JPH0137466B2 - - Google Patents

Info

Publication number
JPH0137466B2
JPH0137466B2 JP57131555A JP13155582A JPH0137466B2 JP H0137466 B2 JPH0137466 B2 JP H0137466B2 JP 57131555 A JP57131555 A JP 57131555A JP 13155582 A JP13155582 A JP 13155582A JP H0137466 B2 JPH0137466 B2 JP H0137466B2
Authority
JP
Japan
Prior art keywords
sintered alloy
sintered
valve seat
alloy
amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP57131555A
Other languages
Japanese (ja)
Other versions
JPS5923856A (en
Inventor
Shigeru Urano
Kyoshi Yamamoto
Yoshiaki Takagi
Takeki Sugawara
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Piston Ring Co Ltd
Original Assignee
Nippon Piston Ring Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Piston Ring Co Ltd filed Critical Nippon Piston Ring Co Ltd
Priority to JP13155582A priority Critical patent/JPS5923856A/en
Publication of JPS5923856A publication Critical patent/JPS5923856A/en
Publication of JPH0137466B2 publication Critical patent/JPH0137466B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は内燃機関用のバルブシートに関するも
のであり、特に異なる2種の焼結合金の複合より
なるバルブシートに関するものである。 内燃機関用のバルブシートとしては、無鉛ガソ
リンが使用されるのに伴つてより耐摩耗性に優れ
ることの要望から焼結合金製バルブシートが広く
使用されるようになつたものであるが、焼結合金
製バルブシートの耐摩耗性に寄与する焼結空孔の
存在はそのままバルブシートの強度の問題とされ
る。 従来のバルブシートはアルミニウム合金製シリ
ンダヘツドに組付けられる場合、焼きばめ冷しば
め、又は圧入されてもバルブシート肉厚が適当で
あればシリンダヘツドからの脱落が心配されるこ
とはなかつたが、エンジン出力向上のためにシリ
ンダヘツドのバルブ開口面積が大きくとられ、そ
の方法としてバルブシート肉厚を薄くする必要が
生じているが、その場合にバルブシートの脱落や
変形等の問題が生じる。又主としてデイーゼル機
関の如く鋳鉄製シリンダヘツドを使用する機関で
はバルブシートと鋳鉄製シリンダヘツドとの熱膨
張率の差異によつてバルブシートの脱落が問題と
される場合がある。これら薄肉化されたバルブシ
ートや鋳鉄製シリンダヘツドに組込まれるバルブ
シートにはバルブシート自体の強度・剛性が、特
に高温条件が要求される。 一方焼結合金製バルブシートでは耐熱性、耐摩
耗性を満たすため高価な元素を多量に含むため第
1図に示す如くバルブ4との当り面を形成する第
1部材1とシリンダヘツド3側を形成する第2部
材2との二層の複合焼結バルブシートとし、これ
によつて経済性、被削性、熱伝導性などの複合化
による効果を向上させている。近年この複合焼結
バルブシートのシリンダヘツド側の第2部材の密
度を鍛造手段によつて向上させ、バルブシート自
体の強度を向上させる試みが行なわれている。 又特に排気側のバルブシートは排気ガスによつ
て著しく高温となり易く高温腐食摩耗が進行し易
いため熱伝導率を向上し、バルブシートの蓄熱を
できるだけ下げる必要があるため焼結合金に銅合
金を溶浸させて使用に供せられるものがある。 バルブシートとしての前記した強度、剛性、耐
摩耗性、耐摩耗性と係る熱伝導率、さらに複合バ
ルブシートとする条件を満たすことが本発明の目
的であり、本発明の複合焼結バルブシートは下記
5つの構成よりなる。 (1) バルブ当り面側の第1部材を形成する第1焼
結合金が、250メツシユ以下の硬質粒子を容積
%にて8〜14%含み、重量%にてC0.5〜1.7%、
Ni0.5〜2.5%、Cr3.0〜8.0%、Mo0.1〜0.9%、
W1.0〜3.8%、Co4.5〜8.5%残部実質的にFeよ
りなる鉄系焼結合金である。 (2) 第1焼結合金がアトマイズ鉄粉により形成さ
れる空孔量が容積%にて6〜13%で、且つ独立
空孔量が容積%にて0.4〜1.2%である鉄系焼結
合金である。 (3) シリンダヘツド側の第2部材を形成する第2
焼結合金が重量%にてC0.5〜1.4%、P0.1〜0.4
%残部実質的にFeよりなる鉄系焼結合金であ
る。 (4) 第2焼結合金がアトマイズ粉末によつて形成
される、空孔量が容積%にて6〜12%で、且つ
独立空孔量が容積%にて0.5〜2.5%である鉄系
焼結合金である。 (5) 第1焼結合金及び第2焼結合金の双方には銅
合金が溶浸される。 かかる本発明の複合焼結バルブシートの最も特
徴とされるところは焼結合金において不可避的に
存在する独立空孔と連続空孔のバランスを改善
し、かつ溶浸処理効果と併せた相乗効果により、
複合焼結合金バルブシートとしての効果を最大に
生かしたものである。即ち焼結合金バルブシート
のベース鉄粉としては、通常は還元鉄粉とアトマ
イズ粉末の二種が主として用いられ相対的に高密
度の焼結合金を得るには粒径が微細でかつ球状に
近似したアトマイズ粉末が用いられる。ところが
前記した如く耐摩耗性に必要な合金粒子を多く必
要とするバルブシート用焼結合金にあつてはこれ
ら合金粒子はその単独粉末で配合され、さらに極
めて微細な炭素粉末やコバルト粉末を配合される
こともあり使用粉末による差異によつて焼結合金
の密度及びその空孔分布がそれぞれ異なるもので
あり、連続空孔量と独立空孔量にも差異が生じ
る。 さらに銅合金を溶浸させた焼結合金ではこの連
続空孔中に銅合金が溶浸されることによつて焼結
合金の強度の向上と熱伝導率の向上が達成される
一方で、高温条件のバルブシートでは銅合金と焼
結合金の熱膨張率の差異によつて内部応力が生
じ、加熱冷却が繰り返される中で焼結合金の強度
低下が進行するものである。 逆に独立空孔量が多大であると銅合金の溶浸が
この独立空孔に達しないため焼結合金の強度及び
熱伝導率が低下する。 又複合焼結バルブシートにあつては第1焼結合
金と第2焼結合金との強度、熱膨張率ができるだ
け近似しバルブシートとしての均質性が要求され
るものであるが、そのためには使用される原料粉
末及び製造条件が適切でなければならない。 本発明にあつてはこれらの複合バルブシートの
条件を満たすために、まず耐摩耗性の要求される
第1焼結合金が250メツシユ以下の硬質粒子を容
積%で8〜14%含み、基地がアトマイズ鉄粉によ
り形成される空孔量が6〜13容積%であり、さら
に好ましくは独立空孔量が0.4〜1.2%容積%存在
する鉄系焼結合金であることが必要とされる。 かかる第1焼結合金は後述する第2焼結合金と
密接な関係を持つているが、まずその最も特徴と
されるところは空孔量が6〜13容積%にされるこ
とである。理由として空孔量が13容積%超である
と焼結合金自体の強度が低く、かつ銅合金溶浸さ
れて用いられる際の高温強度の低下が避けられな
いため13容積%以下であることが必要であり、6
容量%未満では逆に溶浸される銅合金量が過少と
なつて熱伝導率が低下し第1焼結合金の高温耐摩
耗性が低下するものであり、空孔量は6〜13容積
%が必要である。 これに対して銅合金が溶浸されない独立空孔は
0.4〜1.2容積%であることが望まれる。理由は独
立空孔には銅溶浸されないことによつて銅溶浸に
よる熱伝導率、強度の向上を阻害されるもので
1.2%以下であることが必要であるが、逆に独立
空孔を全体空孔量に対して過少にしようとするに
は焼結空孔量自体を多くすることが避けられず、
又銅合金溶浸層と焼結合金との熱膨張率差の調整
機能を有する独立空孔の効果が失なわれ焼結合金
の高温強度が低下するから、独立空孔量は0.4%
以上存在することが好ましい。 このような焼結空孔を有する焼結合金を得るに
は、焼結合金が250メツシユ以下の硬質粒子を体
積%にて8〜14%有し、かつ基地を形成する鉄系
合金の粉末がアトマイズ粉末であることが必要で
ある。 前記した如くアトマイズ粉末は微細かつ球状に
近似するため圧縮成形性に優れ高密度でありかつ
連続空孔量比を調整する為に必要なものであり、
耐摩耗性に寄与する硬質粒子を250メツシユ以下
の微粉末として用い、かつその体積%を8〜14容
積%として鉄系合金アトマイズ粉末に配合するこ
とによつて前記した独立空孔と全体空孔のバラン
スが達成される。 即ち硬質粒子は第1焼結合金のバルブ当り面に
あつて直接的にバルブとの摺動面を形成するため
に所要の容積%が存在する必要があり、耐摩耗性
が充分であるためには8容積%以上を必要とされ
る。しかし、かかる硬質粒子量が過多であると焼
結合金の強度が低下する上に、さらにアトマイズ
粉末と硬質粒子の配合で硬質粒子量が過多である
と焼結空孔量が過多となるものであり、これらの
条件によつて硬質粒子量は8〜14容積%であるこ
とが必要である。 さらにこの硬質粒子の粒径は250メツシユ以下
の微細粉であることが必要であり、250メツシユ
以上の相対的に大きな粒子を用いた場合には前記
した如き全体空孔量比の増大化が進み、かつ配合
された粉末の流動性が低下することで圧粉成形性
が低下し焼結合金密度が低下する。 かかる第1焼結合金がその成分として下記の焼
結合金であることが好ましい。 (成分重量%) C0.5〜1.7、Ni0.5〜2.5、Cr3.0
〜8.0、Mo0.1〜0.9、W1.0〜3.8、Co4.5〜8.5、
残部実質的にFeよりなり、焼結空孔にCu9.5〜
14%を含む。 この第1焼結合金は例えば特公昭51−13093号
のバルブシート合金に比較し硬質粒子を形成する
Cr、Co、W量が押さえられ、さらに硬質粒子が
より微細にされたことによつて表面の強度と耐摩
耗性が向上されることに特徴を有する。 各添加元素について説明するとCは基地調整に
不可欠であつて1.7%超ではセメンタイト量が過
大となつて被削性、強度が低下し、0.5%未満で
あると基地のフエライト量が過大となり基地硬度
の低下による耐摩耗性劣化を起るため0.5〜1.7
%、より好ましくは1.0〜1.5%の範囲で選ばれ
る。Niについては基地に固溶し耐熱性の向上に
寄与するが、0.5%未満では耐熱性の効果が得ら
れず、2.5%超では、焼入れ性が劣化することに
よる硬質の均一性を失い耐摩耗性の劣化が生じる
ため0.5〜2.5%さらに好ましくは0.8〜2.3%の範
囲で選択される。Cr、W、CoについてはC−Cr
−W−Co−Feによる硬質粒子として添加され耐
摩耗性に寄与する他、基地中に固溶し耐熱性と強
度の向上に寄与するものであるが、これらCr、
W、Coの限定値については前記した硬質粒子量
の限定範囲及び後記するC−Cr−W−Co−Fe粒
子成分によつて決定される他、Crについては3.0
%未満であると耐熱性の効果が失なわれ、Wにつ
いては1.0%未満では高温強度の低下が生じCoに
ついては4.5%未満であると高温強度及びC−Cr
−W−Co−Feの硬質粒子と基地との結合強度が
低下するもので、Cr3.0〜8.0%、W1.0〜3.8%、
Co4.5〜8.5%、より好ましくはCr3.5〜7.5%、
W1.3〜3.3%、Co5.0〜8.0%で選択され硬質粒子
量を調整される。 さらにMoはFe−Moとして添加されることに
より耐摩耗性に寄与する硬質粒子を形成するもの
であるが、0.9%超では耐摩耗性効果に対して経
済性及び粉末圧粉成形性が劣化し、又0.1%未満
であると硬質粒子量が過少となる他高温強度も低
下するため0.1〜0.9%、より好ましくは0.3〜0.7
の範囲で選択される。かかる成分の第1焼結合金
は、より具体的にはFe粉、C粉、Co粉、Ni粉、
Fe−Mo粉、C−Cr−Co−W−Fe合金粉末を混
合して焼結することによつて達成されるものであ
るが、ここで硬質粒子を形成するC−Cr−Co−
W−Fe粉末については好ましくはC2.0〜3.0%、
Co7.0〜1.5%、W15〜25%、Cr55〜70%、Fe1.0
〜8.0%の範囲で選択される合金粉末であること
が好ましい。かかる合金粉末は通常ステライトと
称される合金に対してCr量が多大であり、Co量
が低減されることによつて合金粒子自体の硬度を
高くしうるものであり、Coが硬質粒子周囲に存
在するため硬質粒子と基地との結合強度を高くさ
れるものである。 以下本発明の第1焼結合金につき説明したが、
本発明にあつては以上記した第1焼結合金と複合
されるに最適な第2焼結合金との複合焼結バルブ
シートとすることにより著しく優れた効果を発揮
するものである。 第2焼結合金は、重量%にてC0.5〜1.4%、
P0.1〜0.4%、残実質的にFeよりなる成分であり、
アトマイズ粉によつて形成される空孔量が6〜12
容積%であり、さらに望ましくは空孔のうちの独
立空孔量が0.5〜2.5容積%である鉄系焼結合金で
あることが必要である。 まず焼結空孔量については焼結合金の強度に及
ぼす影響の他溶浸による効果についても前記した
如くであるが、第2焼結合金には第1焼結合金に
比較し、耐摩耗性を必要とされないために低合金
の焼結合金を用いられることが複合化に際しての
経済的効果及び被削性、生産性の効果を高める上
で絶対的な条件である。さらにかかる第2焼結合
金と第1焼結合金を複合化する場合には、粉末圧
粉体の状態で予め二層に形成され、同一条件の温
度、雰囲気、時間にて焼結されるものであつて第
2焼結合金と第1焼結合金にはほぼ近似した焼結
収縮が要求され、実用に際してはバルブシート全
体としての内部歪を防ぐべくほぼ近似した熱膨張
率が必要とされるものであり、さらには第1焼結
合金にて不足され易い熱伝導率を相対的に向上す
ることが必要となる。 かかる条件に対して本発明にあつては第1焼結
合金の全体空孔量を6〜12%とされる。空孔量が
12容積%を超えた場合には焼結合金自身の強度が
低下するのみならず、特に低合金である第2焼結
合金にあつては溶浸される銅合金との熱膨張率差
が焼結合金に及ぼす高温強度低下を受け易いため
に全体空孔量は12容積%以下であり、さらに好ま
しくは第1焼結合金に対して0.5〜3%の範囲で
低くされることが好ましい。逆に焼結空孔量が6
容積%未満の場合に溶浸される空孔量が過少とな
り、熱伝導率の向上効果が得られないものであつ
て、焼結空孔は6〜12容積%の範囲で選択される
必要がある。又上記した如く第1焼結合金空孔量
より3容積%超第2焼結合金空孔量が低くなると
銅溶浸されたことによる熱膨張率差が双方の焼結
合金間で過大となり好ましくない。逆に第1焼結
合金に比し0.5%未満で、第2焼結合金空孔量が
低い場合に第2焼結合金自体が材料として第1焼
結合金より強度的に劣るため、同一の焼結空孔量
か、又は第2焼結合金空孔量が相対的に多いと第
2焼結合金の第1焼結合金に対しての強度が劣る
こととなるために第2焼結合金と第1焼結合金間
には0.5〜3容積%の範囲で焼結空孔量差を有し
ていることが好ましい。 さらに第2焼結合金の独立空孔量は全体容積の
2.5%以下であることが必要である。これは第2
焼結合金には後述する如く前記した焼結空孔量の
範囲を達成するために添加するPの影響によつて
均一に分散して局所的な焼結収縮があり独立空孔
量が増加する傾向にあるのに対して、独立空孔量
が2.5容積%を超えると独立空孔に銅溶浸がされ
ないことによつて、熱伝導率と強度の低下が著じ
るしくなるために2.5%以下とすることが必要で
ある。逆に独立空孔量が0.5%未満としようとす
るためには焼結空孔量自体を大きくせざるを得な
いばかりか、焼結合金自体の強度が相対的に劣る
第2焼結合金の銅溶浸層との熱膨張率の差異に基
く高温強度の劣化に対して調整機能を有する独立
空孔量が過少となり高温強度の低下を生じるため
独立空孔量は好ましくは第2焼結合金容積の0.5
〜2.5容積%の範囲で選択される。 かかる全体空孔と独立空孔を有する焼結合金を
得るためには、第2焼結合金が重量%にてC0.5〜
1.4%、P0.1〜0.4%、残実質的にFeよりなる焼結
合金であり、かつアトマイズ粉末によつて形成さ
れることが必要である。 アトマイズ粉末を用いる理由としては一般的に
知られている如く圧縮成形性に優れ相対的に高密
度の圧粉体が形成されうるため焼結空孔量を低減
されうるためである。 さらに本発明にあつては熱伝導率、強度、剛性
を向上するため銅溶浸が不可欠であり、銅溶浸に
より銅の空孔との溶浸と共に一部基地焼結合金へ
拡散することによつて強度の向上が達成されるこ
とに特徴を有する。 即ち銅は通常焼結膨張を発生させる元素であつ
て第2焼結合金の如く低合金の鉄系焼結合金に対
してその影響を強く有するものであるが、本発明
にあつてはかかる銅溶浸に対してPを0.1〜0.4%
含む鉄系合金粉末を用いることによつて対処する
ものである。Pは焼結収縮に効果を有し、銅の焼
結膨張効果に対して相殺するものであり、さらに
焼結合金自体の空孔量低減に効果があるものであ
り、P0.1%未満ではその効果がなく、逆にP0.4%
を超えた場合にFe−P−Cのステダイト晶出に
よる被削性及び強靭低下があり、焼結収縮が進行
しすぎることで独立空孔量が過多となつて溶浸量
が低下し、Pは0.1〜0.4重量%より好ましくは0.1
〜0.3%の範囲で選択される必要がある。又Cは
第2焼結合金の基地調整のため不可欠であり、
0.5%未満ではフエライト量が多く低硬度となり
強度が低下するもので、1.4%超ではセメンタイ
ト量が過多となり基地が脆化するばかりでなく被
削性も劣化するためC0.5〜1.4%の範囲好ましく
は、0.9〜1.4%で選択される必要がある。 以下本発明の複合焼結バルブシートの実施例に
つき説明する。 まず本発明の第2焼結合金の原料粉末として
P0.3%含むアトマイズ鉄粉77%と−325メツシユ
C粉末1%と残アトマイズ鉄粉を配合混合し、こ
れを粉末成形金型に充填後、下記第1焼結合金の
原料粉末を配合混合し第1焼結合金粉上に充填す
る。 C粉末(−325メツシユ) 1.2% Co粉末(5μ以下) 6.0% Ni粉末(−325メツシユ) 2.0% Fe−Mo粉末(−250メツシユ) 1.0% C2.5−Co10−W19−Cr6.35−Fe5合金粉末(−
250メツシユ) 11.5% 残アトマイズ鉄粉 上記二層の粉末を成形圧力6t/cm2で圧粉成形し
還元性雰囲気中にて1110℃60min焼結しこれに溶
浸用銅合金を載置し1130℃60min溶浸処理を行つ
た。さらに880℃で30分保持後油冷焼入・焼戻し
下記物性値測定用テストピース及び後記試験用の
テストピース(外径φ31、内径φ25、高さ7mm)
を作成した。 このバルブシートの物性値を測定したところ、 1 第1焼結合金 (成分重量%)C1.20%、Ni1.73%、Cr7.30%、
Mo0.45%、W2.19%、Co7.15%、Cu12.51% 残微少不純物を含むFe (硬度)HRC 33.0 (空孔率) 11.8%(溶浸前) (独立空孔率) 0.51% 2 第2焼結合金 (成分重量%)C1.1%、P0.20%、Cu11.2%残
微少不純物を含むFe (硬度)HRC 24 (空孔率) 9.9%(溶浸前) (独立空孔率) 1.6% 3 複合材料としての物性 (弾性率) 18600Kg/mm2 (熱膨張率)(RT→400℃) 1.305×10-5/℃ (熱伝導率)(400℃)
10.9×10-2Ccl/cm・sec・℃ (引張強さ) 93.4Kg/mm2 ここで前記したと同一条件の粉末及び製造工程
を経て得られる第2焼結合金と第1焼結合金のそ
れぞれ単独での物性値を測定したところ、 4 第1焼結合金 (弾性率) 19400Kg/mm2 (熱膨張率)(RT→400℃) 1.244×10-5/℃ (熱伝導率)(400℃)
10.4×10-2Cal/cm・sec・℃ (引張強さ) 96.8Kg/mm2 5 第2焼結合金 (弾性率) 18000Kg/mm2 (熱膨張率)(RT→400℃) 1.367×105/℃ (熱伝導率)(400℃)
13.0×10-2Cal/cm・sec・℃ (引張強さ) 91.0Kg/mm2 ここで各測定値中空孔率については溶浸以前の
理論密度と実密度、独立空孔率については溶浸後
密度と空孔量から算出したものである。 このように第1、第2焼結合金はそれぞれ単独
でも、又複合材料としても引張強さが90Kg/mm2
上の高強度を有し、弾性率も17000Kg/mm2以上の
値を有し、さらに第1焼結合金と第2焼結合金の
熱膨張率の差が10%以下であり、かつ熱伝導率が
10×10-2Cal/cm・sec・℃以上と高いためバルブ
シートとしてシリンダヘツドに組込まれる際の脱
落に対しての強度、剛性、耐摩耗性に著しく優れ
るものである。 このようにして得られた本発明バルブシートの
200倍顕微鏡写真を第2図、第3図に示す。第2
図、第3図ともナイタル延腐食した焼結合金の金
属組織を示すものであり、第2図の写真が第1焼
結合金を示し、第3図が第2焼結合金を示す。第
2図、第3図において示されるAが連続空孔であ
つて銅溶浸されており、Bが独立空孔であり溶浸
されていない。Cは硬質粒子を示すものである。 第4図、第5図は後述する如き比較、複合焼結
合金バルブシート2で本発明と同じく銅合金溶浸
されたもののナイタル液腐食された200倍顕微鏡
写真にて金属組織を示すものであり第4図がバル
ブ当り面側の第1部材、第5図がシリンダヘツド
側の第2部材に用いられる焼結合金である。 第2図第3図の本発明バルブシートと第4図第
5図の従来バルブシートの金属組織を比較すれば
明らかに本発明における硬質粒子Cの大きさが小
さく。かつAで示す連続空孔も微細かつ面積量も
少ないものであり、さらには本発明バルブシート
の組織が著しく緻密化されていることが明らかで
ある。 かかる本発明バルブシートを従来の複合焼結バ
ルブシートと比較実験し、その効果を説明する。 (比較複合焼結バルブシート1) (第1焼結合金) C粉末(−325メツシユ.0.75%、Ni粉末(−
325メツシユ)1.2%、Fe−Mo粉末(−150メツシ
ユ)をMo量で0.35%、C1.4−Cr55−W26−
Co17.6%の合金粉末(−150メツシユ)18%、Co
粉末(5μ以下)5.5%、残還元鉄粉(−100メツシ
ユ)の混合粉末。 (第2焼結合金) C粉末(−325メツシユ)1.12%、Fe−Mo粉末
(−150メツシメ)をMo量で0.57%、Cu粉末(−
120メツシユ)4.04%、残還元鉄粉(−100メツシ
ユ)の混合粉末。 かかる粉末を前記した本発明のバルブシートと
同一条件で成形プレスし焼結することによつて比
較複合焼結バルブシート1を形成し、又焼結後、
銅溶浸し熱処理することにより比較複合焼結バル
ブシート2を作成した。 上記した比較複合焼結バルブシート1,2につ
き本発明バルブシートと同様に物性値を測定した
結果を次に示す。
The present invention relates to a valve seat for an internal combustion engine, and particularly to a valve seat made of a composite of two different types of sintered alloys. With the use of unleaded gasoline, sintered alloy valve seats have become widely used for internal combustion engines due to the desire for better wear resistance. The presence of sintered pores that contribute to the wear resistance of a valve seat made of a composite metal is considered to be a problem in the strength of the valve seat. When a conventional valve seat is assembled into an aluminum alloy cylinder head, even if it is shrink-fitted, cold-fitted, or press-fitted, if the valve seat thickness is appropriate, there is no fear of it falling off from the cylinder head. However, in order to improve engine output, the valve opening area of the cylinder head is increased, and as a method to do so, it is necessary to reduce the thickness of the valve seat, but in this case, problems such as valve seat falling off and deformation occur. arise. Furthermore, in engines that use cast iron cylinder heads, such as diesel engines, there may be a problem of the valve seat falling off due to the difference in thermal expansion coefficient between the valve seat and the cast iron cylinder head. These thin-walled valve seats and valve seats incorporated into cast iron cylinder heads are required to have strength and rigidity, especially under high-temperature conditions. On the other hand, a valve seat made of sintered alloy contains a large amount of expensive elements in order to satisfy heat resistance and wear resistance. This is a two-layer composite sintered valve seat with the second member 2 to be formed, thereby improving the effects of compounding such as economical efficiency, machinability, and thermal conductivity. In recent years, attempts have been made to improve the strength of the valve seat itself by increasing the density of the second member on the cylinder head side of the composite sintered valve seat by forging. In addition, the valve seat on the exhaust side in particular tends to become extremely hot due to exhaust gas, and high-temperature corrosion wear tends to progress.Therefore, it is necessary to improve thermal conductivity and reduce heat accumulation in the valve seat as much as possible, so a copper alloy is added to the sintered alloy. Some products can be used after infiltration. The purpose of the present invention is to satisfy the above-mentioned strength, rigidity, abrasion resistance, and thermal conductivity related to abrasion resistance as a valve seat, as well as the conditions for a composite valve seat, and the composite sintered valve seat of the present invention It consists of the following five configurations. (1) The first sintered alloy forming the first member on the side facing the valve contains 8 to 14% by volume of hard particles of 250 mesh or less, 0.5 to 1.7% by weight of C,
Ni0.5~2.5%, Cr3.0~8.0%, Mo0.1~0.9%,
It is an iron-based sintered alloy consisting of 1.0 to 3.8% W, 4.5 to 8.5% Co, and the balance substantially Fe. (2) The first sintered alloy is an iron-based sintered alloy in which the amount of pores formed by atomized iron powder is 6 to 13% by volume, and the amount of independent pores is 0.4 to 1.2% by volume. It's gold. (3) A second member forming the second member on the cylinder head side.
Sintered alloy weight% C0.5~1.4%, P0.1~0.4
The balance is an iron-based sintered alloy consisting essentially of Fe. (4) Iron-based alloy in which the second sintered alloy is formed from atomized powder, the pore content is 6 to 12% by volume, and the independent pore content is 0.5 to 2.5% by volume. It is a sintered alloy. (5) Both the first sintered alloy and the second sintered alloy are infiltrated with a copper alloy. The most distinctive feature of the composite sintered valve seat of the present invention is that it improves the balance between independent pores and continuous pores that inevitably exist in sintered alloys, and also has a synergistic effect combined with the infiltration treatment effect. ,
This maximizes the effectiveness of a composite sintered alloy valve seat. In other words, two types of base iron powder for sintered alloy valve seats are normally used: reduced iron powder and atomized powder, and in order to obtain a relatively high density sintered alloy, the particle size must be fine and approximately spherical. Atomized powder is used. However, as mentioned above, in the case of sintered alloys for valve seats that require a large amount of alloy particles necessary for wear resistance, these alloy particles are blended as a single powder, and furthermore, extremely fine carbon powder or cobalt powder is blended. Therefore, the density of the sintered alloy and its pore distribution differ depending on the powder used, and the amount of continuous pores and the amount of independent pores also differ. Furthermore, in a sintered alloy infiltrated with a copper alloy, the continuous pores are infiltrated with the copper alloy, which improves the strength and thermal conductivity of the sintered alloy. In the valve seat under these conditions, internal stress is generated due to the difference in coefficient of thermal expansion between the copper alloy and the sintered alloy, and as heating and cooling are repeated, the strength of the sintered alloy progresses to decrease. Conversely, if the amount of independent pores is large, the infiltration of the copper alloy will not reach the independent pores, resulting in a decrease in the strength and thermal conductivity of the sintered alloy. In addition, in the case of a composite sintered valve seat, the strength and coefficient of thermal expansion of the first sintered alloy and the second sintered alloy are required to be as similar as possible, and the valve seat is required to be homogeneous. The raw material powder and manufacturing conditions used must be appropriate. In the present invention, in order to satisfy these conditions for a composite valve seat, the first sintered alloy, which requires wear resistance, contains 8 to 14% by volume of hard particles of 250 mesh or less, and the base is An iron-based sintered alloy is required in which the amount of pores formed by the atomized iron powder is 6 to 13% by volume, and more preferably the amount of independent pores is 0.4 to 1.2% by volume. The first sintered alloy has a close relationship with the second sintered alloy described later, but its most distinctive feature is that the amount of pores is 6 to 13% by volume. The reason is that if the amount of pores exceeds 13% by volume, the strength of the sintered alloy itself will be low, and when it is infiltrated with copper alloy and used, a decrease in high-temperature strength is unavoidable, so it is recommended that the amount of pores be less than 13% by volume. necessary and 6
If it is less than % by volume, the amount of copper alloy infiltrated will be too small, which will lower the thermal conductivity and reduce the high-temperature wear resistance of the first sintered alloy, and the amount of pores will be 6 to 13% by volume. is necessary. On the other hand, independent pores that are not infiltrated with copper alloy are
It is desired that the content is 0.4 to 1.2% by volume. The reason is that improvements in thermal conductivity and strength due to copper infiltration are inhibited because the independent pores are not infiltrated with copper.
It is necessary that the amount of sintered pores be 1.2% or less, but conversely, in order to reduce the number of independent pores to the total amount of pores, it is unavoidable to increase the amount of sintered pores themselves.
In addition, the effect of independent pores, which has the function of adjusting the difference in thermal expansion coefficient between the copper alloy infiltrated layer and the sintered alloy, is lost and the high temperature strength of the sintered alloy decreases, so the amount of independent pores is 0.4%.
It is preferable that there be at least one of them. In order to obtain a sintered alloy having such sintered pores, it is necessary that the sintered alloy has 8 to 14% by volume of hard particles of 250 mesh or less, and that the iron-based alloy powder forming the base is It needs to be an atomized powder. As mentioned above, the atomized powder is fine and approximates a spherical shape, so it has excellent compression moldability and has a high density, which is necessary for adjusting the continuous pore ratio.
By using hard particles that contribute to wear resistance as a fine powder with a mesh size of 250 mesh or less and blending them into the iron-based alloy atomized powder at a volume % of 8 to 14 volume %, the above-mentioned independent pores and total pores can be obtained. A balance is achieved. In other words, the hard particles must exist in the required volume % on the valve contact surface of the first sintered alloy to directly form a sliding surface with the valve, and in order to have sufficient wear resistance. is required to be at least 8% by volume. However, if the amount of hard particles is too large, the strength of the sintered alloy will decrease, and if the amount of hard particles is too large in the mixture of atomized powder and hard particles, the amount of sintered pores will be excessive. Depending on these conditions, the amount of hard particles needs to be 8 to 14% by volume. Furthermore, the particle size of these hard particles must be fine powder of 250 mesh or less, and if relatively large particles of 250 mesh or more are used, the overall porosity ratio will increase as described above. , and the fluidity of the blended powder decreases, resulting in a decrease in compactability and a decrease in sintered alloy density. It is preferable that the first sintered alloy is composed of the following sintered alloy. (Component weight%) C0.5-1.7, Ni0.5-2.5, Cr3.0
~8.0, Mo0.1~0.9, W1.0~3.8, Co4.5~8.5,
The remainder consists essentially of Fe, with Cu9.5~ in the sintered pores.
Including 14%. This first sintered alloy forms hard particles compared to, for example, the valve seat alloy of Japanese Patent Publication No. 51-13093.
It is characterized by improved surface strength and wear resistance by suppressing the amounts of Cr, Co, and W, and by making the hard particles more fine. To explain each additive element, C is essential for matrix adjustment. If it exceeds 1.7%, the amount of cementite becomes excessive and machinability and strength decrease. If it is less than 0.5%, the amount of ferrite in the matrix becomes excessive and the matrix hardness decreases. 0.5 to 1.7 because wear resistance deteriorates due to a decrease in
%, more preferably in the range of 1.0 to 1.5%. Regarding Ni, it dissolves in the matrix and contributes to improving heat resistance, but if it is less than 0.5%, no heat resistance effect can be obtained, and if it exceeds 2.5%, hardenability deteriorates, resulting in loss of hardness uniformity and wear resistance. The content is selected in the range of 0.5 to 2.5%, more preferably 0.8 to 2.3%, since this may cause deterioration of properties. C-Cr for Cr, W, Co
-W-Co-Fe is added as hard particles and contributes to wear resistance, and is also dissolved in the matrix and contributes to improving heat resistance and strength.
The limiting values of W and Co are determined by the above-mentioned limited range of hard particle amount and the C-Cr-W-Co-Fe particle components described below, and 3.0 for Cr.
If it is less than 4.5%, the heat resistance effect will be lost; for W, if it is less than 1.0%, the high temperature strength will decrease, and if it is less than 4.5%, the high temperature strength and C-Cr will decrease.
-The bonding strength between the hard particles of W-Co-Fe and the matrix decreases, with Cr3.0-8.0%, W1.0-3.8%,
Co4.5-8.5%, more preferably Cr3.5-7.5%,
W1.3~3.3% and Co5.0~8.0% are selected and the amount of hard particles is adjusted. Furthermore, when Mo is added as Fe-Mo, it forms hard particles that contribute to wear resistance, but if it exceeds 0.9%, economic efficiency and powder compactability deteriorate compared to the wear resistance effect. Also, if it is less than 0.1%, the amount of hard particles will be too small and the high temperature strength will also decrease, so 0.1 to 0.9%, more preferably 0.3 to 0.7%.
selected within the range. More specifically, the first sintered alloy having such components includes Fe powder, C powder, Co powder, Ni powder,
This is achieved by mixing and sintering Fe-Mo powder and C-Cr-Co-W-Fe alloy powder.
For W-Fe powder, preferably C2.0-3.0%,
Co7.0~1.5%, W15~25%, Cr55~70%, Fe1.0
It is preferable that the alloy powder is selected in the range of ~8.0%. Such alloy powder has a large amount of Cr compared to an alloy called stellite, and by reducing the amount of Co, the hardness of the alloy particles themselves can be increased. Its presence increases the bonding strength between the hard particles and the base. The first sintered alloy of the present invention has been explained below,
In the present invention, extremely excellent effects can be achieved by forming a composite sintered valve seat using the above-described first sintered alloy and a second sintered alloy that is optimally combined with the second sintered alloy. The second sintered alloy has C0.5 to 1.4% by weight,
P0.1-0.4%, the remainder is a component consisting essentially of Fe,
The amount of pores formed by atomized powder is 6 to 12
% by volume, more preferably an iron-based sintered alloy in which the amount of independent pores among the pores is 0.5 to 2.5% by volume. First of all, the amount of sintered pores has an effect on the strength of the sintered alloy, as well as the effect of infiltration, as mentioned above. Therefore, the use of a low-alloy sintered alloy is an absolute prerequisite for improving the economical effects, machinability, and productivity of composite materials. Furthermore, when the second sintered alloy and the first sintered alloy are combined, they are formed in advance into two layers in the form of a powder compact and sintered under the same temperature, atmosphere, and time conditions. The second sintered alloy and the first sintered alloy are required to have approximately similar sintering shrinkage, and in practical use, approximately similar coefficients of thermal expansion are required to prevent internal distortion of the valve seat as a whole. Furthermore, it is necessary to relatively improve the thermal conductivity, which is likely to be insufficient in the first sintered alloy. Under such conditions, in the present invention, the total pore content of the first sintered alloy is set to 6 to 12%. The amount of pores is
If it exceeds 12% by volume, not only will the strength of the sintered alloy itself decrease, but also, especially in the case of the second sintered alloy, which is a low alloy, the difference in thermal expansion coefficient with the copper alloy to be infiltrated will increase. Since the alloy is susceptible to a decrease in high-temperature strength, the total pore content is preferably 12% by volume or less, more preferably in the range of 0.5 to 3% relative to the first sintered alloy. On the other hand, the amount of sintered pores is 6
If the amount of sintered pores is less than 6% by volume, the amount of pores infiltrated becomes too small and the effect of improving thermal conductivity cannot be obtained, and the sintered pores must be selected in the range of 6 to 12% by volume. be. Moreover, as mentioned above, if the second sintered alloy pore content is lower than the first sintered alloy pore content by more than 3 volume%, the difference in thermal expansion coefficient due to copper infiltration will be excessive between both sintered alloys, which is preferable. do not have. On the other hand, if the second sintered alloy has a low porosity, which is less than 0.5% compared to the first sintered alloy, the second sintered alloy itself is inferior in strength as a material than the first sintered alloy. If the amount of sintered pores or the amount of pores in the second sintered alloy is relatively large, the strength of the second sintered alloy will be inferior to the first sintered alloy. It is preferable that there is a difference in the amount of sintered pores between the first sintered alloy and the first sintered alloy in the range of 0.5 to 3% by volume. Furthermore, the amount of independent pores in the second sintered alloy is
It needs to be 2.5% or less. This is the second
As described below, the sintered alloy is uniformly dispersed and undergoes local sintering shrinkage due to the influence of P added to achieve the above-mentioned range of sintered pores, resulting in an increase in the amount of independent pores. However, if the amount of independent pores exceeds 2.5% by volume, copper infiltration will not occur in the independent pores, resulting in a significant decrease in thermal conductivity and strength. It is necessary to do the following. Conversely, in order to reduce the amount of independent pores to less than 0.5%, not only is it necessary to increase the amount of sintered pores, but also the strength of the second sintered alloy is relatively poor. The amount of independent pores, which has an adjustment function for deterioration of high-temperature strength due to the difference in thermal expansion coefficient with the copper infiltrated layer, is too small, resulting in a decrease in high-temperature strength. 0.5 of volume
Selected in the range ~2.5% by volume. In order to obtain such a sintered alloy having total pores and independent pores, the second sintered alloy must have C0.5 to C0.5 in weight%.
It is a sintered alloy consisting of 1.4% P, 0.1 to 0.4% P, and the remainder substantially Fe, and it needs to be formed of atomized powder. The reason for using atomized powder is that, as is generally known, it has excellent compression moldability and can form a green compact with a relatively high density, thereby reducing the amount of sintered pores. Furthermore, in the present invention, copper infiltration is essential to improve thermal conductivity, strength, and rigidity, and copper infiltration causes copper to infiltrate into pores and partially diffuse into the base sintered alloy. Therefore, it is characterized in that an improvement in strength is achieved. That is, copper is an element that normally causes sintering expansion and has a strong effect on low alloy iron-based sintered alloys such as the second sintered alloy, but in the present invention, such copper 0.1-0.4% P for infiltration
This is solved by using iron-based alloy powder containing iron. P has an effect on sintering shrinkage, offsets the sintering expansion effect of copper, and is also effective in reducing the amount of pores in the sintered alloy itself. If P is less than 0.1%, No effect, on the contrary P0.4%
If it exceeds Fe-P-C, machinability and toughness deteriorate due to steadite crystallization, and sintering shrinkage progresses too much, resulting in an excessive amount of independent pores and a decrease in the amount of infiltration. is 0.1 to 0.4% by weight, preferably 0.1
Must be selected in the range of ~0.3%. Also, C is essential for base adjustment of the second sintered alloy,
If it is less than 0.5%, the amount of ferrite will be high and the hardness will be low, resulting in a decrease in strength. If it exceeds 1.4%, the amount of cementite will be excessive, which will not only make the matrix brittle but also deteriorate machinability, so the C range is 0.5 to 1.4%. Preferably, it should be selected between 0.9 and 1.4%. Examples of the composite sintered valve seat of the present invention will be described below. First, as a raw material powder for the second sintered alloy of the present invention
Mix 77% atomized iron powder containing 0.3% P, 1% -325 mesh C powder, and the remaining atomized iron powder, fill it into a powder mold, and then mix and mix the raw material powder for the first sintered alloy below. and fill it onto the first sintered alloy powder. C powder (-325 mesh) 1.2% Co powder (5μ or less) 6.0% Ni powder (-325 mesh) 2.0% Fe-Mo powder (-250 mesh) 1.0% C2.5-Co10-W19-Cr6.35-Fe5 Alloy powder (-
250 mesh) 11.5% Remaining atomized iron powder The above two layers of powder were compacted at a compacting pressure of 6t/ cm2 , sintered at 1110℃ for 60 minutes in a reducing atmosphere, and the copper alloy for infiltration was placed on it. Infiltration treatment was performed at ℃60min. Further, after holding at 880℃ for 30 minutes, oil-cooling quenching and tempering test pieces for measuring the physical properties below and test pieces for the tests described below (outer diameter φ31, inner diameter φ25, height 7 mm)
It was created. When the physical properties of this valve seat were measured, they were as follows: 1. First sintered alloy (component weight%) C1.20%, Ni1.73%, Cr7.30%,
Mo0.45%, W2.19%, Co7.15%, Cu12.51% Fe with residual trace impurities (hardness) HRC 33.0 (porosity) 11.8% (before infiltration) (independent porosity) 0.51% 2 Second sintered alloy (component weight%) C1.1%, P0.20%, Cu11.2% Fe with residual trace impurities (hardness) HRC 24 (porosity) 9.9% (before infiltration) (independent) Porosity) 1.6% 3 Physical properties as a composite material (modulus of elasticity) 18600Kg/mm 2 (Coefficient of thermal expansion) (RT→400℃) 1.305×10 -5 /℃ (Thermal conductivity) (400℃)
10.9×10 -2 Ccl/cm・sec・℃ (Tensile strength) 93.4Kg/mm 2Here , the second sintered alloy and the first sintered alloy obtained through the powder and manufacturing process under the same conditions as described above. When the physical properties of each individual were measured, 4. First sintered alloy (modulus of elasticity) 19400Kg/mm 2 (coefficient of thermal expansion) (RT→400℃) 1.244×10 -5 /℃ (thermal conductivity) (400 ℃)
10.4×10 -2 Cal/cm・sec・℃ (Tensile strength) 96.8Kg/mm 2 5 Second sintered alloy (modulus of elasticity) 18000Kg/mm 2 (Coefficient of thermal expansion) (RT→400℃) 1.367×10 5 /℃ (thermal conductivity) (400℃)
13.0×10 -2 Cal/cm・sec・℃ (Tensile strength) 91.0Kg/mm 2Here , each measured value hollow porosity is the theoretical density and actual density before infiltration, and independent porosity is after infiltration. This is calculated from the after density and the amount of pores. In this way, the first and second sintered alloys each have a high tensile strength of 90 Kg/mm 2 or more and an elastic modulus of 17000 Kg/mm 2 or more, either alone or as a composite material. , furthermore, the difference in thermal expansion coefficient between the first sintered alloy and the second sintered alloy is 10% or less, and the thermal conductivity is
Since it has a high temperature of over 10×10 -2 Cal/cm・sec・℃, it has excellent strength, rigidity, and wear resistance against falling off when it is assembled into a cylinder head as a valve seat. The valve seat of the present invention thus obtained
200x micrographs are shown in Figures 2 and 3. Second
Both Fig. 3 and Fig. 3 show the metal structure of the sintered alloy subjected to nital corrosion, and the photograph in Fig. 2 shows the first sintered alloy, and Fig. 3 shows the second sintered alloy. A shown in FIGS. 2 and 3 is a continuous hole and is infiltrated with copper, and B is an independent hole that is not infiltrated with copper. C indicates hard particles. Figures 4 and 5 are 200x micrographs showing the metal structure of a composite sintered alloy valve seat 2 infiltrated with copper alloy as in the present invention but corroded with nital liquid for comparison as described later. FIG. 4 shows the sintered alloy used for the first member on the valve contact side, and FIG. 5 for the second member on the cylinder head side. Comparing the metal structures of the valve seats of the present invention shown in FIGS. 2 and 3 with the conventional valve seats shown in FIGS. 4 and 5, it is clear that the hard particles C in the present invention are smaller in size. Moreover, the continuous pores indicated by A are also fine and have a small area, and furthermore, it is clear that the structure of the valve seat of the present invention is extremely dense. The valve seat of the present invention will be compared with a conventional composite sintered valve seat, and its effects will be explained. (Comparative composite sintered valve seat 1) (First sintered alloy) C powder (-325 mesh.0.75%, Ni powder (-
325 mesh) 1.2%, Fe-Mo powder (-150 mesh) with Mo content of 0.35%, C1.4-Cr55-W26-
Co 17.6% alloy powder (-150 mesh) 18% Co
A mixed powder of 5.5% powder (less than 5μ) and residual reduced iron powder (-100 mesh). (Second sintered alloy) C powder (-325 mesh) 1.12%, Fe-Mo powder (-150 mesh) with Mo content of 0.57%, Cu powder (-
Mixed powder of 4.04% (120 mesh) and residual reduced iron powder (-100 mesh). Comparative composite sintered valve seat 1 was formed by mold-pressing and sintering such powder under the same conditions as the above-described valve seat of the present invention, and after sintering,
Comparative composite sintered valve seat 2 was created by copper infiltration and heat treatment. The physical properties of the comparative composite sintered valve seats 1 and 2 described above were measured in the same manner as the valve seat of the present invention, and the results are shown below.

【表】 かかる比較バルブシートと本発明バルブシート
につき、以下に示す如く、圧入試験、抜き荷重試
験、摩耗試験、及び実機試験としての脱落試験と
摩耗試験を行つた。 (圧入試験及び抜き試験) (試験方法) 第6図に示す如き外径φ86mm高さ25mmで、バル
ブシート12嵌合用の径φ31mmとφ27mmの同心穴
を中心に有するアルミニウム合金製シリンダヘツ
ド試料5にしめ代を変化させてバルブシート12
を圧入し、シリンダヘツド試料5の冷却部51を
水冷却しながらバーナの火炎をバルブシート12
中央に位置させて3分間400℃に加熱し、次いで
エアジエツトにより3分間空冷することを200回
繰り返す。この試験で初期のシリンダヘツドへの
バルブシートの圧入荷重としめ代の関係をもつて
バルブシートの剛性を評価する試験とし、加熱冷
却の繰り返し試験後のシリンダヘツド試料からの
バルブシート抜き荷重をもつてバルブシートの脱
落強度を評価する試験とする。 溶浸されていない比較バルブシート1のみは従
来用いられている外径φ31mm、内径φ23mm肉厚4
mmのものを用い、比較バルブシート2及び本発明
バルブシートは外径φ31mm、内径φ25mm肉厚3mm
の薄肉バルブシートを用いた。 (試験結果) 抜き試験結果を第7図に示す。第7図に示す如
く本発明バルブシートは同一肉厚、形状の比較バ
ルブシート2に対しては約1.3倍の抜き荷重を有
し、肉厚の約1.3倍ある比較バルブシート1に対
しても同等の抜き荷重を有し、脱落強度が優れる
ことが確認された。 又第8図にはバルブシート圧入試験結果を示す
が、剛性の評価されるこの試験結果においても同
一肉厚の比較バルブシート2の1.3倍、1.3倍の肉
厚の比較バルブシート1と同様の剛性が示され
た。 このように本発明複合焼結バルブシートは従来
のバルブシートと比較し、強度及び剛性に優れる
ことによつて、シリンダヘツドからの脱落強度が
優れると同時に、熱伝導率の改善と第1焼結合金
の組織の強化と緻密化によつて、その耐摩耗性に
も優れるものであることが次の摩耗試験によつて
示される。 (摩耗試験) (摩耗試験方法) 供試材料は前記した本発明実施例バルブシート
と比較バルブシート1,2を用いる。試験機はプ
ロパンガス炎をバルブシート面に噴出させバルブ
シート面を300〜500℃に加熱させた状態で、バネ
を介してバルブをバルブシートに対し回転させつ
つバルブスプリング荷重35Kgにて3000回/minで
たたき、8×105回後のバルブシートとバルブの
当り面摩耗面積を測定することによつて評価す
る。尚バルブの当り面にはステライトNo.6盛金の
ものを用いた。 (摩耗試験結果) 第9図にバルブシートの摩耗量を示し第10図
にバルブの摩耗量を示す。第9図、第10図とも
に温度を変化させての摩耗量を示すものである
が、バルブ、バルブシートの本発明、従来品共に
0.04mm2以下と充分な耐摩耗性が維持されることが
確認された。 さらに本発明のバルブシートと従来の比較バル
ブシート1,2を実機運転した試験結果を以下に
示す。 (実機試験) (試験条件) 1500c.c.、OHC、ガソリン機関 5500rpm全負荷400時間連続運転 比較バルブシート1 外径φ31mm内径φ23mm 比較バルブシート2及び本発明バルブシート 外径φ31mm、内径φ25mm バルブ:ステライトNo.6盛金バルブ (試験結果) 試験後に比較バルブシート1,2、及び本発明
バルブシートの脱落及び変形は認められなかつ
た。 又各気筒の供試バルブシート及びバルブの摩耗
量の平均を示す第11図の摩耗試験結果によつて
も本発明バルブシート摩耗量は0.04mm2以下であ
り、かつバルブ摩耗量と合わせても0.05mm2以下と
比較バルブシート1,2に対し同等の摩耗量であ
り充分に実用に供せられうるものである。 かかるバルブシートの強度試験及び摩耗試験及
び実機試験より明らかな如く、本発明複合焼結バ
ルブシートでは、第1焼結合金と第2焼結合金と
の焼結空孔量をそれぞれ低減されたことによる強
度の向上とさらに焼結空孔量間のバランスが適正
であり、から独立空孔量を制御したことによつて
溶浸することの効果を充分に生かし、強度及び高
温強度が向上された結果、シリンダヘツドからの
耐脱落性が向上されたものと評価される。さらに
従来の高合金焼結バルブシートと比較しても劣ら
ない耐摩耗性を有する理由として、第1焼結合金
の空孔量が低く制御されかつ硬質粒子を含め組織
が微細化したことによつて表面強度が向上したの
みならず熱伝導性が著しく向上されたことによる
ものと評価される。
[Table] The comparison valve seat and the valve seat of the present invention were subjected to a press-fit test, a pull-out load test, a wear test, and a drop-off test and a wear test as actual machine tests, as shown below. (Press-fit test and pull-out test) (Test method) As shown in Fig. 6, an aluminum alloy cylinder head sample 5 with an outer diameter of 86 mm and a height of 25 mm and having concentric holes of 31 mm in diameter and 27 mm in the center for fitting the valve seat 12 was used. Valve seat 12 by changing the tightening distance
is press-fitted, and while cooling the cooling part 51 of the cylinder head sample 5 with water, the flame of the burner is heated to the valve seat 12.
Heating at 400°C for 3 minutes at the center and then cooling with an air jet for 3 minutes was repeated 200 times. In this test, the rigidity of the valve seat is evaluated based on the relationship between the initial pressure-fitting load of the valve seat into the cylinder head and the interference margin, and the test evaluates the rigidity of the valve seat based on the relationship between the initial pressure-fitting load of the valve seat into the cylinder head and the interference margin. This test evaluates the strength of the valve seat against falling off. Comparison valve seat 1, which is not infiltrated, is the conventional one with an outer diameter of φ31 mm and an inner diameter of φ23 mm and a wall thickness of 4.
Comparative valve seat 2 and the valve seat of the present invention have an outer diameter of φ31 mm, an inner diameter of φ25 mm, and a wall thickness of 3 mm.
A thin-walled valve seat was used. (Test Results) The results of the punch test are shown in Figure 7. As shown in FIG. 7, the valve seat of the present invention has a pull-out load that is approximately 1.3 times that of the comparative valve seat 2 which has the same wall thickness and shape, and also has a pullout load that is approximately 1.3 times that of the comparative valve seat 1 which has the same wall thickness and shape. It was confirmed that they had the same pull-out load and superior drop strength. Also, Fig. 8 shows the results of the valve seat press-fit test, and the results of this test, where stiffness is evaluated, are 1.3 times that of comparative valve seat 2 with the same wall thickness, and similar to comparative valve seat 1 with 1.3 times the wall thickness. Stiffness was demonstrated. As described above, the composite sintered valve seat of the present invention has superior strength and rigidity compared to conventional valve seats, so it has excellent resistance to falling off from the cylinder head, and at the same time has improved thermal conductivity and first sintered bond. The following wear test shows that the gold structure is strengthened and densified, resulting in excellent wear resistance. (Abrasion Test) (Abrasion Test Method) The above-described valve seats according to the present invention and comparative valve seats 1 and 2 are used as test materials. The test machine sprayed a propane gas flame onto the valve seat surface to heat the valve seat surface to 300 to 500℃, and rotated the valve against the valve seat via a spring, 3000 times/with a valve spring load of 35 kg. Evaluation is made by measuring the wear area of the contact surface between the valve seat and the valve after 8×10 5 times. In addition, Stellite No. 6 metal was used for the contact surface of the valve. (Wear test results) Fig. 9 shows the amount of wear on the valve seat, and Fig. 10 shows the amount of wear on the valve. Both Figures 9 and 10 show the amount of wear as the temperature changes, and both the valve and valve seat of the present invention and the conventional product.
It was confirmed that sufficient wear resistance was maintained at 0.04 mm 2 or less. Furthermore, test results of actual machine operation of the valve seat of the present invention and conventional comparison valve seats 1 and 2 are shown below. (Actual machine test) (Test conditions) 1500c.c., OHC, gasoline engine 5500rpm full load 400 hours continuous operation Comparison valve seat 1 Outer diameter φ31mm Inner diameter φ23mm Comparison valve seat 2 and invention valve seat Outer diameter φ31mm, inner diameter φ25mm Valve: Stellite No. 6 metallized valve (test results) After the test, no falling off or deformation of the comparative valve seats 1 and 2 and the valve seat of the present invention was observed. Also, according to the wear test results shown in Fig. 11, which shows the average amount of wear of the test valve seats and valves for each cylinder, the amount of wear of the valve seat of the present invention is 0.04 mm 2 or less, and even when combined with the amount of valve wear, The wear amount is 0.05 mm 2 or less, which is the same as that of comparison valve seats 1 and 2, and is sufficient for practical use. As is clear from the strength test, wear test, and actual machine test of the valve seat, in the composite sintered valve seat of the present invention, the amount of sintered pores in the first sintered alloy and the second sintered alloy are reduced. In addition, the balance between the sintered pores and the amount of sintered pores was appropriate, and by controlling the amount of independent pores, the effect of infiltration was fully utilized, and the strength and high-temperature strength were improved. As a result, it is evaluated that the resistance to falling off from the cylinder head has been improved. Furthermore, the reason why it has wear resistance comparable to that of conventional high-alloy sintered valve seats is that the pore content of the first sintered alloy is controlled to be low and the structure including hard particles is refined. This is thought to be due to not only improved surface strength but also markedly improved thermal conductivity.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は複合焼結バルブシート断面図、第2図
は本発明第1焼結合金の金属組織を示す200倍顕
微鏡写真、第3図は本発明第2焼結合金の金属組
織を示す200倍顕微鏡写真、第4図は従来の第1
焼結合金の金属組織を示す200倍顕微鏡写真、第
5図は従来の第2焼結合金の金属組織を示す200
倍顕微鏡写真、第6図は本発明バルブシートの試
験用シリンダヘツド試料断面図、第7図は本発明
バルブシートのシリンダヘツドからの抜き荷重試
験結果を示すグラフ、第8図は本発明バルブシー
トのシリンダヘツドへの圧入荷重試験結果を示す
グラフ、第9図および第10図はそれぞれ本発明
バルブシートの摩耗試験結果を示すグラフ、第1
1図は本発明バルブシートの実機での摩耗試験結
果を示すグラフである。 付号の説明、1……第1部材、2……第2部
材、3……シリンダヘツド、4……バルブ、5…
…シリンダヘツド試料、12……複合焼結バルブ
シート、A……連続空孔、B……独立空孔、C…
…硬質粒子。
Fig. 1 is a sectional view of a composite sintered valve seat, Fig. 2 is a 200x micrograph showing the metallographic structure of the first sintered alloy of the present invention, and Fig. 3 is a 200x micrograph showing the metallographic structure of the second sintered alloy of the present invention. A magnified micrograph, Figure 4 shows the conventional 1st
A 200x micrograph showing the metallographic structure of a sintered alloy. Figure 5 is a 200x micrograph showing the metallographic structure of a conventional secondary sintered alloy.
Fig. 6 is a cross-sectional view of a test cylinder head sample of the valve seat of the present invention, Fig. 7 is a graph showing the pullout load test results of the valve seat of the present invention from the cylinder head, and Fig. 8 is the valve seat of the present invention. 9 and 10 are graphs showing the results of the wear test of the valve seat of the present invention, respectively.
FIG. 1 is a graph showing the results of a wear test of the valve seat of the present invention in an actual machine. Explanation of the numbers: 1...First member, 2...Second member, 3...Cylinder head, 4...Valve, 5...
...Cylinder head sample, 12...Composite sintered valve seat, A...Continuous holes, B...Independent holes, C...
...Hard particles.

Claims (1)

【特許請求の範囲】[Claims] 1 二種の異なる焼結合金によつて形成され、さ
らに銅合金が溶浸されてなるバルブシートにおい
て、バルブ当り面側の第1部材を形成する第1焼
結合金が、250メツシユ以下の硬質粒子を容積%
にて8〜14%含み、重量%にてC0.5〜1.7%、
Ni0.5〜2.5%、Cr3.0〜8.0%、Mo0.1〜0.9%、
W1.0〜3.8%、Co4.5〜8.5%残部実質的にFeより
なる鉄系焼結合金であり、アトマイズ鉄粉により
形成される空孔量が容積%にて6〜13%で、且つ
独立空孔量が容積%にて0.4〜1.2%である鉄系焼
結合金であり、さらにシリンダヘツド側の第2部
材を形成するる第2焼結合金が重量%にてC0.5〜
1.4%、P0.1〜0.4%残部実質的にFeよりなる鉄系
焼結合金であり、アトマイズ鉄粉によつて形成さ
れる空孔量が容積%にて6〜12%で、且つ独立空
孔量が容積%にて0.5〜2.5%である鉄系焼結合金
であり、前記第1焼結合金および第2焼結合金の
双方には銅合金が溶浸されてなることを特徴とす
る複合焼結バルブシート。
1 In a valve seat formed of two different types of sintered alloys and further infiltrated with a copper alloy, the first sintered alloy forming the first member on the valve contact side is a hard metal of 250 mesh or less. Particles by volume%
Contains 8-14% in weight, C0.5-1.7% in weight%,
Ni0.5~2.5%, Cr3.0~8.0%, Mo0.1~0.9%,
It is an iron-based sintered alloy consisting of W1.0~3.8%, Co4.5~8.5%, and the balance substantially Fe, and the amount of pores formed by the atomized iron powder is 6~13% by volume, and The iron-based sintered alloy has an independent pore content of 0.4 to 1.2% by volume, and the second sintered alloy forming the second member on the cylinder head side has C0.5 to 1.2% by weight.
1.4%, P0.1~0.4% The balance is an iron-based sintered alloy consisting essentially of Fe, and the amount of pores formed by the atomized iron powder is 6~12% by volume, and it has independent pores. It is an iron-based sintered alloy having a pore volume of 0.5 to 2.5% by volume, and is characterized in that both the first sintered alloy and the second sintered alloy are infiltrated with a copper alloy. Composite sintered valve seat.
JP13155582A 1982-07-28 1982-07-28 Composite sintered valve seat Granted JPS5923856A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13155582A JPS5923856A (en) 1982-07-28 1982-07-28 Composite sintered valve seat

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13155582A JPS5923856A (en) 1982-07-28 1982-07-28 Composite sintered valve seat

Publications (2)

Publication Number Publication Date
JPS5923856A JPS5923856A (en) 1984-02-07
JPH0137466B2 true JPH0137466B2 (en) 1989-08-07

Family

ID=15060803

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13155582A Granted JPS5923856A (en) 1982-07-28 1982-07-28 Composite sintered valve seat

Country Status (1)

Country Link
JP (1) JPS5923856A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015098643A1 (en) * 2013-12-27 2015-07-02 日本ピストンリング株式会社 Assembly of internal combustion engine valve and valve seat
US11300018B2 (en) 2018-03-20 2022-04-12 Nittan Valve Co., Ltd. Hollow exhaust poppet valve
US11536167B2 (en) 2018-11-12 2022-12-27 Nittan Valve Co., Ltd. Method for manufacturing engine poppet valve
US11850690B2 (en) 2020-03-30 2023-12-26 Nittan Corporation Method for manufacturing engine poppet valve

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58207945A (en) * 1982-05-28 1983-12-03 Ube Ind Ltd Hydrogenation catalyst for oxalic diester
DE102012013226A1 (en) * 2012-07-04 2014-01-09 Bleistahl-Produktions Gmbh & Co Kg High heat conducting valve seat ring

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5486410A (en) * 1977-12-23 1979-07-10 Nippon Piston Ring Co Ltd Ferrous sintered alloy material for valve seat
JPS55145151A (en) * 1979-04-26 1980-11-12 Nippon Piston Ring Co Ltd Wear resistant sintered alloy material for internal combustion engine

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5486410A (en) * 1977-12-23 1979-07-10 Nippon Piston Ring Co Ltd Ferrous sintered alloy material for valve seat
JPS55145151A (en) * 1979-04-26 1980-11-12 Nippon Piston Ring Co Ltd Wear resistant sintered alloy material for internal combustion engine

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015098643A1 (en) * 2013-12-27 2015-07-02 日本ピストンリング株式会社 Assembly of internal combustion engine valve and valve seat
JP2015127521A (en) * 2013-12-27 2015-07-09 日本ピストンリング株式会社 Combination of valve and valve seat for internal combustion engine
US10287933B2 (en) 2013-12-27 2019-05-14 Nippon Piston Ring Co., Ltd. Assembly of internal combustion engine valve and valve seat
US11300018B2 (en) 2018-03-20 2022-04-12 Nittan Valve Co., Ltd. Hollow exhaust poppet valve
US11536167B2 (en) 2018-11-12 2022-12-27 Nittan Valve Co., Ltd. Method for manufacturing engine poppet valve
US11850690B2 (en) 2020-03-30 2023-12-26 Nittan Corporation Method for manufacturing engine poppet valve

Also Published As

Publication number Publication date
JPS5923856A (en) 1984-02-07

Similar Documents

Publication Publication Date Title
US4505988A (en) Sintered alloy for valve seat
JP3926320B2 (en) Iron-based sintered alloy valve seat and method for manufacturing the same
US5031878A (en) Valve seat made of sintered iron base alloy having high wear resistance
US4524046A (en) Method for manufacturing a cam-cam shaft assembly
JPH0210311B2 (en)
US20020084004A1 (en) Iron-based sintered alloy material for valve seat and valve seat made of iron-based sintered alloy
US4233073A (en) Iron-base sintered alloy for valve seat and method of making the same
JPH0350823B2 (en)
JP3784926B2 (en) Ferrous sintered alloy for valve seat
JPH0137466B2 (en)
JPH03158444A (en) Valve seat made of fe-base sintered alloy excellent in wear resistance
JP3573872B2 (en) Method of manufacturing sintered alloy joint valve seat and sintered alloy material for joint valve seat
JPH06179937A (en) Sintered alloy for valve seat
JP3569166B2 (en) Wear-resistant sintered alloy and method for producing the same
JP3942136B2 (en) Iron-based sintered alloy
JPH0115583B2 (en)
EP4082692A1 (en) Sintered valve seat insert and method of manufacture thereof
JP2002220645A (en) Iron-based sintered alloy of hard-particle dispersion type
JPH0770720A (en) Ferrous sintered alloy for valve seat
JP2023152728A (en) Valve seat formed of iron sintered alloy for internal combustion engine and production method of the same
JP2023152727A (en) Valve seat for internal combustion engine made of iron sintered alloy and production method
JPH0116298B2 (en)
JPH03134139A (en) Iron-base sintered alloy for valve seat
JP3264092B2 (en) Wear-resistant iron-based sintered alloy and method for producing the same
JPS649367B2 (en)