. In addition to the basic components, Mo, Si, Cr, Ni, Mn, W, V, S, P, Ca, and F can be used as selective elements. One or two or more selected from among them can be contained in a total of 20% or less.
One or more selected from Mo, Si, Cr, Ni, Mn, W, V, S, P, Ca, F: 20% or less in total
Mo, Si, Cr, Ni, Mn, W, V, S, and P are all elements that increase the strength and hardness of the seating surface side layer. Can be contained. In order to obtain such an effect, it is desirable to contain 10% or more in total. However, if the content of these elements exceeds 20% in total, the formability is lowered and the strength is also lowered. For this reason, when it contains, it is preferable to limit to 20% or less in total. In addition, More preferably, it is 5 to 15%.

なお、上記した以外の着座面側層の残部は、Feおよび不可避的不純物からなる。
つぎに、本発明バルブシートの好ましい製造方法について説明する。
本発明では、ダイ、コアロッド、上パンチ、下パンチと、互いに独立して駆動可能な2種のフィーダと、独立して駆動可能な仮押パンチと、を有するプレス成形機を用いる。
フェイス面側層用の原料粉としては、鉄系粉末と、黒鉛粉末と、合金元素粉末等の合金用粉末と、硬質粒子粉末と、潤滑剤粒子粉末と、あるいはさらに固体潤滑剤粒子粉末と、を上記したフェイス面側層組成となるように、所定量配合して、フェイス面側層用の混合粉とする。鉄系粉末は、純鉄粉としても、特定組成の鋼系粉末としてもよい。特定組成の鋼系粉末としては高速度鋼系粉末とすることが好ましい。使用する鉄系粉末は、アトマイズ粉とすることが好ましい。
The rest of the seating surface side layer other than those described above consists of Fe and inevitable impurities.
Below, the preferable manufacturing method of this invention valve seat is demonstrated.
In the present invention, a press molding machine having a die, a core rod, an upper punch, a lower punch, two types of feeders that can be driven independently from each other, and a temporary pressing punch that can be driven independently is used.
As the raw material powder for the face side layer, iron-based powder, graphite powder, alloy powder such as alloy element powder, hard particle powder, lubricant particle powder, or even solid lubricant particle powder, Is blended in a predetermined amount so as to have the above-described face surface side layer composition to obtain a mixed powder for the face surface side layer. The iron-based powder may be a pure iron powder or a steel-based powder having a specific composition. The steel powder having a specific composition is preferably a high speed steel powder. The iron-based powder used is preferably atomized powder.

また、着座面側層用の原料粉としては、鉄系粉末と、黒鉛粉末と、合金元素粉末等の合金用粉末と、潤滑剤粒子粉末と、あるいはさらに固体潤滑剤粒子粉末と、を上記した着座面側層組成となるように、所定量配合して、着座面側層用の混合粉とする。
まず、第1のフィーダーを移動させた後、ダイとコアロッドを下パンチに対し相対的に上昇させて、着座面側層用の充填空間を形成しながら、該充填空間に着座面側層用混合粉を充填する。そして、仮押パンチを移動させて、フェイス面側層との界面となる上面を所定の形状となるように、仮押パンチの押圧面形状、押圧力を調整して、着座面側層用混合粉を仮押しする。ついで、第2のフィーダーを移動させた後、ダイとコアロッドを下パンチに対し相対的に上昇させて、フェイス面側層用の充填空間を形成しながら、該充填空間にフェイス面側層用混合粉を充填する。そして、上パンチを下降させて、フェイス面側層用混合粉および着座面側層用混合粉とを一体的に加圧し、圧粉体とする。なお、加圧条件は、所望に応じて適宜決定すればよく、とくに限定する必要はないが、所望のバルブシート特性と関連して、5.0〜7.5 g/cmの範囲の圧粉体密度となるように調整することが好ましい。
The raw material powder for the seating surface side layer includes iron-based powder, graphite powder, alloy powder such as alloy element powder, lubricant particle powder, or further solid lubricant particle powder. A predetermined amount is blended so as to obtain a seating surface side layer composition to obtain a mixed powder for the seating surface side layer.
First, after moving the first feeder, the die and the core rod are raised relative to the lower punch to form a filling space for the seating surface side layer, while mixing for the seating surface side layer in the filling space Fill with powder. Then, by moving the temporary pressing punch and adjusting the pressing surface shape and pressing force of the temporary pressing punch so that the upper surface that becomes the interface with the face surface side layer has a predetermined shape, mixing for the seating surface side layer Temporarily press the powder. Next, after moving the second feeder, the die and the core rod are raised relative to the lower punch to form a filling space for the face side layer, while mixing the face side layer in the filling space. Fill with powder. Then, the upper punch is lowered to integrally pressurize the mixed powder for the face side layer and the mixed powder for the seat side layer to form a green compact. Incidentally, the pressure condition is not necessarily limited well, particularly if appropriately determined as desired, in conjunction with desired valve seat characteristics, the green compact density in the range of 5.0 to 7.5 g / cm 3 It is preferable to adjust so that it becomes.

そして、得られた圧粉体に、ついで焼結処理を施して上下2層構造の焼結体とする。焼結処理の条件としては、還元雰囲気中で行なうこと以外は、所望の特性に応じて適宜、決定すればよく、とくに限定する必要はない。なお、焼結温度は、1100〜1200℃とすることが焼結拡散の観点から好ましい。
なお、強度確保の観点から、加圧成形と焼結処理とを少なくとも2回繰り返す、いわゆる2P2S工程とすることが好ましい。2P2S工程では、1回目の焼結処理は、仮焼結とし、2回目の焼結処理により所望の密度を有する焼結体とすることが好ましい。これにより、更なる密度向上が期待される。
The obtained green compact is then subjected to a sintering treatment to obtain a sintered body having an upper and lower two-layer structure. The conditions for the sintering process may be determined as appropriate according to the desired properties, except for performing in a reducing atmosphere, and need not be particularly limited. The sintering temperature is preferably 1100 to 1200 ° C. from the viewpoint of sintering diffusion.
From the viewpoint of securing strength, it is preferable to use a so-called 2P2S process in which the pressure molding and the sintering treatment are repeated at least twice. In the 2P2S process, the first sintering process is preferably presintering, and the second sintering process is preferably a sintered body having a desired density. Thereby, further improvement in density is expected.

表1に示す原料粉を、表1に示す配合量で混合し、V型混合機で混練し、フェイス面側層用混合粉とした。また、同様に、表1に示す原料粉を、表1に示す配合量で混合し、混練して、着座側層用混合粉とした。なお、混合に際して、鉄系粉末、黒鉛粉末、合金元素粉末、固体潤滑剤粒子粉末の合計を100重量部に対して、潤滑剤粒子粉末としてステアリン酸亜鉛粉末を0.8重量部配合した。   The raw material powder shown in Table 1 was mixed in the blending amounts shown in Table 1, and kneaded with a V-type mixer to obtain a mixed powder for the face side layer. Similarly, the raw material powders shown in Table 1 were mixed in the blending amounts shown in Table 1 and kneaded to obtain mixed powders for the seating side layer. In mixing, 0.8 parts by weight of zinc stearate powder as a lubricant particle powder was blended with 100 parts by weight of the total of the iron-based powder, graphite powder, alloy element powder, and solid lubricant particle powder.

Figure 2011157845
Figure 2011157845

Figure 2011157845
Figure 2011157845

ダイ、コアロッド、上パンチ、下パンチと、互いに独立して駆動可能な2種のフィーダと、独立して駆動可能な仮押パンチと、を有するプレス成形機を用いた。まず、下パンチを相対的に下降させ、下パンチとダイとコアロッドとで着座面側層用の充填空間を形成し、該充填空間に、第1のフィーダーを移動させ、着座面側層用混合粉を充填した。ついで、仮押パンチを移動させて、充填した着座面側層用混合粉を仮押した。なお、仮押に際しては、仮押パンチの押圧面形状、押圧力を調整して、境界面となる着座面側層の上面形状を調整した。ついで、ダイとコアロッドを下パンチに対し相対的に上昇させて、フェイス面側層用の充填空間を形成し、該充填空間に、第2のフィーダーを移動させ、フェイス面側層用混合粉を充填した。そして、上パンチを下降させて、フェイス面側層用混合粉および着座面側層用混合粉とを一体的に加圧成形し、各種圧粉体とした。   A press molding machine having a die, a core rod, an upper punch, a lower punch, two types of feeders that can be driven independently of each other, and a temporary pressing punch that can be driven independently of each other was used. First, the lower punch is lowered relatively to form a filling space for the seating surface side layer by the lower punch, the die and the core rod, and the first feeder is moved into the filling space to mix the seating surface side layer. Filled with flour. Subsequently, the temporary pressing punch was moved to temporarily press the filled mixed powder for the seating surface side layer. In the temporary pressing, the pressing surface shape and pressing force of the temporary pressing punch were adjusted to adjust the upper surface shape of the seating surface side layer serving as the boundary surface. Next, the die and the core rod are raised relative to the lower punch to form a filling space for the face surface side layer, and the second feeder is moved into the filling space to mix the mixed powder for the face surface side layer. Filled. Then, the upper punch was lowered, and the face surface side layer mixed powder and the seating surface side layer mixed powder were integrally pressure-molded to obtain various green compacts.

得られた圧粉体に、仮焼結処理を施し、さらに粉末成形機で加圧成形(面圧:6〜10 ton/cm)したのち、焼結処理(還元雰囲気中で、1100〜1200℃)を施す、2P2S工程を施し、焼結体とした。なお、一部の焼結体では、成形と焼結を1回とする1P1S工程とした。
得られた焼結体の各層から分析用試料を採取し、発光分析により各元素の含有量を求めた。測定は、2層の境界面より内側の断面とした。
The obtained green compact is subjected to a preliminary sintering treatment, and further subjected to pressure molding (surface pressure: 6 to 10 ton / cm 2 ) with a powder molding machine, followed by a sintering treatment (1100 to 1200 in a reducing atmosphere). The 2P2S process is performed to give a sintered body. In some sintered bodies, a 1P1S process in which molding and sintering are performed once is used.
Samples for analysis were taken from each layer of the obtained sintered body, and the content of each element was determined by emission analysis. The measurement was a cross section inside the boundary surface between the two layers.

また、得られた焼結体(バルブシート)のバルブシート軸を含む断面(8箇所)で切断し、研磨、腐食して各断面における2層の境界面を現出した。そして、境界面の形状をビデオマイクロスコープを用いて観察(倍率:100倍)した。図2に示すように、各断面における境界面の平均的な形状を直線で近似し、バルブシート軸となす角度αを測定した。各断面における角度を算術平均し、平均角度αを算出した。さらに、境界面の平均的な形状からのばらつき、すなわち、図2(b)に示すように、境界面の平均形状位置からの高さ方向の差を測定し、その最大値をそのバルブシートの差Δhとした。   Further, the obtained sintered body (valve seat) was cut at the cross section (8 locations) including the valve seat axis, polished and corroded to reveal a boundary surface of two layers in each cross section. The shape of the boundary surface was observed using a video microscope (magnification: 100 times). As shown in FIG. 2, the average shape of the boundary surface in each cross section was approximated by a straight line, and the angle α formed with the valve seat axis was measured. The angle in each cross section was arithmetically averaged to calculate the average angle α. Further, the variation from the average shape of the boundary surface, that is, the difference in the height direction from the average shape position of the boundary surface is measured as shown in FIG. The difference was Δh.

また、焼結体断面の観察から、各層の断面積をもとめ、断面積比から換算して、バルブシートにおけるフェース面側層と着座面側層のそれぞれの体積率を算出した。
さらに、得られたバルブシート(焼結体)を、図5に示す単体リグ摩耗試験機に装入し、下記の試験条件で運転し、バルブシートのバルブフェース面に取り付けた熱電対によりバルブフェース面の温度を測定し、飽和した温度をバルブシート面温度とした。
Further, from the observation of the cross section of the sintered body, the cross sectional area of each layer was determined, and the volume ratio of each of the face surface side layer and the seating surface side layer in the valve seat was calculated in terms of the cross sectional area ratio.
Further, the obtained valve seat (sintered body) was inserted into a single rig wear tester shown in FIG. 5 and operated under the following test conditions, and the valve face was measured by a thermocouple attached to the valve face surface of the valve seat. The surface temperature was measured, and the saturated temperature was defined as the valve seat surface temperature.

試験条件;
試験時間:9hr
カム回転数:3000 rpm
バルブ回転数:10 rpm
スプリング荷重:35kgf(345N)(セット時)
リフト量:7.5 mm
バルブ材質:SUH35
なお、LPG+Air量、冷却水量は一定とした。
Test conditions;
Test time: 9hr
Cam rotation speed: 3000 rpm
Valve speed: 10 rpm
Spring load: 35kgf (345N) (when set)
Lift amount: 7.5 mm
Valve material: SUH35
The amount of LPG + Air and the amount of cooling water were constant.

焼結体No.1のバルブフェース面の温度を基準にして、焼結体No.1のバルブフェース面の温度と、当該焼結体のバルブフェース面の温度と差を算出した。焼結体No.1のバルブフェース面の温度に比べて低下している場合を冷却能が優れているとして、○とし、上昇している場合を冷却能が低下しているとして×として評価した。
また、試験前後の試験片(バルブシート)形状を測定し、試験前と試験後の差を算出し、摩耗量(μm)に換算した。焼結体No.1の摩耗量を基準として、当該焼結体の摩耗量が+20%以内であれば、耐摩耗性の評価は○とし、それ以外の場合には×とした。
Based on the temperature of the valve face of sintered body No. 1, the difference between the temperature of the valve face of sintered body No. 1 and the temperature of the valve face of the sintered body was calculated. When the temperature of the sintered body No. 1 was lower than the temperature of the valve face surface, the cooling ability was excellent, and it was evaluated as ◯, and when it was elevated, the cooling capacity was lowered as x. .
Moreover, the shape of the test piece (valve seat) before and after the test was measured, and the difference between before and after the test was calculated and converted into the amount of wear (μm). Based on the wear amount of the sintered body No. 1, if the wear amount of the sintered body was within + 20%, the evaluation of wear resistance was “good”, otherwise it was “poor”.

得られた結果を、表2、表3に示す。   The obtained results are shown in Tables 2 and 3.

Figure 2011157845
Figure 2011157845

Figure 2011157845
Figure 2011157845

Figure 2011157845
Figure 2011157845

Figure 2011157845
Figure 2011157845

本発明例はいずれも、耐摩耗性に優れ、さらに高い熱伝導性を有し、内燃機関用として好適優れた冷却能を有するバルブシートとなっている。一方、本発明の範囲を外れる比較例は、冷却能が低下しているか、耐摩耗性が低下している。   Each of the examples of the present invention is a valve seat having excellent wear resistance, high thermal conductivity, and excellent cooling ability for an internal combustion engine. On the other hand, the comparative example which deviates from the scope of the present invention has a reduced cooling capacity or reduced wear resistance.

1 バルブシート
1a フェイス面側層
1b 着座面側層
2 セティングプレート
3 熱源(LPG+Air)
4 バルブ
10 ダイ
11 コアロッド
12 下第1パンチ
13 下第2パンチ
14 上パンチ
100バルブシート
101バルブ当接層
102バックアップ層
1 Valve seat
1a Face side layer
1b Seating surface side layer 2 Setting plate 3 Heat source (LPG + Air)
4 Valve
10 die
11 Core rod
12 Lower first punch
13 Lower second punch
14 Top punch
100 valve seat
101 valve contact layer
102 backup layer

Claims (7)

フェイス面側層と着座面側層との2層を一体化してなる鉄基焼結合金製内燃機関用バルブシートであって、該バルブシートの少なくともバルブ当たり面が前記フェイス面側層で形成され、該フェイス面側層が、前記バルブシート全量に対する体積%で、10〜45%であることを特徴とする冷却能に優れた内燃機関用バルブシート。   A valve seat for an internal combustion engine made of an iron-based sintered alloy in which two layers of a face surface side layer and a seating surface side layer are integrated, and at least a valve contact surface of the valve seat is formed by the face surface side layer. The valve seat for an internal combustion engine having excellent cooling performance, wherein the face side layer is 10% to 45% by volume with respect to the total amount of the valve seat. 前記フェイス面側層と前記着座面側層との境界面が、バルブシート軸とのなす角度で20°以上90°以下の平均角度αを有することを特徴とする請求項1に記載の内燃機関用バルブシート。   2. The internal combustion engine according to claim 1, wherein a boundary surface between the face surface side layer and the seating surface side layer has an average angle α of 20 ° or more and 90 ° or less with respect to a valve seat axis. Valve seat for 前記境界面が、該境界面の平均位置に対し高さ方向で±300μm以下に調整されてなることを特徴とする請求項2に記載の内燃機関用バルブシート。   3. The valve seat for an internal combustion engine according to claim 2, wherein the boundary surface is adjusted to be ± 300 μm or less in a height direction with respect to an average position of the boundary surface. 前記フェイス面側層が、基地相中に硬質粒子が分散した基地部を有し、該基地部が、質量%で、C:0.2〜2.0%を含み、Co、Mo、Si、Cr、Ni、Mn、W、V、S、Ca、Fのうちから選ばれた1種または2種以上を合計で40%以下を含有し、残部Feおよび不可避的不純物からなる基地部組成と、前記基地相中に硬質粒子をフェイス面側層全量に対する質量%で、5〜40%分散させてなる基地部組織とを有する鉄系焼結合金製で、
前記着座面側層が、質量%で、C:0.2〜2.0%を含み、残部Feおよび不可避的不純物からなる基地相組成を有する鉄系焼結合金製であることを特徴とする請求項1ないし3のいずれかに記載の内燃機関用バルブシート。
The face surface side layer has a base portion in which hard particles are dispersed in a base phase, and the base portion includes, in mass%, C: 0.2 to 2.0%, Co, Mo, Si, Cr, Ni, A base composition comprising one or more selected from Mn, W, V, S, Ca, and F in a total of 40% or less, the balance being Fe and inevitable impurities, and the base phase It is made of an iron-based sintered alloy having a base part structure in which hard particles are dispersed by 5 to 40% by mass% with respect to the total amount of the face side layer.
The seating surface side layer is made of an iron-based sintered alloy having a matrix phase composition composed of the balance Fe and unavoidable impurities, including C: 0.2 to 2.0% by mass%. 4. A valve seat for an internal combustion engine according to any one of 3 above.
前記着座面側層の基地相組成が、前記基地相組成に加えてさらに、質量%で、Mo、Si、Cr、Ni、Mn、W、V、S、Ca、Fのうちから選ばれた1種または2種以上を合計で20%以下、含有する組成とすることを特徴とする請求項4に記載の内燃機関用バルブシート。   The base phase composition of the seating surface side layer is 1% selected from Mo, Si, Cr, Ni, Mn, W, V, S, Ca, and F in addition to the matrix phase composition. The valve seat for an internal combustion engine according to claim 4, wherein the composition contains 20% or less of seeds or two or more kinds in total. 前記フェイス面側層が、前記基地相中に前記硬質粒子に加えてさらに、固体潤滑剤粒子が分散した基地部を有し、前記基地部組織が前記硬質粒子に加えてさらに固体潤滑剤粒子をフェイス面側層全量に対する質量%で0.3〜5.0%分散させてなる基地部組織を有することを特徴とする請求項4または5に記載の内燃機関用バルブシート   The face surface side layer has a base part in which solid lubricant particles are dispersed in addition to the hard particles in the base phase, and the base part structure further contains solid lubricant particles in addition to the hard particles. 6. The valve seat for an internal combustion engine according to claim 4, wherein the valve seat has a base part structure dispersed by 0.3 to 5.0% by mass% with respect to the total amount of the face side layer. 前記着座面側層が、前記基地相中に固体潤滑剤粒子を着座面側層全量に対する質量%で0.3〜5.0%分散させてなる組織を有することを特徴とする請求項5または6に記載の内燃機関用バルブシート
7. The structure according to claim 5, wherein the seating surface side layer has a structure in which solid lubricant particles are dispersed in the matrix phase in an amount of 0.3 to 5.0% by mass% based on the total amount of the seating surface side layer. Valve seat for internal combustion engine
JP2010018885A 2010-01-29 2010-01-29 Valve seat for internal combustion engine, superior in cooling power Pending JP2011157845A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010018885A JP2011157845A (en) 2010-01-29 2010-01-29 Valve seat for internal combustion engine, superior in cooling power

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010018885A JP2011157845A (en) 2010-01-29 2010-01-29 Valve seat for internal combustion engine, superior in cooling power

Publications (1)

Publication Number Publication Date
JP2011157845A true JP2011157845A (en) 2011-08-18

Family

ID=44590010

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010018885A Pending JP2011157845A (en) 2010-01-29 2010-01-29 Valve seat for internal combustion engine, superior in cooling power

Country Status (1)

Country Link
JP (1) JP2011157845A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013213278A (en) * 2012-04-02 2013-10-17 Hyundai Motor Co Ltd Sintered alloy for valve seat, method for manufacturing valve seat and valve seat utilizing the same
WO2015098643A1 (en) * 2013-12-27 2015-07-02 日本ピストンリング株式会社 Assembly of internal combustion engine valve and valve seat
JP2015127520A (en) * 2013-12-27 2015-07-09 日本ピストンリング株式会社 Internal combustion engine valve seat made of an iron base sinter alloy with excellent thermal conductivity and its process of manufacture
JP2015528053A (en) * 2012-07-04 2015-09-24 ブレイスタウル−プロダクションズゲーエムベーハー ウント コンパニー カーゲーBleistahl−Produktions GmbH &Co KG. High heat conduction valve seat ring
JP2017115184A (en) * 2015-12-22 2017-06-29 日本ピストンリング株式会社 Valve sheet for internal combustion engine excellent in abrasion resistance
US11300018B2 (en) 2018-03-20 2022-04-12 Nittan Valve Co., Ltd. Hollow exhaust poppet valve
CN114406259A (en) * 2021-12-30 2022-04-29 株洲钻石切削刀具股份有限公司 Forming die and forming method for blade with multi-powder structure at upper part and lower part
US11536167B2 (en) 2018-11-12 2022-12-27 Nittan Valve Co., Ltd. Method for manufacturing engine poppet valve
US11850690B2 (en) 2020-03-30 2023-12-26 Nittan Corporation Method for manufacturing engine poppet valve

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58215299A (en) * 1982-06-09 1983-12-14 Nippon Piston Ring Co Ltd Production of composite valve seat
JPH09296708A (en) * 1996-05-08 1997-11-18 Fuji Oozx Inc Valve seat for internal combustion engine and manufacture thereof
JP2002239793A (en) * 2001-02-19 2002-08-28 Nippon Funmatsu Gokin Kk Compacting method and apparatus
JP2004232088A (en) * 2003-01-10 2004-08-19 Nippon Piston Ring Co Ltd Valve seat made of iron-based sintered alloy, and production method therefor
JP2004351453A (en) * 2003-05-28 2004-12-16 Mitsubishi Materials Corp Two-layer powder molding method, valve seat, and its manufacturing method
JP2005305530A (en) * 2004-04-26 2005-11-04 Hitachi Powdered Metals Co Ltd Powder molding method of two-layer green compact

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58215299A (en) * 1982-06-09 1983-12-14 Nippon Piston Ring Co Ltd Production of composite valve seat
JPH09296708A (en) * 1996-05-08 1997-11-18 Fuji Oozx Inc Valve seat for internal combustion engine and manufacture thereof
JP2002239793A (en) * 2001-02-19 2002-08-28 Nippon Funmatsu Gokin Kk Compacting method and apparatus
JP2004232088A (en) * 2003-01-10 2004-08-19 Nippon Piston Ring Co Ltd Valve seat made of iron-based sintered alloy, and production method therefor
JP2004351453A (en) * 2003-05-28 2004-12-16 Mitsubishi Materials Corp Two-layer powder molding method, valve seat, and its manufacturing method
JP2005305530A (en) * 2004-04-26 2005-11-04 Hitachi Powdered Metals Co Ltd Powder molding method of two-layer green compact

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013213278A (en) * 2012-04-02 2013-10-17 Hyundai Motor Co Ltd Sintered alloy for valve seat, method for manufacturing valve seat and valve seat utilizing the same
JP2015528053A (en) * 2012-07-04 2015-09-24 ブレイスタウル−プロダクションズゲーエムベーハー ウント コンパニー カーゲーBleistahl−Produktions GmbH &Co KG. High heat conduction valve seat ring
US10287933B2 (en) 2013-12-27 2019-05-14 Nippon Piston Ring Co., Ltd. Assembly of internal combustion engine valve and valve seat
JP2015127520A (en) * 2013-12-27 2015-07-09 日本ピストンリング株式会社 Internal combustion engine valve seat made of an iron base sinter alloy with excellent thermal conductivity and its process of manufacture
JP2015127521A (en) * 2013-12-27 2015-07-09 日本ピストンリング株式会社 Combination of valve and valve seat for internal combustion engine
KR20160103016A (en) 2013-12-27 2016-08-31 닛폰 피스톤 린구 가부시키가이샤 Assembly of internal combustion engine valve and valve seat
KR101895141B1 (en) 2013-12-27 2018-09-04 닛폰 피스톤 린구 가부시키가이샤 Assembly of internal combustion engine valve and valve seat
WO2015098643A1 (en) * 2013-12-27 2015-07-02 日本ピストンリング株式会社 Assembly of internal combustion engine valve and valve seat
JP2017115184A (en) * 2015-12-22 2017-06-29 日本ピストンリング株式会社 Valve sheet for internal combustion engine excellent in abrasion resistance
US10273838B2 (en) 2015-12-22 2019-04-30 Nippon Piston Ring Co., Ltd. Valve seat insert for internal combustion engine having excellent wear resistance
US11300018B2 (en) 2018-03-20 2022-04-12 Nittan Valve Co., Ltd. Hollow exhaust poppet valve
US11536167B2 (en) 2018-11-12 2022-12-27 Nittan Valve Co., Ltd. Method for manufacturing engine poppet valve
US11850690B2 (en) 2020-03-30 2023-12-26 Nittan Corporation Method for manufacturing engine poppet valve
CN114406259A (en) * 2021-12-30 2022-04-29 株洲钻石切削刀具股份有限公司 Forming die and forming method for blade with multi-powder structure at upper part and lower part

Similar Documents

Publication Publication Date Title
JP2011157845A (en) Valve seat for internal combustion engine, superior in cooling power
US9212572B2 (en) Sintered valve guide and production method therefor
US7089902B2 (en) Sintered alloy valve seat and method for manufacturing the same
JP5208647B2 (en) Manufacturing method of sintered valve guide
EP2982836B1 (en) Manufacturing method of a valve seat
WO2015098643A1 (en) Assembly of internal combustion engine valve and valve seat
JP6265474B2 (en) Valve seat made of iron-based sintered alloy for internal combustion engines with excellent thermal conductivity and method for producing the same
EP2787183A1 (en) Valve seat
JP2006316745A (en) Manufacturing method for iron-based sintered alloy valve seat exhibiting excellent wear resistance in high temperature/dry condition and the valve seat
JP2017115184A (en) Valve sheet for internal combustion engine excellent in abrasion resistance
JP6290107B2 (en) Valve seat for internal combustion engine having excellent wear resistance and method for producing the same
JP6871361B2 (en) Valve seat made of iron-based sintered alloy for internal combustion engine with excellent thermal conductivity
KR20090071459A (en) Hard-particle powder for sintered body and sintered body
JP5997075B2 (en) Alloy powder for blending sintered alloy and method for producing sintered alloy using the same
JP4121383B2 (en) Iron-base metal bond excellent in dimensional accuracy, strength and sliding characteristics and method for manufacturing the same
JP6735106B2 (en) Co-free heat-resistant sintered material excellent in high-temperature wear resistance and high-temperature strength, and method for producing the same
JP2018172768A (en) Heat-resistant sintering material having excellent oxidation resistance, high temperature wear resistance, and salt damage resistance, and method for producing the same
JP6489684B2 (en) Heat-resistant sintered material with excellent oxidation resistance, high-temperature wear resistance, and salt damage resistance, and method for producing the same
JP2022035265A (en) Valve seat, and manufacturing method of valve seat
CN110914009B (en) Valve guide tube made of iron-based sintered alloy and method for producing same
JP5828680B2 (en) Valve seat with excellent thermal conductivity
JP2000054087A (en) Iron-base sintered alloy material for valve seat, and its manufacture
JPH06346110A (en) Valve guide member made of fe base sintered alloy excellent in wear resistance
JPH0641699A (en) Valve guide member made of fe-base sintered alloy excellent in wear resistance
JPH079001B2 (en) Heat- and wear-resistant steel powder for sintered alloys

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20121026

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20130717

A977 Report on retrieval

Effective date: 20130815

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Effective date: 20130820

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131021

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20131204