JP2018172768A - Heat-resistant sintering material having excellent oxidation resistance, high temperature wear resistance, and salt damage resistance, and method for producing the same - Google Patents

Heat-resistant sintering material having excellent oxidation resistance, high temperature wear resistance, and salt damage resistance, and method for producing the same Download PDF

Info

Publication number
JP2018172768A
JP2018172768A JP2017073111A JP2017073111A JP2018172768A JP 2018172768 A JP2018172768 A JP 2018172768A JP 2017073111 A JP2017073111 A JP 2017073111A JP 2017073111 A JP2017073111 A JP 2017073111A JP 2018172768 A JP2018172768 A JP 2018172768A
Authority
JP
Japan
Prior art keywords
resistance
powder
heat
phase
salt damage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2017073111A
Other languages
Japanese (ja)
Inventor
亮介 福田
Ryosuke Fukuda
亮介 福田
宮原 正久
Masahisa Miyahara
正久 宮原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Diamet Corp
Original Assignee
Diamet Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Diamet Corp filed Critical Diamet Corp
Priority to JP2017073111A priority Critical patent/JP2018172768A/en
Priority to PCT/JP2018/011756 priority patent/WO2018181015A1/en
Publication of JP2018172768A publication Critical patent/JP2018172768A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/08Metallic powder characterised by particles having an amorphous microstructure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/10Sintering only
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C33/00Making ferrous alloys
    • C22C33/02Making ferrous alloys by powder metallurgy
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys

Abstract

PROBLEM TO BE SOLVED: To provide a heat-resistant sintering material that has excellent oxidation resistance and is also excellent in both of high temperature wear resistance and salt damage resistance, and a method for producing the heat-resistant sintering material.SOLUTION: A heat-resistant sintering material that is excellent in oxidation resistance, high temperature wear resistance, and salt damage resistance, has a structure in which hard phases are dispersed in a host phase. The total composition has a structure consisting of, in mass%, Cr: 20-38%, Mo: 0.5-3%, Si: 3-7%, C: 0.5-2.5%, with the balance being Fe and unavoidable impurities. The host phase comprises Fe-Cr-Mo-Si, the hard phase comprises Cr-Fe-Mo-C, and the material has a porosity of 2.0% or less.SELECTED DRAWING: Figure 1

Description

本発明は、耐酸化性、高温耐摩耗性、耐塩害性に優れる耐熱焼結及びその製造方法に関する。   The present invention relates to heat-resistant sintering excellent in oxidation resistance, high-temperature wear resistance, and salt damage resistance, and a method for producing the same.

内燃機関において排ガスのエネルギーを利用してタービンを高速回転させ、その回転力を利用して遠心式圧縮機を駆動し、圧縮した空気をエンジン内に送り込み、内燃機関としての熱効率を高める方式のターボチャージャーが知られている。
内燃機関に付設されるターボチャージャーにおいては、排ガスの一部を分流してタービンへの流入量を調節するノズル機構やバルブ機構が設けられている。
このターボチャージャーに組み込まれる軸受けやブッシュなどの機構部品は、エンジンから排出される高温かつ腐食性の排ガスに常に晒される上に、可動部品であり、摺動特性の面においても優れていることが望まれる。
Turbo of the internal combustion engine that uses the energy of exhaust gas to rotate the turbine at high speed, drives the centrifugal compressor using the rotational force, and sends the compressed air into the engine to increase the thermal efficiency of the internal combustion engine The charger is known.
A turbocharger attached to an internal combustion engine is provided with a nozzle mechanism and a valve mechanism for diverting a part of exhaust gas and adjusting the amount of flow into the turbine.
The mechanical parts such as bearings and bushes incorporated in this turbocharger are always exposed to high-temperature and corrosive exhaust gas discharged from the engine, and are also movable parts and have excellent sliding characteristics. desired.

この種の高温かつ腐食性の排ガスに晒される摺動部品においては、従来、高Cr鋳鋼の溶製材あるいは焼結材からなる耐熱部品が使用されている。
従来知られているターボチャージャー用部品の一例として、質量比でCr:32.4〜48.4%、Mo:2.9〜10.0%、Si:0.9〜2.9%、P:0.3〜1.8%、C:0.7〜3.9%、残部Feおよび不可避不純物からなる全体組成を有し、密度比が90%以上で基地中に炭化物が分散した焼結材が知られている(特許文献1参照)。
In sliding parts exposed to this type of high temperature and corrosive exhaust gas, conventionally, heat resistant parts made of high Cr cast steel melt or sintered material have been used.
As an example of a conventionally known turbocharger component, Cr: 32.4 to 48.4%, Mo: 2.9 to 10.0%, Si: 0.9 to 2.9%, P in mass ratio : 0.3 to 1.8%, C: 0.7 to 3.9%, the entire composition composed of Fe and unavoidable impurities, sintered with a density ratio of 90% or more and carbide dispersed in the matrix A material is known (see Patent Document 1).

特開2016−188409号公報JP 2016-188409 A

特許文献1に記載されている焼結材を含め、この種従来の耐熱部品に望まれる特性として、耐酸化性、耐摩耗性(自己摩耗性)、耐塩害性などがあり、これらの要望を満たし得る高Cr鋳鋼の溶製材あるいは焼結材の開発が進められている。
例えば、フェライト系の高Cr鋳鋼の溶製材として、Fe-34Cr-2Mo-2Si-1.2Cなる組成の合金が知られ、フェライト系の高Cr鋳鋼の焼結材として、Fe-34Cr-2Mo-2Si-2Cなる組成の焼結合金が知られている。
The properties desired for this type of conventional heat-resistant parts, including the sintered material described in Patent Document 1, include oxidation resistance, wear resistance (self-wear resistance), salt damage resistance, and the like. Development of melted or sintered materials of high Cr cast steel that can be satisfied is underway.
For example, an alloy having a composition of Fe-34Cr-2Mo-2Si-1.2C is known as a molten material for ferritic high Cr cast steel, and Fe-34Cr-2Mo- as a sintered material for ferritic high Cr cast steel. A sintered alloy having a composition of 2Si-2C is known.

従来、ターボ部品の中でも外部に露出する可能性のあるブッシュは耐酸化性、耐摩耗性に加え耐塩害性が要求される。
これに対し全体組成としてCrを34%含む高Cr鋳鋼であっても、母相Cr量は28%程度であり、この高Cr鋳鋼では、耐塩害性は優れているものの、耐酸化性が不足し、耐摩耗性の面で大幅な向上が望まれている。また、高Cr鋳鋼の焼結材である特許文献1に記載の焼結材は硬質相である炭化クロムの析出が多いため、母相のCr量が減少する。このため、特許文献1に記載の焼結材は、耐塩害性について満足できない問題がある。
一方、溶製材の方は組織中の硬質相が少ないため、母相のCr量が多くなり、耐塩害性には優れるものの、硬質相が少ないために耐摩耗性には劣るという問題があった。
Conventionally, bushes that may be exposed to the outside among turbo parts are required to be resistant to salt damage in addition to oxidation resistance and wear resistance.
On the other hand, even if it is a high Cr cast steel containing 34% Cr as a whole composition, the amount of parent phase Cr is about 28%, and this high Cr cast steel is excellent in salt damage resistance but lacks oxidation resistance. However, a significant improvement is desired in terms of wear resistance. Further, since the sintered material described in Patent Document 1 which is a sintered material of high Cr cast steel has a large amount of precipitation of chromium carbide which is a hard phase, the amount of Cr in the parent phase is reduced. For this reason, the sintered material described in Patent Document 1 has a problem that the salt damage resistance cannot be satisfied.
On the other hand, the melted material has less hard phase in the structure, so the amount of Cr in the parent phase is large and the salt damage resistance is excellent, but there is a problem that the wear resistance is inferior because there are few hard phases. .

そこで、Moの添加量を増加し、Cr炭化物の分散量を増加した材料であれば、硬質相を増やすことはできるが、Moの多くが硬質相に含まれることになり、炭化物析出による母相Crの減少量を低減できる訳ではない。そのため、母相の周囲を全面硬質相で覆っている訳でもないので、Moの添加量を増加した材料であっても未だ耐塩害性は不充分な問題がある。
このように従来技術では耐酸化性を有しつつ耐摩耗性と耐塩害性の両方の特性を満足できる材料が提供されていなかった。
このため従来の材料は、耐摩耗性と耐塩害性の両立が困難であり、耐摩耗性と耐塩害性のどちらか一方を犠牲として使用されていた。
Therefore, if the amount of Mo added is increased and the amount of Cr carbide dispersed is increased, the hard phase can be increased, but most of Mo will be included in the hard phase, and the parent phase due to carbide precipitation. The amount of Cr reduction cannot be reduced. Therefore, the periphery of the matrix phase is not entirely covered with the hard phase, so that the salt damage resistance is still inadequate even for a material with an increased amount of Mo.
As described above, the prior art has not provided a material that can satisfy both the characteristics of wear resistance and salt damage resistance while having oxidation resistance.
For this reason, conventional materials are difficult to achieve both wear resistance and salt damage resistance, and have been used at the expense of either wear resistance or salt damage resistance.

以上の背景において、本発明者が焼結材における耐摩耗性と耐塩害性について鋭意研究したところ、耐摩耗性を得るための硬質相として炭化クロム系の析出物を利用することで母相中のCr量が減少するが、母相にSiを拡散させることで母相の硬度を高めてCr量の減少分による硬度低下を補い、硬質相が少なくても耐摩耗性を向上できることを知見した。この関係を利用し、耐酸化性を有した上で耐摩耗性と耐塩害性の両方に優れさせた耐熱焼結材を提供できることを知見し、本発明に到達した。   In the above background, the present inventor has intensively studied the wear resistance and salt damage resistance in the sintered material. By using a chromium carbide-based precipitate as a hard phase for obtaining wear resistance, The amount of Cr in the steel decreases, but it has been found that the hardness of the parent phase can be increased by diffusing Si in the parent phase to compensate for the decrease in hardness due to the decrease in the amount of Cr, and the wear resistance can be improved even if the hard phase is small. . Utilizing this relationship, the inventors have found that it is possible to provide a heat-resistant sintered material that has both oxidation resistance and excellent wear resistance and salt damage resistance, and has reached the present invention.

本発明は、以上のような事情に鑑みてなされたものであり、耐酸化性を有した上で耐摩耗性と耐塩害性の両方に優れた耐熱焼結材の提供及びその製造方法の提供を目的とする。   The present invention has been made in view of the circumstances as described above, and provides a heat-resistant sintered material having both oxidation resistance and excellent wear resistance and salt damage resistance, and a method for producing the same. With the goal.

(1)本発明の耐熱焼結材は前記課題を解決するために、母相中に硬質相が分散された組織を有し、全体組成が質量%でCr:20〜38%、Mo:0.5〜3%、Si:3〜7%、C:0.5〜2.5%、残部がFeおよび不可避不純物からなる組成を有し、前記母相がFe−Cr−Mo−Siからなり、前記硬質相がCr−Fe−Mo−Cからなり、気孔率が2.0%以下であることを特徴とする。 (1) In order to solve the above-mentioned problems, the heat-resistant sintered material of the present invention has a structure in which a hard phase is dispersed in a matrix phase, and the total composition is Cr: 20 to 38%, Mo: 0. 5 to 3%, Si: 3 to 7%, C: 0.5 to 2.5%, the balance is composed of Fe and inevitable impurities, and the parent phase is composed of Fe-Cr-Mo-Si The hard phase is made of Cr—Fe—Mo—C and has a porosity of 2.0% or less.

FeとCrとMoとSiを含む母相中に、CrとFeとMoとCを含む硬質相を分散させた組織であると、Si添加により母相の強度を高くした上に炭化クロム系の硬質相の分散により耐摩耗性を良好にできる。また、気孔率を低くして緻密な構造とすることにより緻密な焼結材を得ることができる。このため、腐食性の液体や気体に晒されたとして内部まで腐食が進行するおそれが少なく、耐塩害性に優れた焼結材を得ることができる。
従って、優れた耐酸化性を維持した上で優れた耐塩害性と耐摩耗性を両立できる耐熱焼結材を提供できる。
When the hard phase containing Cr, Fe, Mo, and C is dispersed in the matrix containing Fe, Cr, Mo, and Si, the strength of the matrix is increased by adding Si, and the chromium carbide-based structure is added. Abrasion resistance can be improved by the dispersion of the hard phase. Further, a dense sintered material can be obtained by reducing the porosity to obtain a dense structure. For this reason, there is little possibility that corrosion will progress to the inside even if it is exposed to corrosive liquid or gas, and a sintered material excellent in salt damage resistance can be obtained.
Therefore, it is possible to provide a heat-resistant sintered material that can achieve both excellent salt damage resistance and wear resistance while maintaining excellent oxidation resistance.

(2)本発明の全体組成において前記Cr、Mo、Si、Cに加え、B:0.08〜0.8%あるいはP:0.2〜1.2%を含有し、残部がFeおよび不可避不純物である構成を採用できる。
(3)本発明において、母相がフェライト生地からなり、該フェライト生地中にCr−Fe−Mo−Cからなる硬質粒子が10〜40体積%分散されてなる構成を採用できる。
(2) In addition to Cr, Mo, Si, and C in the overall composition of the present invention, B: 0.08 to 0.8% or P: 0.2 to 1.2% is contained, with the balance being Fe and inevitable A configuration that is an impurity can be employed.
(3) In the present invention, it is possible to adopt a configuration in which the parent phase is made of a ferrite fabric, and 10 to 40% by volume of hard particles made of Cr—Fe—Mo—C are dispersed in the ferrite fabric.

(4)本発明の耐酸化性、高温耐摩耗性、耐塩害性に優れた耐熱焼結材の製造方法は、FeとCrとSiを少なくとも含み、必要に応じ更にMoを含むベース粉末に対し、SiとCを少なくとも含み、必要に応じて更にFeとCrとMoの少なくとも1つを含む添加材粉末を、質量%でCr:20〜38%、Mo:0.5〜3%、Si:3〜7%、C:0.5〜2.5%、残部がFeおよび不可避不純物からなる組成となるように混合して混合粉末を得る工程と、この混合粉末を加圧して圧粉体を作製する工程と、前記圧粉体を1100〜1280℃に加熱してFeとCrとMoとSiを含む母相中にCrとFeとMoとCを含む硬質相が分散された組織を有し、気孔率2.0%以下の焼結体を形成する工程を備えることを特徴とする。 (4) The method for producing a heat-resistant sintered material having excellent oxidation resistance, high-temperature wear resistance, and salt damage resistance according to the present invention comprises at least Fe, Cr, and Si, and further contains Mo as required. Additive powder containing at least Si and C, and further containing at least one of Fe, Cr, and Mo, if necessary, Cr: 20-38%, Mo: 0.5-3%, Si: 3 to 7%, C: 0.5 to 2.5%, the step of mixing so that the balance is composed of Fe and inevitable impurities to obtain a mixed powder, and pressing the mixed powder to obtain a green compact And a structure in which the green compact is heated to 1100 to 1280 ° C. and a hard phase containing Cr, Fe, Mo, and C is dispersed in a matrix containing Fe, Cr, Mo, and Si. And a step of forming a sintered body having a porosity of 2.0% or less.

原料粉末を調整する場合、FeとCrとSiを少なくとも含み、必要に応じ更にMoを含むベース粉末に対し、SiとCを少なくとも含み、必要に応じて更にFeとCrとMoの少なくとも1つを含む添加材粉末を混合すると、ベース粉末に含まれるSiの量を抑制した状態で原料粉末を調整することができる。そして、添加材粉末に含ませたSiを焼結時に拡散させて母相側のSi含有量を3.5〜7.0%の範囲に高くすることができる。
ベース粉末に初めから目的の高い濃度のSiを含有させておくと、ベース粉末が硬くなりすぎ、原料粉末を加圧して圧粉体とする場合に密度を高くすることができず、焼結後の気孔率を低くすることができない。
このため、上述の原料混合粉末とすることで焼結後の母相の強度を高くすることができ、硬質相の析出と相俟って優れた耐摩耗性の耐熱焼結材を製造できる。また、母相に高い濃度のSiを含ませることと気孔率を低くすることで耐塩害性に優れた耐熱焼結材を得ることができる。
When preparing the raw material powder, the base powder containing at least Fe, Cr and Si, and further containing Mo if necessary, contains at least Si and C, and if necessary, further contains at least one of Fe, Cr and Mo. When the additive powder containing is mixed, the raw material powder can be adjusted in a state where the amount of Si contained in the base powder is suppressed. And Si contained in additive powder can be diffused at the time of sintering, and Si content by the side of a mother phase can be made high in the range of 3.5 to 7.0%.
If the base powder contains the desired high concentration of Si from the beginning, the base powder becomes too hard, and when the raw material powder is pressed into a green compact, the density cannot be increased. The porosity cannot be lowered.
For this reason, by using the above-mentioned raw material mixed powder, the strength of the matrix after sintering can be increased, and an excellent wear-resistant heat-resistant sintered material can be produced in combination with the precipitation of the hard phase. In addition, a heat-resistant sintered material excellent in salt damage resistance can be obtained by including a high concentration of Si in the matrix and lowering the porosity.

(5)本発明の製造方法において、前記混合粉末にFeB粉末を全体組成に対しB:0.08〜0.8%となるように、あるいは、FeP粉末を全体組成に対しP:0.2〜1.2%となるように混合することができる。
(6)本発明の製造方法において、前記焼結体を形成する工程により、前記母相中に前記硬質相を10〜40体積%分散させることができる。
(5) In the production method of the present invention, FeB powder is added to the mixed powder so that the B: 0.08 to 0.8% with respect to the total composition, or the FeP powder with respect to the total composition is P: 0.2. It can mix so that it may become -1.2%.
(6) In the production method of the present invention, the hard phase can be dispersed in an amount of 10 to 40% by volume in the matrix phase by the step of forming the sintered body.

本発明は、全体組成でFe、Cr、Mo、Si、Cを特定量含有し、FeとCrとMoとSiを含む母相中にCrとFeとMoとCを含む硬質相を分散させた組織を有し、母相に含有させるSiの量を高くすることによって母相の強度を高め、炭化クロム系の硬質相の分散により耐摩耗性を良好にできる。また、気孔率を低くして緻密な構造とすることにより緻密な焼結材を得ることができる。このため、腐食性の液体や気体に晒されたとして内部まで腐食が進行するおそれが少なく、耐塩害性に優れた焼結材を得ることができる。
従って、優れた耐酸化性を維持した上で優れた耐塩害性と耐摩耗性を両立できる耐熱焼結材を提供できる。
このため本願の耐熱焼結材は、ターボチャージャーに組み込まれる軸受けやブッシュなどの機構部品、エンジンから排出される高温かつ腐食性の排ガスに常に晒される上に、可動部品であり、摺動特性の面においても優れている機構部品として有効に適用できる。
The present invention contains a specific amount of Fe, Cr, Mo, Si, and C in the overall composition, and a hard phase containing Cr, Fe, Mo, and C is dispersed in a parent phase containing Fe, Cr, Mo, and Si. The strength of the matrix phase is increased by increasing the amount of Si contained in the matrix and contained in the matrix phase, and the wear resistance can be improved by the dispersion of the chromium carbide hard phase. Further, a dense sintered material can be obtained by reducing the porosity to obtain a dense structure. For this reason, there is little possibility that corrosion will progress to the inside even if it is exposed to corrosive liquid or gas, and a sintered material excellent in salt damage resistance can be obtained.
Therefore, it is possible to provide a heat-resistant sintered material that can achieve both excellent salt damage resistance and wear resistance while maintaining excellent oxidation resistance.
For this reason, the heat-resistant sintered material of the present application is always exposed to mechanical parts such as bearings and bushes incorporated in the turbocharger, high-temperature and corrosive exhaust gas discharged from the engine, and is a movable part with sliding characteristics. It can be effectively applied as a mechanical component that is excellent in terms of surface.

本発明に係る焼結摺動材により形成された軸受け部材の一例を示す斜視図。The perspective view which shows an example of the bearing member formed with the sintered sliding material which concerns on this invention. 同軸受け部材の金属組織の一例を示す模式図。The schematic diagram which shows an example of the metal structure of a coaxial receiving member. 実施例において製造された試料の金属組織の一例を示す組織写真。The structure photograph which shows an example of the metal structure of the sample manufactured in the Example. 実施例試料の一部について全体Cr量と母相Cr量の関係を測定した結果を示すグラフ。The graph which shows the result of having measured the relationship between the whole Cr amount and the amount of mother phase Cr about a part of Example sample.

以下、本発明の一実施形態について図面を参照しながら説明する。
図1は本発明に係る耐熱焼結材からなる円筒状の軸受け部材1を示し、この軸受け部材1は一例としてターボチャージャー用のノズル機構やバルブ機構に組み込まれる軸受けに用いられる。図2は軸受け部材1を構成する耐熱焼結材の拡大組織写真の模式図である。
耐熱焼結材は、一例として、図2に示すようにFeとCrとMoとSiを含む母相2の中にFeとCrとMoとCを含む不定形の硬質相3が複数分散された組織を有する。また、図2に示す組織内において黒丸で示す空孔(気孔)5が複数点在されている。
母相2は一例として、質量%でCr:15〜35%、Mo:0.4〜2.5%、Si:3.5〜7.0%を含み、残部Feおよび不可避不純物からなる組成を有する。このような母相2を得るためには、全体組成としてCrを20〜38%含むことが必要である。
硬質相3は一例として、質量%でCr:40〜75%、Mo:1.0〜4.5%、C:5.0〜8.5%を含み、残部Feおよび不可避不純物からなる組成を有する。全組織に対する硬質相3の体積分率は10〜40%の範囲であることが好ましい。
また、全体の組成が質量%でCr:20〜38%、Mo:0.5〜3.0%、Si:3.0〜7.0%、C:0.5〜2.5%を含み、残部Feおよび不可避不純物からなる組成を有し、組織全体における気孔率が2.0%以下の耐熱焼結材であることが好ましい。
Hereinafter, an embodiment of the present invention will be described with reference to the drawings.
FIG. 1 shows a cylindrical bearing member 1 made of a heat-resistant sintered material according to the present invention. This bearing member 1 is used for a bearing incorporated in a nozzle mechanism or a valve mechanism for a turbocharger as an example. FIG. 2 is a schematic diagram of an enlarged structure photograph of the heat-resistant sintered material constituting the bearing member 1.
As an example, the heat-resistant sintered material includes a plurality of amorphous hard phases 3 containing Fe, Cr, Mo, and C dispersed in a parent phase 2 containing Fe, Cr, Mo, and Si as shown in FIG. Have an organization. Further, a plurality of pores (pores) 5 indicated by black circles are scattered in the structure shown in FIG.
As an example, the mother phase 2 contains Cr: 15 to 35% by mass, Mo: 0.4 to 2.5%, Si: 3.5 to 7.0%, and a composition comprising the balance Fe and inevitable impurities. Have. In order to obtain such a mother phase 2, it is necessary to contain 20 to 38% of Cr as a whole composition.
As an example, the hard phase 3 contains Cr: 40 to 75% by mass, Mo: 1.0 to 4.5%, C: 5.0 to 8.5%, and the balance Fe and inevitable impurities. Have. The volume fraction of the hard phase 3 with respect to the whole structure is preferably in the range of 10 to 40%.
Moreover, the whole composition contains Cr: 20-38%, Mo: 0.5-3.0%, Si: 3.0-7.0%, C: 0.5-2.5% in mass% In addition, it is preferably a heat-resistant sintered material having a composition composed of the remaining Fe and inevitable impurities and having a porosity of 2.0% or less in the entire structure.

前記FeとCrとMoとSiを含む母相2は一例としてFe−Cr−Mo−Siからなり、前記FeとCrとMoとCを含む硬質相3は一例としてCr−Fe−Mo−Cからなる炭化物相である。
なお、母相2と硬質相3の組成については後述する実施例試料のEDX分析(エネルギー分散型蛍光X線分析)結果から上述の組成であることが判明している。
The parent phase 2 containing Fe, Cr, Mo and Si is made of Fe—Cr—Mo—Si as an example, and the hard phase 3 containing Fe, Cr, Mo and C is made of Cr—Fe—Mo—C as an example. This is a carbide phase.
In addition, about the composition of the mother phase 2 and the hard phase 3, it turns out that it is the above-mentioned composition from the EDX analysis (energy dispersive X-ray fluorescence analysis) result of the Example sample mentioned later.

以下、本実施形態の耐熱焼結材における各組成比の限定理由について説明する。
「Cr量:20〜38質量%」
母相2のCr量は耐酸化性の観点から最低限母相中に12質量%以上含まれていることが必要であり、耐酸化性に加えて耐塩害性も満たすためには28質量%以上含まれていることが必要である。しかし、SiやMoも耐酸化性、耐塩害性に寄与することからCr量は15質量%以上含まれていればよい。また、35質量%を超える場合はSi添加の影響もあり、Cr量としては少ないが、σ相を形成し、非常に脆くなるおそれがある。また、耐塩害性も悪化するため、母相2のCr量は15〜35質量%とすることが好ましい。
硬質相3の析出によって母相2のCr量が減るため、母相2のCr量として15〜35質量%を満たすには、全体としてCr含有量を20〜38質量%とする必要がある。
Hereinafter, the reasons for limiting each composition ratio in the heat-resistant sintered material of this embodiment will be described.
“Cr content: 20 to 38% by mass”
From the viewpoint of oxidation resistance, the amount of Cr in the mother phase 2 must be at least 12% by mass in the matrix, and 28% by mass in order to satisfy salt damage resistance in addition to oxidation resistance. It is necessary to be included above. However, since Si and Mo also contribute to oxidation resistance and salt damage resistance, the Cr content should be 15% by mass or more. Moreover, when it exceeds 35 mass%, there is also an influence of Si addition, and although there is little Cr amount, there exists a possibility that a (sigma) phase may be formed and it may become very weak. Moreover, since salt damage resistance also deteriorates, it is preferable that the amount of Cr of the mother phase 2 is 15 to 35% by mass.
Since the amount of Cr in the parent phase 2 decreases due to the precipitation of the hard phase 3, in order to satisfy 15 to 35% by mass as the amount of Cr in the mother phase 2, it is necessary to make the Cr content 20 to 38% by mass as a whole.

「Mo量:0.5〜3.0質量%」
Moは耐塩害性の向上に寄与する。Moを0.5質量%以上含むことで耐塩害性の向上に寄与し、その向上効果は3.0質量%を超えて含有していても有効であるが効果は飽和する。Moは高価な元素なので、Mo含有量は少ない方がコストの面では望ましく、また、母相2におけるCrのσ相形成に寄与するため、Mo含有量の上限を3.0質量%とすることが好ましい。母相2のMo量を0.4質量%以上にするためには、全体としてMoを0.5質量%以上含むことが好ましい。
“Mo amount: 0.5 to 3.0 mass%”
Mo contributes to improvement of salt damage resistance. Containing 0.5% by mass or more of Mo contributes to improvement of salt damage resistance, and the improvement effect is effective even if it exceeds 3.0% by mass, but the effect is saturated. Since Mo is an expensive element, it is desirable in terms of cost to have a small Mo content. In addition, since it contributes to the formation of the σ phase of Cr in the parent phase 2, the upper limit of the Mo content should be 3.0% by mass. Is preferred. In order to make the amount of Mo of the mother phase 2 0.4 mass% or more, it is preferable that Mo is contained 0.5 mass% or more as a whole.

「Si量:3.0〜7.0質量%」
耐塩害性を満足するには母相2のSi量が3.5%以上必要である。そのためには全体としてSi量が3.0質量%以上必要である。全体のSi量が7.0質量%を超える場合は硬くなりすぎて、被削性が悪化し、量産性に欠けた材料となるおそれがある。そのため、耐塩害性、耐摩耗性、量産性の観点から全体のSi量を3.0〜7.0質量%とする必要がある。
“Si amount: 3.0 to 7.0 mass%”
To satisfy the salt damage resistance, the amount of Si in the mother phase 2 needs to be 3.5% or more. For that purpose, the Si amount as a whole is required to be 3.0% by mass or more. When the total amount of Si exceeds 7.0% by mass, the material becomes too hard and the machinability is deteriorated, which may result in a material lacking in mass productivity. Therefore, the total Si amount needs to be 3.0 to 7.0% by mass from the viewpoint of salt damage resistance, wear resistance, and mass productivity.

「C量:0.5〜2.5質量%」
全体のC量が0.5質量%未満のときは析出する硬質相3の量が少なく、耐摩耗性を満足しない。また、全体のC量が2.5質量%を超える場合は硬質相3の析出する量が多くなり過ぎ、母相2のCr量が減るため、耐塩害性を満足しない。そのため、全体に含まれるC量は0.5〜2.5質量%とする必要がある。
「気孔率:2.0%以下」
気孔率が大きいと表面積が増加し、酸化しやすくなる。そのため、気孔率は小さい方が耐酸化性、耐塩害性の向上を図ることでき、気孔率2.0%以下とすることが望ましい。
“C amount: 0.5 to 2.5 mass%”
When the total amount of C is less than 0.5% by mass, the amount of precipitated hard phase 3 is small and the wear resistance is not satisfied. On the other hand, when the total amount of C exceeds 2.5% by mass, the amount of the hard phase 3 precipitated becomes too large, and the amount of Cr in the parent phase 2 is decreased, so that the salt damage resistance is not satisfied. Therefore, the amount of C contained in the whole needs to be 0.5-2.5 mass%.
“Porosity: 2.0% or less”
When the porosity is large, the surface area increases and oxidation is likely to occur. Therefore, the smaller the porosity, the better the oxidation resistance and salt damage resistance, and the porosity is preferably 2.0% or less.

「製造方法」
前記耐熱焼結材の製造方法は後に詳述するが、一例として、ベース粉末としてのFe−Cr−Mo−Si合金粉末と、添加材としてのSiC粉末と、焼結助剤としてのFeB粉末を前述の組成範囲となるように秤量し、均一混合して得られた混合粉末を490〜980MPa程度の圧力でプレス成形し、得られたプレス成形体を1100〜1280℃で0.5〜2時間程度焼結することにより得られる。
前記ベース粉末はFe−Cr−Mo−Si合金粉末の代わりにFe−Cr−Si合金粉末を用いても良い。焼結助剤としてFeB粉末の代わりにFeP粉末を用いることもできるが、焼結助剤は省略しても良い。
前記添加材粉末はSiCの他に、FeSi粉末、CrSi粉末、C粉末、FeCr合金粉末、FeMo合金粉末などを前記ベース粉末に対し前述の組成範囲となるように混合しても良い。
"Production method"
The method for producing the heat-resistant sintered material will be described in detail later. As an example, Fe-Cr-Mo-Si alloy powder as a base powder, SiC powder as an additive, and FeB powder as a sintering aid are used. The mixed powder obtained by weighing and uniformly mixing the above composition range is press-molded at a pressure of about 490 to 980 MPa, and the obtained press-molded body is obtained at 1100 to 1280 ° C. for 0.5 to 2 hours. Obtained by sintering to a certain extent.
The base powder may be Fe-Cr-Si alloy powder instead of Fe-Cr-Mo-Si alloy powder. FeP powder can be used instead of FeB powder as a sintering aid, but the sintering aid may be omitted.
In addition to SiC, the additive powder may be mixed with FeSi powder, CrSi powder, C powder, FeCr alloy powder, FeMo alloy powder or the like so as to have the above-mentioned composition range with respect to the base powder.

前述の各粉末を用いる場合、各粉末の粒径(D50)を5〜100μm程度とすることが好ましい。
焼結助剤としてFeB粉末を用いる場合、全体に対するBの添加量として0.08〜0.8%の範囲とすることが望ましい。
焼結助剤としてFeP粉末を用いる場合、全体に対するPの添加量として0.2〜1.2%とすることが好ましい。
焼結助剤はFeBの他にFePを用いても良く、それらを混合して用いても良く、用いる粉末の粒径を5〜20μmとして微粉とする場合、これらの焼結助剤は省略しても良い。
When each of the powders described above is used, the particle size (D50) of each powder is preferably about 5 to 100 μm.
When FeB powder is used as a sintering aid, the amount of B added to the whole is preferably in the range of 0.08 to 0.8%.
When FeP powder is used as a sintering aid, the amount of P added to the whole is preferably 0.2 to 1.2%.
As the sintering aid, FeP may be used in addition to FeB, or a mixture thereof may be used. When the particle size of the powder to be used is 5 to 20 μm to make a fine powder, these sintering aids are omitted. May be.

原料混合粉末を作製する場合、原料粉末として30〜100μm程度の粒径のものを用いる場合は、焼結助剤を0.4〜4.0%程度添加して焼結すれば、目的の耐熱焼結材を製造できる。焼結助剤を用いない場合は、原料粉末の粒径を5〜20μm程度の微粉にすれば、目的の耐熱焼結材を製造できる。
上述の粒径の原料粉末を用い、焼結助剤としてFeBを用いる場合、全体に対するBの添加量として0.08%を下回る量の場合は低密度化するため耐酸化性、耐塩害性、耐摩耗性のいずれかが劣化するおそれがある。全体に対するBの添加量が0.8%を超えるようでは焼結後の変形が大きくなり、目的の形状を維持できなくなる。例えば、図1に示すような軸受け部材1とした場合に内径あるいは外径の寸法が変化し、製品形状を保てないおそれがある。
上述の粒径の原料粉末を用い、焼結助剤としてFePを用いる場合、全体に対するPの添加量として0.2%を下回る量の場合は耐酸化性、耐塩害性、耐摩耗性のいずれかが劣化し、1.2%を超える添加量の場合は耐塩害性と耐摩耗性が低下する。
When preparing a raw material mixed powder, if a raw material powder having a particle size of about 30 to 100 μm is used, if a sintering aid is added at about 0.4 to 4.0% and sintered, the desired heat resistance is obtained. A sintered material can be manufactured. When the sintering aid is not used, the target heat-resistant sintered material can be produced by making the particle size of the raw material powder as fine as about 5 to 20 μm.
When using the raw material powder having the above-mentioned particle size and using FeB as a sintering aid, the amount of B added to the whole is less than 0.08% in order to reduce the density so that the oxidation resistance, salt damage resistance, Any of the wear resistance may deteriorate. If the amount of B added to the whole exceeds 0.8%, deformation after sintering becomes large, and the target shape cannot be maintained. For example, when the bearing member 1 as shown in FIG. 1 is used, the inner diameter or the outer diameter may change, and the product shape may not be maintained.
When the raw material powder having the above-mentioned particle size is used and FeP is used as a sintering aid, the amount of P added to the whole is less than 0.2%, any of oxidation resistance, salt damage resistance, and wear resistance. When the amount of addition exceeds 1.2%, salt damage resistance and wear resistance are reduced.

原料粉末として粒径(D50)が10μmの粉末は十分製造可能であるが、粒径が10μm以下になると粉末の体積に対し表面積割合が増えて、粉末の酸素量が増加し、焼結性が低下する。そのため、粒径5μm以下の微粉を用いると気孔率2%以下を達成できない可能性がある。微粉の場合、例えば、粒径5〜20μmのものを用いることができ、それ以上の粒径の原料粉末の場合は焼結助剤の添加が必要になる。
ベース粉末はCr量が多く酸化しやすいため、酸素量を抑えるためにSiが必要となる。Si量を1%よりも若干低くすることはできるが、酸素量抑制のために0.5〜0.8%程度は含有することとなる。このため、ベース粉末は1%程度Siを含有することが望ましい。母相2のSi量を3.5%以上にすることはSi源としてCrSi粉末を必要量添加することで調整することが可能となる。
As a raw material powder, a powder having a particle size (D50) of 10 μm can be sufficiently produced. However, when the particle size is 10 μm or less, the surface area ratio increases with respect to the volume of the powder, the amount of oxygen in the powder increases, and the sinterability increases. descend. Therefore, if a fine powder having a particle size of 5 μm or less is used, a porosity of 2% or less may not be achieved. In the case of fine powder, for example, one having a particle size of 5 to 20 μm can be used, and in the case of a raw material powder having a particle size larger than that, it is necessary to add a sintering aid.
Since the base powder has a large amount of Cr and is easily oxidized, Si is required to suppress the amount of oxygen. The amount of Si can be made slightly lower than 1%, but about 0.5 to 0.8% is contained to suppress the amount of oxygen. For this reason, it is desirable that the base powder contains about 1% Si. The Si amount of the matrix 2 can be adjusted to 3.5% or more by adding a necessary amount of CrSi powder as a Si source.

前記混合粉末をプレス装置の型に投入し、プレス成形して目的の形状、例えば、筒状の圧粉体を得る。
成形する場合、プレス装置による成形の他に熱間静水圧加圧(HIP)、冷間静水圧加圧(CIP)など、種々の方法を採用しても良い。
この圧粉体に対し、例えば、真空雰囲気あるいは窒素雰囲気中において1100〜1280℃の範囲内の所定の温度で0.5〜2時間程度焼結することでFeとCrとMoとSiを含む母相中にCrとFeとMoとCを含む炭化物系の硬質相を分散させた耐熱焼結材からなる例えば図1に示す筒状の軸受け部材1を得ることができる。
この軸受け部材1を構成する耐熱焼結材は、例えば図2に示すようにFeCrMoSiの母相2中に炭化物系の硬質相3を分散させた金属組織を有する。図2は後述する実施例で製造された耐熱焼結材試料の一例について組織の一部を光学顕微鏡により拡大視した写真の模式図である。図2に示すように耐熱焼結材1の金属組織中には焼結時に生成した気孔5が多少(2.0%以下程度)残留していても良い。
The mixed powder is put into a mold of a press apparatus and press-molded to obtain a green compact having a desired shape, for example, a cylindrical shape.
In the case of molding, various methods such as hot isostatic pressing (HIP) and cold isostatic pressing (CIP) may be employed in addition to molding by a press device.
For example, the green compact is sintered in a vacuum atmosphere or a nitrogen atmosphere at a predetermined temperature within a range of 1100 to 1280 ° C. for about 0.5 to 2 hours, thereby allowing the mother body containing Fe, Cr, Mo, and Si. For example, a cylindrical bearing member 1 shown in FIG. 1 made of a heat-resistant sintered material in which a carbide-based hard phase containing Cr, Fe, Mo, and C is dispersed in the phase can be obtained.
The heat-resistant sintered material constituting the bearing member 1 has, for example, a metal structure in which a carbide-based hard phase 3 is dispersed in a FeCrMoSi matrix phase 2 as shown in FIG. FIG. 2 is a schematic diagram of a photograph in which a part of the structure is magnified by an optical microscope with respect to an example of a heat-resistant sintered material sample manufactured in Examples described later. As shown in FIG. 2, in the metal structure of the heat-resistant sintered material 1, pores 5 generated during sintering may remain (approximately 2.0% or less).

FeCrMoSi合金粉末とFeB粉末とSiC粉末を混合し、プレス成形してから焼結した場合、FeBは液相となって他の粉末粒子の粒界に濡れ拡がり、気孔を埋める作用を奏する。このため、前記FeCrMoSi合金粉末とSiC粉末の粒界を液相となったFeBで埋めることができる結果、焼結後の気孔率を低減できる。従って高密度の焼結材とすることができる。   When FeCrMoSi alloy powder, FeB powder, and SiC powder are mixed, press-molded and then sintered, FeB becomes a liquid phase and wets and spreads at the grain boundaries of other powder particles, thereby filling pores. Therefore, the grain boundary between the FeCrMoSi alloy powder and the SiC powder can be filled with FeB in a liquid phase, so that the porosity after sintering can be reduced. Therefore, it can be set as a high-density sintered material.

FeB粉末を構成するFeとBは、FeB二元系状態図からも明らかなようにFe−4質量%Bの組成で1174℃に共晶点を有するので、焼結温度で共晶化により液相を呈し、この液相が焼結助剤として作用し、焼結密度を向上させる。このため気孔生成が少なく焼結後の密度の高い焼結体、即ち、気孔率の低い緻密な焼結体を得ることができる。気孔率が低いことで焼結体の内部に外部から腐食性の液体や気体が侵入し難くなり、耐酸化性向上に寄与する。
上述の温度で焼結する場合、FeCrMoSi合金粉末の周囲に存在するFeやCr、Mo、Cが相互拡散するので、炭化物系の硬質相3が析出し、これらの硬質相3母相間に分散する組織となる。即ち、Fe−Cr−Mo−Si母相間にCr−Fe−Mo−Cの組成の炭化物系析出物である硬質相3が分散された組織となる。これら硬質相3の分散により好適な耐摩耗性を得ることができる。
Fe and B constituting the FeB powder have a eutectic point at 1174 ° C. with a composition of Fe-4 mass% B as is clear from the FeB binary phase diagram. The liquid phase acts as a sintering aid and improves the sintered density. Therefore, it is possible to obtain a sintered body having a low porosity and a high density after sintering, that is, a dense sintered body having a low porosity. The low porosity makes it difficult for corrosive liquids and gases to enter the sintered body from the outside, contributing to an improvement in oxidation resistance.
When sintering at the above temperature, Fe, Cr, Mo, and C existing around the FeCrMoSi alloy powder are interdiffused, so that the carbide-based hard phase 3 is precipitated and dispersed between these hard phase 3 matrix phases. Become an organization. That is, it becomes a structure in which the hard phase 3 which is a carbide-based precipitate having a Cr—Fe—Mo—C composition is dispersed between the Fe—Cr—Mo—Si matrix. A suitable wear resistance can be obtained by the dispersion of the hard phase 3.

ベース粉末として用いるFe−Cr−Mo−Si合金粉末は、Siを含むがこのベース粉末に1%を超えるSiを添加すると硬くなりすぎてプレス成形の際に圧縮が困難となるため、ベース粉末に添加するSi量は1.0%以下とすることが好ましい。
1.0%以下のSiを含むベース粉末を用いて耐熱焼結材を製造する場合、焼結後母相2中に3.0〜7.0質量%のSiを含ませるために添加材としてSiC粉末を用いる。上述の温度と圧力条件で焼結することにより、SiC粉末からSiがベース粉末側に拡散するとともにベース粉末を主体として構成される素地に硬質相3が析出する。SiC粉末からSiが素地側に拡散し、ベース粉末が含有していていたSi量に付加するように素地側のSi量が増加するとともに添加材に含まれているC量に応じた量の硬質相3が析出し、図2に示す組織を有する耐熱焼結材が得られる。
The Fe-Cr-Mo-Si alloy powder used as the base powder contains Si, but if more than 1% of Si is added to the base powder, it becomes too hard and difficult to compress during press molding. The amount of Si to be added is preferably 1.0% or less.
When producing a heat-resistant sintered material using a base powder containing 1.0% or less of Si, as an additive to contain 3.0 to 7.0% by mass of Si in the matrix 2 after sintering Use SiC powder. By sintering at the above-mentioned temperature and pressure conditions, Si diffuses from the SiC powder to the base powder side, and the hard phase 3 is deposited on the base mainly composed of the base powder. Si diffuses from the SiC powder to the substrate side, the amount of Si on the substrate side increases so as to be added to the amount of Si contained in the base powder, and an amount of hard according to the amount of C contained in the additive Phase 3 is precipitated, and a heat-resistant sintered material having the structure shown in FIG. 2 is obtained.

FeベースにCrとMoとSiを含有させたFe−Cr−Mo−Siからなる母相2により耐酸化性と耐塩害性を確保し、更に母相2に3.0〜7.0%添加したSiの影響により母相2の強度を高くすることができる。また、添加材のSiCから供給されるC量に応じた量のCr−Fe−Mo−C系の硬質相3が析出し、硬質相3の耐摩耗性と母相2の強度向上効果が相俟って優れた耐摩耗性が得られる。
硬質相3の生成時、硬質相3が母相2から一部のCrを奪うが、母相中にSiを拡散させて母相中に高濃度のSiを3.0〜7.0%含有させて母相の耐塩害性を向上させるとともに母相強度を高くすることができる。
The mother phase 2 made of Fe-Cr-Mo-Si containing Cr, Mo, and Si in the Fe base ensures oxidation resistance and salt damage resistance. Further, 3.0 to 7.0% added to the mother phase 2 The strength of the parent phase 2 can be increased due to the influence of Si. Further, an amount of Cr—Fe—Mo—C hard phase 3 corresponding to the amount of C supplied from the additive SiC is precipitated, and the wear resistance of hard phase 3 and the strength improvement effect of parent phase 2 are in phase. As a result, excellent wear resistance is obtained.
When the hard phase 3 is formed, the hard phase 3 takes some Cr from the mother phase 2, but Si is diffused in the mother phase to contain 3.0 to 7.0% of high concentration Si in the mother phase. Thus, the salt damage resistance of the mother phase can be improved and the strength of the mother phase can be increased.

なお、本実施形態においては上述の耐熱焼結材を用いてリング状の軸受け部材1を構成したが、本実施形態の耐熱焼結材はターボチャージャーのノズル機構やバルブ機構に設けられる軸部材やロッド部材、軸受け部材、プレート等に広く適用できるのは勿論である。   In the present embodiment, the ring-shaped bearing member 1 is configured using the above-described heat-resistant sintered material. However, the heat-resistant sintered material of the present embodiment is a shaft member provided in a nozzle mechanism or a valve mechanism of a turbocharger. Of course, it can be widely applied to rod members, bearing members, plates and the like.

以上説明の製造方法により得られた耐熱焼結材において、母相、硬質相いずれも十分な量のCrを含むので、良好な耐酸化性と耐塩害性を示し、硬質相は母相より硬い硬質相からなり、Siを多く含む母相により母相の強度も向上しているので、良好な耐酸化性と耐塩害性に加えて良好な耐摩耗性を有する。
従って上述の軸受け部材1はターボチャージャー等の軸受け部に適用して高温の排ガスに晒されながら軸による摺動を受けた場合であっても、耐酸化性に優れ、耐塩害性に優れ、耐摩耗性に優れる。
In the heat-resistant sintered material obtained by the manufacturing method described above, since both the parent phase and the hard phase contain a sufficient amount of Cr, it exhibits good oxidation resistance and salt resistance, and the hard phase is harder than the parent phase Since it consists of a hard phase and the strength of the parent phase is improved by the mother phase containing a large amount of Si, it has good wear resistance in addition to good oxidation resistance and salt damage resistance.
Therefore, the above-described bearing member 1 is applied to a bearing portion such as a turbocharger, and is excellent in oxidation resistance, salt resistance, and resistance even when it is slid by a shaft while being exposed to high-temperature exhaust gas. Excellent wear resistance.

なお、本実施形態の耐熱焼結材はターボチャージャーの軸の構成材として利用できるほか、耐酸化性、耐塩害性、耐摩耗性について高温の腐食ガスに晒される環境に設けられる各種機構部品の構成材として利用することができるのは勿論である。   In addition, the heat-resistant sintered material of this embodiment can be used as a constituent material of the shaft of the turbocharger, as well as various mechanical parts provided in an environment exposed to high-temperature corrosive gas with respect to oxidation resistance, salt damage resistance, and wear resistance. Of course, it can be used as a component.

以下、実施例を示して本発明を更に詳細に説明するが、本発明はこれらの実施例に限定されるものではない。
原料粉末として、表1に示すFe−Cr−Mo−Si合金粉末(ベース粉末)とFeB粉末(焼結助剤)とSiC粉末(添加材)を用意し、これらの粉末を以下の表に示す最終成分組成となるように配合し、V型混合機で30分間混合した後、この混合粉末を成形圧力490〜980MPaにてプレス成形して筒状の圧粉体を作製した。
次に、この圧粉体を真空雰囲気中において、1100〜1280℃の温度で0.5〜2.0時間焼結し、筒状の耐熱焼結材を得た。
いずれの耐熱焼結材も以下の各試験毎に好適な形状に成形し各試験に供した。
EXAMPLES Hereinafter, although an Example is shown and this invention is demonstrated further in detail, this invention is not limited to these Examples.
As raw material powder, Fe-Cr-Mo-Si alloy powder (base powder), FeB powder (sintering aid) and SiC powder (additive) shown in Table 1 are prepared, and these powders are shown in the following table. After blending so as to have the final component composition and mixing with a V-type mixer for 30 minutes, this mixed powder was press-molded at a molding pressure of 490 to 980 MPa to produce a cylindrical green compact.
Next, this green compact was sintered in a vacuum atmosphere at a temperature of 1100 to 1280 ° C. for 0.5 to 2.0 hours to obtain a cylindrical heat-resistant sintered material.
Each heat-resistant sintered material was formed into a suitable shape for each of the following tests and used for each test.

また、他の試験例として以下の表1に示す組成になるように、ベース粉末に対しSi源として、SiC、FeSi、CrSiのいずれかの粉末を用い、C源としてC(炭素粉末)を用い、Cr量およびMo量の調節のためにCrSi、FeCr、FeMoの何れかの粉末を使用し、No.1〜No.31の試料を作製した。
また、焼結助剤としてFeBとFePのいずれかの粉末と焼結助剤を略する場合を使い分け、添加材として以下の他の添加材粉末を使い分けて耐熱焼結材試料を製造した。
Further, as another test example, so as to have the composition shown in Table 1 below, any powder of SiC, FeSi, or CrSi is used as the Si source with respect to the base powder, and C (carbon powder) is used as the C source. In order to adjust the Cr amount and the Mo amount, any powder of CrSi, FeCr, FeMo is used. 1-No. 31 samples were prepared.
Further, a heat-resistant sintered material sample was manufactured by properly using either the FeB or FeP powder as a sintering aid and the case where the sintering aid is omitted, and using the following other additive powders as additives.

No.1〜31の試料を作製する場合、用いた粉末の平均粒径は、FeCrMoSi合金粉末(D50=100μm)、FeCrSi合金粉末(D50=100μm)、FeCr合金粉末(D50=40μm)、SiC粉末(D50=10μm)、C粉末(D50=20μm)、CrSi粉末(D50=10μm)、FeMo粉末(D50=60μm)を用いた。また、焼結助剤としてFeB粉末(D50=30μm)とFeP粉末(D50=30μm)を用いた。
No.26〜31の試料を作製する場合は、FeCrMoSi合金粉末(D50=8μm)の微粉末を用いた。
When the samples No. 1 to 31 were prepared, the average particle size of the powder used was FeCrMoSi alloy powder (D50 = 100 μm), FeCrSi alloy powder (D50 = 100 μm), FeCr alloy powder (D50 = 40 μm), SiC powder. (D50 = 10 μm), C powder (D50 = 20 μm), CrSi powder (D50 = 10 μm), and FeMo powder (D50 = 60 μm) were used. Further, FeB powder (D50 = 30 μm) and FeP powder (D50 = 30 μm) were used as sintering aids.
When the samples No. 26 to 31 were prepared, fine powder of FeCrMoSi alloy powder (D50 = 8 μm) was used.

「気孔率」
気孔率はアルキメデス法にて測定した。
「耐酸化性試験」
耐酸化性試験においては、外径:20mm×内径:10mm×高さ:5mmの寸法を有し、以下の表1〜表5に示される組成成分のリング状耐熱焼結材(軸受け部材)を得、試験を行った。
条件は大気中800℃、100時間保持し、重量の変化量と試料の表面積から酸化増量を求めた。酸化増量の判定基準は1mg/cm以下を○とし、この値を超える場合は×とした。
"Porosity"
The porosity was measured by Archimedes method.
"Oxidation resistance test"
In the oxidation resistance test, a ring-shaped heat-resistant sintered material (bearing member) having a size of outer diameter: 20 mm × inner diameter: 10 mm × height: 5 mm and having the composition components shown in Tables 1 to 5 below. Obtained and tested.
The conditions were maintained at 800 ° C. in the atmosphere for 100 hours, and the oxidation increase was determined from the change in weight and the surface area of the sample. The criterion for determining the amount of increase in oxidation was 1 mg / cm 2 or less as ◯, and when exceeding this value, it was marked as x.

「耐摩耗性試験」
ロールオンブロック試験を行うために、ブロックの上に円柱のシャフトを載せ90゜往復回転させる試験を行った。測定温度600℃、30分間行い、往復回数を2000回として摩耗量を評価した。
摩耗量測定は、3Dマイクロスコープにより摩耗面の写真を撮影し、摩耗深さを測定した。摩耗試験片の形状は50×10×5mm厚の焼結材からなる直方体形状のブロックである。相手材のシャフトは、SUS316からなる直径8mm、長さ150mmのステンレスロッドであり、前記ブロックに、加重80Nで、このステンレスロッドを押し付けつつ、モーターの回転軸として、往復回転させて試験した。
耐摩耗性試験の判定基準は40μm未満の試料を○、40μm以上の試料を×とした。
"Abrasion resistance test"
In order to perform the roll-on block test, a test was performed in which a cylindrical shaft was placed on the block and rotated 90 ° reciprocally. The measurement was performed at a temperature of 600 ° C. for 30 minutes, and the amount of wear was evaluated with 2000 reciprocations.
The amount of wear was measured by taking a photograph of the wear surface with a 3D microscope and measuring the wear depth. The shape of the abrasion test piece is a rectangular parallelepiped block made of a sintered material having a thickness of 50 × 10 × 5 mm. The shaft of the mating member is a stainless steel rod made of SUS316 having a diameter of 8 mm and a length of 150 mm. The stainless steel rod was pressed against the block at a load of 80 N, and tested by reciprocating as a motor rotation shaft.
Judgment criteria of the abrasion resistance test were ○ for samples of less than 40 μm and x for samples of 40 μm or more.

「耐塩害性試験」
耐塩害性については、塩水噴霧試験(JISZ2371に準ずる)により把握した。5%NaCl水溶液の塩水噴霧(35℃、24時間)により外観上の錆の発生面積率を評価し、錆び発生による腐食面積率が1%以下の試料を合格とした。試験片は外径20mm、内径10mm、高さ5mmのリング状試験片である。
○印は錆びによる腐食面積率が1%以下、×印は錆びによる腐食面積率が1%を超えることを確認できたものに相当する。
以上の試験結果を以下の表1に示す。
"Salt damage resistance test"
The salt damage resistance was grasped by a salt spray test (according to JISZ2371). The appearance area ratio of rust on the appearance was evaluated by spraying a salt solution with a 5% NaCl aqueous solution (35 ° C., 24 hours), and a sample having a corrosion area ratio of 1% or less due to the occurrence of rust was accepted. The test piece is a ring-shaped test piece having an outer diameter of 20 mm, an inner diameter of 10 mm, and a height of 5 mm.
The symbol ○ indicates that the corrosion area ratio due to rust is 1% or less, and the symbol X indicates that the corrosion area ratio due to rust exceeds 1%.
The above test results are shown in Table 1 below.

表1に示すトータル組成(全体組成)毎の耐熱焼結材試料No.1〜31について、耐酸化性試験結果(酸化増量)と気孔率の測定結果及びそれらの判定結果と、耐塩害性について錆び面積率の検査結果と、耐摩耗性について摩耗量とその判定結果を示す。
表1に示す結果から、全体組成が質量%でCr:20〜38%、Mo:0.5〜3%、Si:3〜7%、C:0.5〜2.5%、残部がFeおよび不可避不純物からなる組成を有し、母相がFe−Cr−Mo−Si系合金からなり、硬質相がCr−Fe−Mo−C系合金からなり、気孔率が2.0%以下であるNo.1〜3、8、9、18、21〜23、26、27、29〜31の耐熱焼結材であるならば、耐酸化性に優れ、高温耐摩耗性に優れ、耐塩害性に優れることが明らかである。
About heat resistance sintered material sample No. 1-31 for every total composition (whole composition) shown in Table 1, about the oxidation resistance test result (oxidation increase), the measurement result of porosity, those determination results, and salt damage resistance The test results of the rust area ratio and the wear amount and the determination result of the wear resistance are shown.
From the results shown in Table 1, the overall composition is% by mass: Cr: 20-38%, Mo: 0.5-3%, Si: 3-7%, C: 0.5-2.5%, the balance being Fe And the composition is composed of inevitable impurities, the parent phase is composed of an Fe—Cr—Mo—Si based alloy, the hard phase is composed of a Cr—Fe—Mo—C based alloy, and the porosity is 2.0% or less. No. 1-3, 8, 9, 18, 21-23, 26, 27, 29-31 heat resistant sintered material, excellent oxidation resistance, high temperature wear resistance, salt resistance It is clear that it is excellent.

No.4、5の試料は焼結助剤としてFeBを用い、焼結時にFeBを液相として圧粉体の隙間を埋め、気孔率を低く抑える場合に望ましいB量の下限より全体B量を少なくした例である。上述の範囲の粒径の原料粉末を用いた場合、焼結助剤としてのFeBの添加量が0.06%と少ない場合、耐酸化性、耐塩害性ともに劣化した。
また、逆に上述の範囲の粒径の原料粉末を用いた場合、焼結助剤としてのFeBの添加量が0.90%と多すぎる場合、耐酸化性、耐塩害性、耐摩耗性には優れたいたが、No.6の試料は焼結後の変形が大きく、No.7の試料は形状維持が困難であった。この結果から、上述の粒径の原料粉末を用い、焼結助剤としてFeBを使用する場合、焼結助剤Bの添加量は0.08〜0.8%の範囲が望ましい。
Samples Nos. 4 and 5 use FeB as a sintering aid, fill the gap in the green compact with FeB as the liquid phase during sintering, and lower the total B amount from the lower limit of the desired B amount when keeping the porosity low. This is a reduced example. When the raw material powder having a particle size in the above range was used, both the oxidation resistance and salt damage resistance deteriorated when the amount of FeB added as a sintering aid was as small as 0.06%.
On the contrary, when the raw material powder having a particle size in the above range is used, if the amount of FeB added as a sintering aid is too large, 0.90%, the oxidation resistance, salt damage resistance, and wear resistance are improved. However, the No. 6 sample was greatly deformed after sintering, and the No. 7 sample was difficult to maintain its shape. From this result, when the raw material powder having the above-mentioned particle size is used and FeB is used as the sintering aid, the addition amount of the sintering aid B is desirably in the range of 0.08 to 0.8%.

No.10の試料は全体組成のCr量を望ましい範囲である20〜38%の範囲より少なくし過ぎた試料であるが耐塩害性に劣る結果となり、No.11の試料は全体組成のCr量を望ましい範囲である20〜38%の範囲より多くし過ぎた試料であるが耐塩害性に劣る結果となった。
No.12の試料は全体組成のC量を望ましい範囲である0.5〜2.5%の範囲より少なくした試料であるが耐摩耗性に劣る結果となり、No.13の試料は全体組成のC量を望ましい範囲である0.5〜2.5%の範囲より多くした試料であるが耐塩害性に劣る結果となった。
The sample No. 10 is a sample in which the Cr amount of the entire composition is less than the desired range of 20 to 38%, but results in poor salt damage resistance, and the sample No. 11 is the amount of Cr of the entire composition. However, the salt damage resistance was inferior, although the sample was more than the desired range of 20 to 38%.
The sample No. 12 is a sample in which the amount of C in the overall composition is less than the desired range of 0.5 to 2.5%, but results in poor wear resistance. Although it was a sample in which the amount of C was larger than the desirable range of 0.5 to 2.5%, the salt damage resistance was inferior.

No.14の試料は全体組成のSi量を望ましい範囲である3.0〜7.0%の範囲より少なくし過ぎた試料であるが耐塩害性に劣る結果となり、No.15の試料は全体組成のSi量を望ましい範囲である3.0〜7.0%の範囲より僅かに少なくした試料であるが耐塩害性に若干劣る結果となった。
No.16の試料は全体組成のSi量を望ましい範囲である3.0〜7.0%の範囲より多くした試料であるが、耐酸化性、耐塩害性、耐摩耗性には優れていたが、焼結品の加工が不可能であった。
No.17の試料はMoを添加していない試料であるが、耐塩害性に劣る結果となり、No.19の試料はMoを望ましい範囲の上限より多くした例であるが、耐塩害性に劣る結果となった。
The sample No. 14 is a sample in which the Si amount of the entire composition is excessively less than the desired range of 3.0 to 7.0%, but results in inferior salt damage resistance. Although it was a sample in which the Si amount of the composition was slightly less than the desired range of 3.0 to 7.0%, the salt damage resistance was slightly inferior.
The sample of No. 16 was a sample in which the amount of Si in the entire composition was larger than the desired range of 3.0 to 7.0%, but was excellent in oxidation resistance, salt damage resistance, and wear resistance. However, it was impossible to process the sintered product.
The sample of No. 17 is a sample to which Mo is not added, but results in inferior salt damage resistance. The sample of No. 19 is an example in which Mo is increased from the upper limit of the desired range, but is inferior in salt damage resistance. As a result.

No.20の試料はNo.1の試料と同等組成であるが、焼結温度を60℃下げて低密度になるように焼結した結果、耐熱焼結材が低密度となり気孔率が高くなり、耐塩害性が低下し、耐摩耗性も低下した。
No.21の試料は焼結助剤としてFeBの代わりにFePを用いた試料であるが、耐酸化性に優れ、耐塩害性と耐摩耗性にも優れていた。
No.22の試料は望ましい範囲内でPを少なく含む試料、No.23の試料は望ましい範囲内でPを多く含む試料であるが、いずれも耐酸化性に優れ、耐塩害性と耐摩耗性にも優れていた。
No.24の試料は望ましい範囲よりPを少なくした試料、No.25の試料は望ましい範囲よりPを多くした試料であるが、耐塩害性が低下し、耐摩耗性も低下した。このことから、焼結助剤としてFeB、FePを添加し、上述の粒径の粉末原料を混合して耐熱焼結材を製造する場合、焼結助剤Pの添加量は0.2〜1.2%の範囲が望ましい。
No.26の試料は焼結助剤を使用せず、代わりにFeCrMoSi合金粉末(D50=10μm)の微粉末を用いた例であるが、耐酸化性に優れ、耐塩害性と耐摩耗性にも優れていた。
No.27の試料はNo.26から焼結温度を40℃下げた試料であり、目的の耐熱焼結材を得ることができたが、No.28の試料はさらに焼結温度を40℃下げた試料であり、目的の耐熱焼結材を得ることができなかった。
The No. 20 sample has the same composition as the No. 1 sample, but as a result of sintering to a low density by lowering the sintering temperature by 60 ° C., the heat-resistant sintered material has a low density and a high porosity. , Salt damage resistance decreased and wear resistance also decreased.
The sample of No. 21 was a sample using FeP instead of FeB as a sintering aid, and was excellent in oxidation resistance and excellent in salt damage resistance and wear resistance.
The sample No. 22 is a sample containing a small amount of P within the desired range, and the sample No. 23 is a sample containing a large amount of P within the desired range, both of which have excellent oxidation resistance, salt damage resistance and wear resistance. It was also excellent.
The sample of No. 24 was a sample with less P than the desired range, and the sample of No. 25 was a sample with more P than the desired range, but the salt damage resistance decreased and the wear resistance also decreased. Therefore, when FeB and FeP are added as sintering aids, and the heat-resistant sintered material is produced by mixing the powder raw materials having the above-mentioned particle diameters, the addition amount of the sintering aid P is 0.2 to 1. A range of 2% is desirable.
The sample of No. 26 is an example using a fine powder of FeCrMoSi alloy powder (D50 = 10 μm) instead of using a sintering aid, but it has excellent oxidation resistance, salt damage resistance and wear resistance. Was also excellent.
The sample of No. 27 is No. 27. No. 28 sample was obtained by lowering the sintering temperature from 40 ° C., and the target heat-resistant sintered material was obtained. A sintered material could not be obtained.

No.29の試料は焼結助剤を用いることなく、実施例1の試料とCr、Mo、Si量において類似組成とした微粉末(D50=10μm)を用いて製造した耐熱焼結材、No.30の試料は実施例2の試料とCr、Mo、Si量において類似組成の微粉末(D50=10μm)を用いて製造した耐熱焼結材、No.31の試料は、実施例3の試料とCr、Mo、Si量において類似組成の微粉末(D50=10μm)を用いて製造した耐熱焼結材である。
これらの試料の結果から、焼結助剤を省略しても混合粉末を微細化することで目的の耐熱焼結材を得ることができるとわかった。
また、No.29の試料について、母相と硬質相のEDX(エネルギー分散型蛍光X線分析装置)分析を行った。その結果、母相が質量%で、Cr:20.3%、Mo:1.3%、Si:3.9%、残部Feの組成を有し、硬質相が質量%で、Cr:62.0%、Mo:3.5%、C:6.1%、残部Feの組成を有していた。
この分析結果から、母相はFe−Cr−Mo−Si相であり、硬質相はCrFeMoC相であることが明らかになった。なお、他の試料についても同様にEDX分析により母相はFe−Cr−Mo−Si相であり、硬質相はCrFeMoC相であることを確認できた。
The sample of No. 29 was manufactured using the sample of Example 1 and a fine powder (D50 = 10 μm) having a similar composition in the amount of Cr, Mo and Si without using a sintering aid, No. The sample of .30 is the heat-resistant sintered material produced by using the fine powder (D50 = 10 μm) having the same composition in the amount of Cr, Mo and Si as the sample of Example 2, and the sample of No. 31 is the sample of Example 3. And a heat-resistant sintered material produced using fine powder (D50 = 10 μm) having a similar composition in the amounts of Cr, Mo and Si.
From the results of these samples, it was found that even if the sintering aid was omitted, the desired heat-resistant sintered material could be obtained by refining the mixed powder.
The sample No. 29 was subjected to EDX (energy dispersive X-ray fluorescence analyzer) analysis of the parent phase and the hard phase. As a result, the matrix has a composition of mass%, Cr: 20.3%, Mo: 1.3%, Si: 3.9%, and the balance Fe, the hard phase is mass%, and Cr: 62.%. It had a composition of 0%, Mo: 3.5%, C: 6.1%, and the balance Fe.
From this analysis result, it was clarified that the parent phase was an Fe—Cr—Mo—Si phase and the hard phase was a CrFeMoC phase. For other samples, it was confirmed by EDX analysis that the parent phase was a Fe—Cr—Mo—Si phase and the hard phase was a CrFeMoC phase.

図3は表1に示すNo.2の試料の表面組織拡大写真である。この組織写真に示すように耐熱焼結材試料は母相(Fe−Cr−Mo−Si相)中に不定形の硬質相(Cr−Fe−Mo−C相)が分散された組織を呈した。また、組織の中に黒丸で示す微細な気孔が複数分散されていた。   3 is an enlarged photograph of the surface structure of the sample No. 2 shown in Table 1. As shown in this structural photograph, the heat-resistant sintered material sample exhibited a structure in which an amorphous hard phase (Cr—Fe—Mo—C phase) was dispersed in a matrix phase (Fe—Cr—Mo—Si phase). . In addition, a plurality of fine pores indicated by black circles were dispersed in the structure.

図4はNo.1〜20の試料について全体Cr量と母相Cr量の関係を測定した結果を示すグラフである。
母相Cr量については耐酸化性と耐塩害性を満たすためには母相中に28%以上のCrが必要とされるが、SiやMoも耐酸化性と耐塩害性に寄与するため、母相中に15%以上のCrを必要とする。母相Cr量が30%を超えるとSi添加の影響もありσ相を生成して脆くなる傾向となるので、母相Cr量は15〜35%の範囲が望ましい範囲となる。このことを考慮すると図4の関係から15〜35%の母相Cr量を得るためには、全体Cr量を20〜38%の範囲に調整することが好ましいことがわかる。
4 is a graph showing the results of measuring the relationship between the total Cr amount and the parent phase Cr amount for the samples No. 1 to No. 20.
As for the amount of the mother phase Cr, 28% or more of Cr is required in the mother phase in order to satisfy the oxidation resistance and salt damage resistance, but Si and Mo also contribute to oxidation resistance and salt damage resistance. 15% or more of Cr is required in the matrix. When the amount of the mother phase Cr exceeds 30%, there is an influence of Si addition, and the σ phase tends to be generated and becomes brittle. Therefore, the amount of the mother phase Cr is preferably in the range of 15 to 35%. In consideration of this, it can be seen from the relationship shown in FIG. 4 that it is preferable to adjust the total Cr content to a range of 20 to 38% in order to obtain a 15 to 35% matrix Cr content.

1…軸受け部材(耐熱焼結材)、2…母相(Fe−Cr−Mo−Si相)、3…硬質相(Cr−Fe−Mo−C相)、4…空孔(気孔)。   DESCRIPTION OF SYMBOLS 1 ... Bearing member (heat-resistant sintered material), 2 ... Mother phase (Fe-Cr-Mo-Si phase), 3 ... Hard phase (Cr-Fe-Mo-C phase), 4 ... Hole (pore).

Claims (6)

母相中に硬質相が分散された組織を有し、全体組成が質量%でCr:20〜38%、Mo:0.5〜3%、Si:3〜7%、C:0.5〜2.5%、残部がFeおよび不可避不純物からなる組成を有し、前記母相がFe−Cr−Mo−Siからなり、前記硬質相がCr−Fe−Mo−Cからなり、気孔率が2.0%以下であることを特徴とする耐酸化性、高温耐摩耗性、耐塩害性に優れた耐熱焼結材。   It has a structure in which a hard phase is dispersed in a matrix phase, and the total composition is Cr: 20-38%, Mo: 0.5-3%, Si: 3-7%, C: 0.5- 2.5%, the balance being Fe and inevitable impurities, the parent phase is Fe-Cr-Mo-Si, the hard phase is Cr-Fe-Mo-C, and the porosity is 2 A heat resistant sintered material excellent in oxidation resistance, high temperature wear resistance and salt damage resistance, characterized by being 0.0% or less. 全体組成において前記Cr、Mo、Si、Cに加え、B:0.08〜0.8%あるいはP:0.2〜1.2%を含有し、残部がFeおよび不可避不純物であることを特徴とする請求項1に記載の耐酸化性、高温耐摩耗性、耐塩害性に優れた耐熱焼結材。   In addition to Cr, Mo, Si, and C, the total composition contains B: 0.08 to 0.8% or P: 0.2 to 1.2%, and the balance is Fe and inevitable impurities. The heat-resistant sintered material having excellent oxidation resistance, high-temperature wear resistance, and salt damage resistance according to claim 1. 母相がフェライト生地からなり、該フェライト生地中にCr−Fe−Mo−Cからなる硬質粒子が10〜40体積%分散されてなることを特徴とする請求項1または請求項2に記載の耐酸化性、高温耐摩耗性、耐塩害性に優れた耐熱焼結材。   The acid resistance according to claim 1 or 2, wherein the matrix phase is made of a ferrite fabric, and hard particles made of Cr-Fe-Mo-C are dispersed in the ferrite fabric in an amount of 10 to 40% by volume. Heat-resistant sintered material with excellent heat resistance, high-temperature wear resistance, and salt damage resistance. FeとCrとSiを少なくとも含み、必要に応じ更にMoを含むベース粉末に対し、SiとCを少なくとも含み、必要に応じて更にFeとCrとMoの少なくとも1つを含む添加材粉末を、
質量%でCr:20〜38%、Mo:0.5〜3%、Si:3〜7%、C:0.5〜2.5%、残部がFeおよび不可避不純物からなる組成となるように混合して混合粉末を得る工程と、この混合粉末を加圧して圧粉体を作製する工程と、前記圧粉体を1100〜1280℃に加熱してFeとCrとMoとSiを含む母相中にCrとFeとMoとCを含む硬質相が分散された組織を有し、気孔率2.0%以下の焼結体を形成する工程を備えることを特徴とする耐酸化性、高温耐摩耗性、耐塩害性に優れた耐熱焼結材の製造方法。
An additive powder containing at least Si, C, and optionally containing at least one of Fe, Cr and Mo with respect to a base powder containing at least Fe, Cr and Si, and further containing Mo, if necessary.
Cr: 20 to 38%, Mo: 0.5 to 3%, Si: 3 to 7%, C: 0.5 to 2.5%, and the balance of Fe and inevitable impurities in mass% A step of mixing to obtain a mixed powder, a step of pressing the mixed powder to produce a green compact, and a step of heating the green compact to 1100 to 1280 ° C. to contain Fe, Cr, Mo, and Si It has a structure in which a hard phase containing Cr, Fe, Mo, and C is dispersed therein, and includes a step of forming a sintered body having a porosity of 2.0% or less. A method for producing heat-resistant sintered materials with excellent wear resistance and salt damage resistance.
前記混合粉末にFeB粉末を全体組成に対しB:0.08〜0.8%となるように、あるいは、FeP粉末を全体組成に対しP:0.2〜1.2%となるように混合することを特徴とする請求項4に記載の耐酸化性、高温耐摩耗性、耐塩害性に優れた耐熱焼結材の製造方法。   FeB powder is mixed with the mixed powder so that B: 0.08 to 0.8% of the total composition, or FeP powder is mixed with P: 0.2 to 1.2% of the total composition. The method for producing a heat-resistant sintered material having excellent oxidation resistance, high-temperature wear resistance, and salt damage resistance according to claim 4. 前記焼結体を形成する工程により、前記母相中に前記硬質相を10〜40体積%分散させることを特徴とする請求項4または請求項5に記載の耐酸化性、高温耐摩耗性、耐塩害性に優れた耐熱焼結材の製造方法。   The oxidation resistance, high-temperature wear resistance according to claim 4 or 5, wherein the hard phase is dispersed in the matrix by 10 to 40% by volume in the step of forming the sintered body. A method for producing a heat-resistant sintered material excellent in salt damage resistance.
JP2017073111A 2017-03-31 2017-03-31 Heat-resistant sintering material having excellent oxidation resistance, high temperature wear resistance, and salt damage resistance, and method for producing the same Pending JP2018172768A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2017073111A JP2018172768A (en) 2017-03-31 2017-03-31 Heat-resistant sintering material having excellent oxidation resistance, high temperature wear resistance, and salt damage resistance, and method for producing the same
PCT/JP2018/011756 WO2018181015A1 (en) 2017-03-31 2018-03-23 Heat-resistant sintered material having excellent oxidation resistance, wear resistance at high temperatures and salt damage resistance, and method for producing same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017073111A JP2018172768A (en) 2017-03-31 2017-03-31 Heat-resistant sintering material having excellent oxidation resistance, high temperature wear resistance, and salt damage resistance, and method for producing the same

Publications (1)

Publication Number Publication Date
JP2018172768A true JP2018172768A (en) 2018-11-08

Family

ID=63677590

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017073111A Pending JP2018172768A (en) 2017-03-31 2017-03-31 Heat-resistant sintering material having excellent oxidation resistance, high temperature wear resistance, and salt damage resistance, and method for producing the same

Country Status (2)

Country Link
JP (1) JP2018172768A (en)
WO (1) WO2018181015A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020180375A (en) * 2019-04-24 2020-11-05 株式会社ダイヤメット Sinter slide member, and production method of the same
CN113976875A (en) * 2021-10-12 2022-01-28 河北敬业立德增材制造有限责任公司 High-temperature liquid phase sintering combined gold powder for powder metallurgy iron-based parts and manufacturing method thereof

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3784003B2 (en) * 2001-01-31 2006-06-07 日立粉末冶金株式会社 Turbo parts for turbochargers
WO2005012585A1 (en) * 2003-07-31 2005-02-10 Komatsu Ltd. Sintered sliding member and working implement-connecting apparatus
JP6508611B2 (en) * 2015-03-30 2019-05-08 日立化成株式会社 Sintered alloy and method of manufacturing the same
JP6678038B2 (en) * 2016-01-29 2020-04-08 株式会社ダイヤメット Heat-resistant sintered material having excellent oxidation resistance, high-temperature wear resistance, and salt damage resistance, and a method for producing the same

Also Published As

Publication number Publication date
WO2018181015A1 (en) 2018-10-04

Similar Documents

Publication Publication Date Title
US9340857B2 (en) Sintered alloy and production method therefor
WO2018198628A1 (en) Heat-resistant sintered material having excellent high-temperature wear resistance and salt damage resistance and method for producing same
JP2011157845A (en) Valve seat for internal combustion engine, superior in cooling power
EP2511388B1 (en) Sintered sliding member
JP5125488B2 (en) Hard particle powder for sintered body and sintered body
JP2018172768A (en) Heat-resistant sintering material having excellent oxidation resistance, high temperature wear resistance, and salt damage resistance, and method for producing the same
JP6489684B2 (en) Heat-resistant sintered material with excellent oxidation resistance, high-temperature wear resistance, and salt damage resistance, and method for producing the same
JP6735106B2 (en) Co-free heat-resistant sintered material excellent in high-temperature wear resistance and high-temperature strength, and method for producing the same
JP6678038B2 (en) Heat-resistant sintered material having excellent oxidation resistance, high-temperature wear resistance, and salt damage resistance, and a method for producing the same
CN113614257B (en) Sintered sliding member and method for producing same
US10094009B2 (en) Sintered alloy and production method therefor
JP5079417B2 (en) Manufacturing method of high temperature corrosion resistant wear resistant sintered parts
JP2004211185A (en) Iron based sintered alloy excellent in dimensional precision, strength and sliding property, and its production method
JP6222815B2 (en) Sintered member
WO2020013227A1 (en) Sintered alloy and method for producing same
WO2020218479A1 (en) Sintered sliding member and method for producing same
JP5100486B2 (en) Method for manufacturing turbocharger turbo parts
JP2009091609A (en) Sintered composite sliding part and production method therefor
JPWO2020050211A1 (en) Heat resistant sintered alloy material
JP2019123898A (en) Manufacturing method of copper alloy sintering material
JP2015187296A (en) Sinter member
JP2004002939A (en) Oil pump rotor made of iron-based sintered alloy
JPH11286755A (en) Sintered piston ring and its production

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20181116

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191212

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201215

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20210615