JP3573872B2 - Method of manufacturing sintered alloy joint valve seat and sintered alloy material for joint valve seat - Google Patents

Method of manufacturing sintered alloy joint valve seat and sintered alloy material for joint valve seat Download PDF

Info

Publication number
JP3573872B2
JP3573872B2 JP10511696A JP10511696A JP3573872B2 JP 3573872 B2 JP3573872 B2 JP 3573872B2 JP 10511696 A JP10511696 A JP 10511696A JP 10511696 A JP10511696 A JP 10511696A JP 3573872 B2 JP3573872 B2 JP 3573872B2
Authority
JP
Japan
Prior art keywords
valve seat
particles
copper alloy
sintered
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP10511696A
Other languages
Japanese (ja)
Other versions
JPH09287422A (en
Inventor
輝夫 高橋
新 垣内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Piston Ring Co Ltd
Original Assignee
Nippon Piston Ring Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Piston Ring Co Ltd filed Critical Nippon Piston Ring Co Ltd
Priority to JP10511696A priority Critical patent/JP3573872B2/en
Publication of JPH09287422A publication Critical patent/JPH09287422A/en
Application granted granted Critical
Publication of JP3573872B2 publication Critical patent/JP3573872B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、内燃機関用のバルブシートに関し、とくにシリンダヘッドに接合できる焼結合金製バルブシートに関する。
【0002】
【従来の技術】
バルブシートは、エンジンのシリンダヘッドに圧入されて使用され、燃焼ガスのシールとバルブを冷却する役割を担っている。そのため、バルブによる叩かれ、すべりによる摩耗、燃焼ガスによる加熱、燃料と燃料に含まれる添加物およびその燃焼生成物、熱変成物による腐食等をうける。
【0003】
焼結合金は、合金粉末を配合混練して金型に充填し圧縮成形したのち、所定の温度、雰囲気中で焼結したものであり、通常の溶製法では得難い合金が容易に製造できる。また、機能の複合化が容易なため独特な機能を付与した部品の製造も可能であり、多孔質材や難加工材などの製造や、形の複雑な機械部品の製造に適している。近年、耐摩耗性が要求されるバルブシートにこの焼結合金が適用されている。
【0004】
例えば、特開昭59−25959号公報には、C、Ni、Cr、Mo、W、Coを多量に含み、基地組織中にC−Cr−W−Co−Fe粒子とFe−Mo粒子の硬質粒子が分散し、連続空孔が銅合金にて溶浸されたバルブシート用焼結合金材が開示されている。このバルブシート用焼結合金材は、強度および剛性に優れ、かつ耐摩耗性に優れたバルブシートとして、成形・焼結後油焼入れ焼戻し処理により製品化され、圧入によりシリンダヘッドに組み入れられ使用されている。
【0005】
しかし、最近では、自動車の高速化・軽量化等の要望から、内燃エンジンでは、多バルブ化が進んでおり、各気筒には複数の吸・排気ポートが近接して配置されている。このような最近の傾向から、バルブ間の距離を狭くしたり、吸・排気ポート径を大きくする等の設計の自由度を確保したり、あるいは、バルブ・バルブシートの熱引け性を良くし熱負荷の軽減を図る等の目的で、シリンダヘッドにバルブシートを接合する接合型バルブシートが考えられている。
【0006】
しかしながら、上記したような従来のバルブシート用焼結合金材を接合型バルブシートに適用すると、バルブシートを接合するとき、あるいは、エンジンの運転時に、バルブシートにクラック(亀裂)が発生し、バルブシートのシール性が低下するという問題があった。
このような問題に対し、例えば、特開平7−189628号公報には、Cu基合金またはオーステナイト基地鉄系合金を抵抗溶接によりシリンダヘッドに接合されてなる接合型バルブシートが提案されている。
【0007】
しかし、このバルブシートは、接合時、あるいは運転時にクラックが発生しないが、高価な合金元素を含んでおり経済的に不利であること、あるいはさらに、強度、剛性が低いこと、また、耐摩耗性が劣るという問題があった。
【0008】
【発明が解決しようとする課題】
本発明は、上記した問題点を有利に解決し、接合型バルブシートとしてもクラックが発生しない、伸び・靱性に優れかつ耐摩耗性に優れた焼結合金製接合型バルブシートおよび焼結合金材の製造方法を提案することを目的とする。
【0009】
【課題を解決するための手段】
本発明者らは、銅溶浸によって封孔処理を施した鉄系焼結合金材は、バルブシート用として強度、熱伝導率の点で最適であるという考えで、上記課題を解決するために、鉄系焼結合金材について鋭意検討した結果、従来の鉄系焼結合金材は、銅を溶浸した延性・靱性の低い材料であり、接合時に発生する多大な熱応力(引張応力)に耐えられず、クラックを生じるが、しかし、材料の伸びを1.0 %以上とすることができれば、鉄系焼結合金材でも接合時にクラックが発生しないことを見いだし、本発明を構成した。
【0010】
本発明は、重量%で、C:0.5 〜1.7 %、Ni:0.5 〜2.5 %、Cr:3.0 〜8.0 %、W:1.0 〜3.8 %、Co:4.5 〜8.5 %を含有し残部が不可避的不純物およびFeからなり、かつ250 メッシュ以下のC−Cr−W−Co−Fe粒子を容量%で8 〜14%有し、焼結空孔が銅合金にて溶浸され、基地組織がオーステナイト、ベイナイトと粒状パーライトからなり、 1.0 %以上の伸びを有する焼結合金材からなることを特徴とする焼結合金製接合型バルブシートである。
【0011】
また、本発明は、重量%で、C:0.5 〜1.7 %、Ni:0.5 〜2.5 %、Cr:3.0 〜8.0 %、Mo:0.1 〜0.9 %、W:1.0 〜3.8 %、Co:4.5 〜8.5 %を含有し残部が不可避的不純物およびFeからなり、かつ250 メッシュ以下のC−Cr−W−Co−Fe粒子とFe−Mo粒子とを容量%で8 〜14%有し、焼結空孔が銅合金にて溶浸され、基地組織がオーステナイト、ベイナイトと粒状パーライトからなり、 1.0 %以上の伸びを有する焼結合金材からなることを特徴とする焼結合金製接合型バルブシートである。
【0012】
更にまた、本発明は、重量%で、C:0.5 〜1.7 %、Ni:0.5 〜2.5 %、Cr:3.0 〜8.0 %、W:1.0 〜3.8 %、Co:4.5 〜8.5 %を含有し残部が不可避的不純物およびFeからなり、かつ250 メッシュ以下のC−Cr−W−Co−Fe粒子を容量%で8 〜14%有する焼結体、もしくは重量%で、C:0.5 〜1.7 %、Ni:0.5 〜2.5 %、Cr:3.0 〜8.0 %、Mo:0.1 〜0.9 %、W:1.0 〜3.8 %、Co:4.5 〜8.5 %を含有し残部が不可避的不純物およびFeからなり、かつ250 メッシュ以下のC−Cr−W−Co−Fe粒子とFe−Mo粒子とを容量%で8 〜14%有する焼結体を、溶浸用銅合金とともに銅合金の融点以上に加熱し、空孔に銅合金を溶浸させ、さらに、Ac3あるいはAcm変態点以上1200℃以下の温度に加熱したのち、4.5 ℃/min以下の冷却速度で650 ℃以下まで冷却しついで空冷することを特徴とする伸び特性・耐摩耗性に優れた接合型バルブシート用焼結合金材の製造方法であり、また、本発明は、前記焼結体を、溶浸用銅合金とともにAC3あるいはAcm変態点以上でかつ銅合金の融点以上1200℃以下の温度に加熱し、銅合金の溶浸処理と熱処理用加熱とを同時に行ってもよい。
【0013】
【発明の実施の形態】
本発明のバルブシート用焼結合金材の成分組成について説明する。
C:0.5 〜1.7 %
Cは、基地を所定の組織、硬さに調整するため、およびC−Cr−W−Co−Fe粒子を形成するために必要な元素であり、0.5 %未満では基地のフェライト量が過多となり基地強度が低下し、さらに、硬質粒子量も不足する。また、1.7%を超えると基地のセメンタイト量が多くなり被削性が低下する。このため、Cは、0.5 〜1.7 %の範囲とした。なお、より好ましくは1.0 〜1.5 %である。Cは、黒鉛粉末およびC−Cr−W−Co−Fe合金粉末として添加されるのが好ましい。
【0014】
Ni:0.5 〜2.5 %
Niは、基地に固溶して耐熱性を向上させる元素であり、0.5 %未満ではその効果が少なく、また2.5 %を超えると焼入れ性が劣化する。このため、Niは0.5 %〜2.5 %の範囲とした。なお、より好ましくは0.8 〜2.3 %である。NiはNi粉として添加するか、あるいは鉄粉中に予合金化しておくのが好ましい。
【0015】
Cr:3.0 〜8.0 %
Crは、耐摩耗性を向上させる元素であり、C−Cr−W−Co−Fe合金粉末として添加される。Crが3.0 %未満では、硬質粒子量が不足し耐摩耗性・耐熱性が劣化する。8.0 %を超えると、硬質粒子量が過多となり、焼結体の強度が低下する。このため、Crは3.0 〜8.0 %の範囲に限定した。なお、より好ましくは3.5 〜7.5 %である。
【0016】
Mo:0.1 〜0.9 %
Moは添加されていなくても使用に供することができるが、Moを添加した場合には更に、耐摩耗性を向上させることができる。本発明では、Fe−Mo粒子を形成し、硬質粒子として基地中に分散して耐摩耗性向上に寄与する。Moが0.1 %未満では、Fe−Mo粒子量が少なく耐摩耗性がそれほど向上しない。また、0.9 %を超えるとFe−Mo粒子量が過多となり、焼結体の強度が不足する。このため、Moは0.1 〜0.9 %の範囲に限定した。なお、より好ましくは0.3 〜0.7 %である。MoはFe−Mo粉末あるいは低C−Fe−Mo粉末として添加されるのが好ましい。
【0017】
W:1.0 〜3.8 %
Wは、C−Cr−W−Co−Fe粒子を形成することにより、耐摩耗性を向上させる。1.0 %未満では、硬質粒子量が不足し耐摩耗性が劣化し、3.8 %を超えると硬質粒子が過多となり焼結体の強度が不足する。このため、Wは1.0 〜3.8 %の範囲に限定した。なお、より好ましくは1.3 〜3.3 %である。Wは、C−Cr−W−Co−Fe合金粉末として添加するのが好ましい。
【0018】
Co:4.5 〜8.5 %
Coは、C−Cr−W−Co−Fe粒子を形成することにより、耐摩耗性を向上させる。さらに、Coは、硬質粒子と基地との結合を強化したり、基地中に固溶し耐熱性を向上させる効果を有する。4.5 %未満ではその効果が認められず、また8.5 %を超えると硬質粒子が過多となり焼結体の強度が不足する。このため、Coは、4.5 〜8.5 %の範囲とした。なお、より好ましくは5.0 〜8.0 %である。Coは、C−Cr−W−Co−Fe合金粉末およびCo粉末として添加するのが好ましい。Co粉末の代わりに一部、鉄粉中に合金化して添加してもよい。
【0019】
本発明のバルブシート用焼結合金材は残部は実質的にFeである。
本発明のバルブシート用焼結合金材は、上記組成を有し、さらに、硬質粒子として、250 メッシュ以下のC−Cr−W−Co−Fe粒子を、またはC−Cr−W−Co−Fe粒子およびFe−Mo粒子を容量%で、8 〜14%含有する。
硬質粒子として250 メッシュを超える粗い粉末を用いると、混合粉末の圧縮成形性が低下し、さらに、焼結合金において硬質粒子の脱落、不均一性による耐摩耗性の低下が生じるため、硬質粒子は250 メッシュ以下とする。
【0020】
硬質粒子量が8 容量%未満では、硬質粒子が不足し耐摩耗性が劣化する。一方、14容量%を超えると、硬質粒子が過多となり混合粉末の圧縮成形性が低下し、焼結体の強度が不足する。
ベースとなる鉄粉は、アトマイズ鉄粉あるいは還元鉄粉等いずれの鉄粉も好適に適用できる。鉄粉には予め合金元素を予合金させてもよい。
【0021】
硬質粒子であるC−Cr−W−Co−Fe粒子は、C:2.0 〜3.0 %、Co:7.0 〜15%、W:15〜25%、Fe:1.0 〜8.0 %、残部が実質的にCrである合金粉末として添加するのが好ましい。
硬質粒子であるFe−Mo粒子は、Mo:50〜70%のフェロモリブデン粉末として添加するのが好ましい。
【0022】
本発明のバルブシート用焼結合金材を得るには、純鉄粉にNi、Coの単粉を混合するか、純鉄粉にC、Ni、Coを予合金した合金鉄粉に、さらに、硬質粒子となる合金粉、C粉を上記した組成になるように配合し混練する。なお、潤滑材としてステアリン酸亜鉛等を配合してもよい。
次に、これら粉末を金型に充填し、成形プレスにより圧縮・成形し圧粉体とする。ついで、圧粉体を焼結させて焼結体を得る。
【0023】
焼結条件は、圧粉体を保護雰囲気中で1100〜1200℃の温度範囲に加熱し焼結されるのが望ましい。1100℃未満では、焼結拡散が不十分であり、1200℃を超えると硬質粒子、基地の過拡散が生じ耐摩耗性が劣化する。
焼結体を、さらに、溶浸用銅合金とともに銅合金の融点以上に加熱し、空孔に銅合金を溶浸させる溶浸処理を施す。この溶浸処理は後述する焼結体の熱処理と同時に行っても構わない。
【0024】
つぎに、本発明では、上記組成の焼結体を溶浸処理を施したのちあるいは溶浸処理を施さず、加熱し冷却する熱処理を施す。
本発明では、焼結合金材の伸びを1.0 %以上と、伸び特性を向上させるために、焼結合金材の組織をオーステナイト+ベイナイト+粒状パーライト組織とする。そのために、熱処理条件を限定している。
【0025】
熱処理の加熱温度は、焼結体のAc3あるいはAcm変態点以上、1200℃以下とする。
加熱温度がAc3あるいはAcm変態点未満では、伸び特性の優れたオーステナイト+ベイナイト+粒状パーライト組織が得られず、焼戻しマルテンサイト+パーライト組織となり伸び値の向上が望めない。また、1200℃を超えると、結晶粒が粗大化し、さらに硬質粒子、基地の過拡散が生じ延性・靱性、耐摩耗性が劣化する。このようなことから、熱処理の加熱温度はAc3あるいはAcm変態点以上好ましくは1200℃以下とする。好ましくは、750 ℃以上1200℃以下である。なお、溶浸処理を施していない焼結体については、加熱時に溶浸用銅合金とともに銅合金の融点以上に加熱し溶浸処理を同時に行っても良い。
【0026】
上記加熱温度に加熱したのち、4.5 ℃/min以下の冷却速度で650 ℃以下まで冷却しついで空冷する。
650 ℃以下までの冷却速度が4.5 ℃/minを超える冷却速度では、伸び特性の優れたオーステナイト+ベイナイト+粒状パーライト組織が得られず、マルテンサイト+ベイナイト組織となり、高い伸び値が得られない。冷却速度の制御が650 ℃を超える温度までの場合は、所定の伸び特性の優れた組織が得られない。
【0027】
上記した熱処理を施したのち、必要に応じ焼戻しを施してもよい。
上記した組成と熱処理を組み合わせることにより、焼結合金材の伸び特性が向上し、本発明の焼結合金材を接合型バルブシートに適用しても、クラックの発生は見られない。また、本発明の焼結合金製接合型バルブシートの少なくとも接合面に銅めっきを施すことは、接合性を向上させるうえから好ましいことである。
【0028】
接合型バルブシートは、焼結合金材を所定の形状に加工し、抵抗溶接、摩擦圧接、電子ビーム溶接等によりシリンダヘッドに接合される。
【0029】
【実施例】
まず、試験No. 1〜No. 7、No.13 は原料粉末として、重量%で、C粉末(−325メッシュ) 1.2%、Co粉末(5μm 以下) 6.0%、Ni粉末(−325メッシュ) 2.0%、Fe−60%Mo粉末(−250メッシュ) 1.0%、 2.5%C− 1.0%Co−19%W−63.5%Cr−5%Fe合金粉末(−250メッシュ)11.5%、残部アトマイズ純鉄粉に、ステアリン酸亜鉛1%を配合し、混練した。試験No. 8〜No.12 は原料粉末として、重量%で、C粉末(−325メッシュ) 1.2%、Co粉末(5μm 以下) 6.0%、Ni粉末(−325メッシュ) 2.0%、 2.5%C− 1.0%Co−19%W−63.5%Cr−5%Fe合金粉末(−250メッシュ)11.5%、残部アトマイズ純鉄粉に、ステアリン酸亜鉛1%を配合し、混練した。これら混合原料粉末を6ton/cmの圧力で圧粉成形し、還元性雰囲気で1110℃、60min 焼結し、これに溶浸用銅合金を載置し1130℃、60min 溶浸処理を施した。一部の焼結体(試験No. 7、No.12 )は上記溶浸処理を施していない。
【0030】
ついで、表1に示す加熱冷却条件で、焼結体を熱処理した。試験No. 7、No.12 は、加熱時に溶浸用銅合金を載置し溶浸処理を同時に行った。
【0031】
【表1】

Figure 0003573872
【0032】
試験No. 1〜No. 7の焼結合金材の組成は、C: 1.3%、Ni: 2.0%、Cr: 7.5%、Mo: 0.6%、W: 2.2%、Co: 7.5%、残部不純物およびFeであり、基地中に分散した硬質粒子は、13容量%であった。また、試験No. 8〜No.12 の焼結合金材の組成は、C: 1.3%、Ni: 2.0%、Cr: 7.5%、W: 2.2%、Co: 7.5%、残部不純物およびFeであり、基地中に分散した硬質粒子は、12容量%であった。焼結空孔の10〜15%には銅合金が溶浸されていた。この焼結合金材の変態点(Acm)は、 735℃であった。熱処理後に、焼結合金材の引張試験を実施し、伸びを測定した。測定結果を表1に併記する。
【0033】
本発明適用例の試験No. 1〜3、No. 5〜7、No. 8〜9、No. 11〜12は、伸びが 1.0%以上あるのに対し、比較例の試験No. 4、No.10 の伸びはそれぞれ 0.8%、 0.6%、従来例の試験No.13 の伸びは 0.3%と 1.0%未満であり、本発明適用例は優れた伸び特性を有していることがわかる。
本発明適用例の試験No. 1、従来例の試験No.13 と同じ組成・処理条件で処理し、バルブシートに加工したのち、シリンダヘッド(材質:ADC4)に抵抗溶接により接合した。この接合時の熱応力により、本発明適用例の試験No. 1のバルブシートには、クラックの発生はみられなかった。しかし、従来例の試験No.13 のバルブシートには、半径方向のクラックが発生した。本発明の範囲であれば、接合型バルブシートに適用しても、接合時の熱応力により、クラックを発生することはない。
【0034】
表1に示す熱処理を施した焼結合金材を、通常圧入タイプのバルブシートに加工し、耐摩耗性を単体リグ摩耗試験で確認した。試験条件は、つぎのとおりである。
試験温度: 350℃(シート面)
コンタクト数:1.6 ×10
カム回転数: 3000rpm
バルブ回転数:20rpm
スプリング荷重: 30kgf(リフト時)
バルブ材質:SUH35(ステライトNo. 6盛金)
リフト量: 7.2mm
試験結果を図1に示す。
【0035】
本発明適用例の試験No. 1〜3、No. 5〜7、No. 8〜9、No. 11〜12では、バルブシート摩耗量は9〜11μm であり、従来例のNo.13 と同等の耐摩耗性を示した。
【0036】
【発明の効果】
本発明によれば、伸び・靱性に優れかつ耐摩耗性に優れた焼結合金材が得られ、該焼結合金材を用いた接合型バルブシートにはクラックを生じることがなく高いシール性を維持することができるという効果が得られる。
【図面の簡単な説明】
【図1】単体リグ試験後のバルブシート摩耗量を示すグラフである。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a valve seat for an internal combustion engine, and more particularly to a sintered alloy valve seat that can be joined to a cylinder head.
[0002]
[Prior art]
The valve seat is used by being press-fitted into a cylinder head of the engine, and plays a role of sealing a combustion gas and cooling the valve. As a result, the valve is hit by a valve, worn by sliding, heated by a combustion gas, corroded by a fuel and additives contained in the fuel, its combustion products, and thermal denatured products.
[0003]
The sintered alloy is obtained by compounding and kneading alloy powder, filling in a mold, compression-molding, and then sintering at a predetermined temperature and atmosphere. An alloy which is difficult to obtain by a normal melting method can be easily produced. In addition, since it is easy to combine functions, it is possible to manufacture parts with unique functions, and it is suitable for manufacturing porous materials and difficult-to-process materials, and for manufacturing mechanical parts having complicated shapes. In recent years, this sintered alloy has been applied to valve seats requiring abrasion resistance.
[0004]
For example, Japanese Unexamined Patent Publication No. 59-25959 discloses that a matrix contains a large amount of C, Ni, Cr, Mo, W, and Co, and the base tissue contains hard C-Cr-W-Co-Fe particles and Fe-Mo particles. A sintered alloy material for a valve seat in which particles are dispersed and continuous pores are infiltrated with a copper alloy is disclosed. This sintered alloy material for valve seats has excellent strength, rigidity, and excellent wear resistance. It is commercialized as an oil quenching and tempering treatment after molding and sintering. ing.
[0005]
However, recently, in response to demands for speeding up and reducing the weight of automobiles, the number of valves in internal combustion engines has been increasing, and a plurality of intake / exhaust ports are arranged close to each cylinder. Due to such recent trends, the degree of freedom in design, such as reducing the distance between valves, increasing the diameter of the intake / exhaust ports, etc., or improving the heat-releasing properties of valves and valve seats, For the purpose of reducing the load and the like, a joint type valve seat for joining a valve seat to a cylinder head has been considered.
[0006]
However, when the above-described conventional sintered alloy material for a valve seat is applied to a joint-type valve seat, a crack (crack) occurs in the valve seat when the valve seat is joined or the engine is operated, and the valve seat is cracked. There is a problem that the sealing property of the sheet is reduced.
To cope with such a problem, for example, Japanese Patent Application Laid-Open No. Hei 7-189628 proposes a joint type valve seat in which a Cu-based alloy or an austenitic base iron-based alloy is joined to a cylinder head by resistance welding.
[0007]
However, this valve seat does not crack at the time of joining or operation, but contains an expensive alloy element and is economically disadvantageous, or has low strength and rigidity, and has abrasion resistance. Was inferior.
[0008]
[Problems to be solved by the invention]
The present invention advantageously solves the above-mentioned problems, does not generate cracks even when used as a jointed valve seat, has excellent elongation and toughness, and has excellent wear resistance. The purpose of the present invention is to propose a manufacturing method.
[0009]
[Means for Solving the Problems]
The present inventors have thought that the iron-based sintered alloy material subjected to the sealing treatment by copper infiltration is optimal for valve seats in terms of strength and thermal conductivity, and to solve the above problems. As a result of diligent studies on iron-based sintered alloy materials, conventional iron-based sintered alloy materials are low in ductility and toughness infiltrated with copper, and are subject to a large amount of thermal stress (tensile stress) generated during joining. It was not able to withstand, and cracks were generated. However, if the elongation of the material could be made 1.0% or more, it was found that cracks did not occur at the time of joining even with an iron-based sintered alloy material, and the present invention was constituted.
[0010]
The present invention contains C: 0.5-1.7%, Ni: 0.5-2.5%, Cr: 3.0-8.0%, W: 1.0-3.8%, Co: 4.5-8.5% by weight, and the balance is inevitable impurities. And 8 to 14% by volume of C-Cr-W-Co-Fe particles consisting of Si and Fe and having a mesh size of 250 mesh or less, the sintered pores are infiltrated with a copper alloy, and the base structures are austenite and bainite. and Ri Do granular perlite, a sintered alloy joined type valve seat, characterized in Rukoto such a sintered alloy material having an elongation of 1.0% or more.
[0011]
In the present invention, C: 0.5-1.7%, Ni: 0.5-2.5%, Cr: 3.0-8.0%, Mo: 0.1-0.9%, W: 1.0-3.8%, Co: 4.5-8.5% by weight. % Of C-Cr-W-Co-Fe particles and Fe-Mo particles of 250 mesh or less, the balance being 8 to 14% by volume. There is infiltration of copper alloy, the base structure is austenite, Ri Do bainite and granular pearlite, in sintered alloy joined type valve seat, characterized in Rukoto such a sintered alloy material having an elongation of 1.0% or more is there.
[0012]
Furthermore, in the present invention, C: 0.5-1.7%, Ni: 0.5-2.5%, Cr: 3.0-8.0%, W: 1.0-% by weight%. C-Cr-W-Co-Fe particles containing 3.8%, Co: 4.5-8.5%, the balance consisting of unavoidable impurities and Fe, and 250 mesh or less, having a volume percentage of 8-14. % Or by weight%, C: 0.5-1.7%, Ni: 0.5-2.5%, Cr: 3.0-8.0%, Mo: 0.1- C-Cr-W- containing 0.9%, W: 1.0 to 3.8%, Co: 4.5 to 8.5%, the balance being unavoidable impurities and Fe, and 250 mesh or less. A sintered body having 8 to 14% by volume of Co-Fe particles and Fe-Mo particles is heated together with the copper alloy for infiltration to a temperature equal to or higher than the melting point of the copper alloy, and the copper alloy is filled in the pores. Immersed was further, after heating to A c3 or A cm transformation point or above 1200 ° C. or less of the temperature, elongation properties, characterized in that it followed air cooled to 650 ° C. or less in the following cooling rate 4.5 ° C. / min - a method for producing a wear-resistant high joint type valve seat sintered alloy material, also, the present invention, and the sintered body, in conjunction with infiltration copper alloy a C3 or a cm transformation point or higher The copper alloy may be heated to a temperature equal to or higher than the melting point of the copper alloy and equal to or lower than 1200 ° C., and the infiltration treatment and the heat treatment for the copper alloy may be simultaneously performed.
[0013]
BEST MODE FOR CARRYING OUT THE INVENTION
The component composition of the sintered alloy material for a valve seat of the present invention will be described.
C: 0.5 to 1.7%
C is an element necessary for adjusting the matrix to a predetermined structure and hardness and for forming C—Cr—W—Co—Fe particles. When the content is less than 0.5%, the amount of ferrite in the matrix is excessive. And the strength of the matrix is reduced, and the amount of hard particles is also insufficient. On the other hand, when the content exceeds 1.7%, the amount of cementite in the matrix increases and the machinability decreases. For this reason, C is set in the range of 0.5 to 1.7%. Note that the content is more preferably 1.0 to 1.5%. C is preferably added as a graphite powder and a C-Cr-W-Co-Fe alloy powder.
[0014]
Ni: 0.5 to 2.5%
Ni is an element that forms a solid solution in the matrix to improve heat resistance. If its content is less than 0.5%, its effect is small, and if it exceeds 2.5%, the hardenability deteriorates. Therefore, Ni is set in the range of 0.5% to 2.5%. In addition, more preferably, it is 0.8 to 2.3%. Ni is preferably added as Ni powder or pre-alloyed in iron powder.
[0015]
Cr: 3.0 to 8.0%
Cr is an element that improves wear resistance, and is added as a C-Cr-W-Co-Fe alloy powder. If the Cr content is less than 3.0%, the amount of hard particles is insufficient, and the wear resistance and heat resistance deteriorate. If it exceeds 8.0%, the amount of hard particles becomes excessive, and the strength of the sintered body decreases. For this reason, Cr was limited to the range of 3.0 to 8.0%. In addition, more preferably, it is 3.5 to 7.5%.
[0016]
Mo: 0.1 to 0.9%
Even if Mo is not added, it can be used, but when Mo is added, the abrasion resistance can be further improved. In the present invention, Fe—Mo particles are formed and dispersed in the matrix as hard particles, thereby contributing to an improvement in wear resistance. If Mo is less than 0.1%, the amount of Fe-Mo particles is small, and the wear resistance is not so improved. On the other hand, if it exceeds 0.9%, the amount of Fe-Mo particles becomes excessive, and the strength of the sintered body becomes insufficient. For this reason, Mo was limited to the range of 0.1 to 0.9%. The content is more preferably 0.3 to 0.7%. Mo is preferably added as Fe-Mo powder or low C-Fe-Mo powder.
[0017]
W: 1.0 to 3.8%
W improves wear resistance by forming C-Cr-W-Co-Fe particles. If it is less than 1.0%, the amount of hard particles is insufficient and wear resistance is deteriorated. If it exceeds 3.8%, the amount of hard particles is excessive and the strength of the sintered body is insufficient. For this reason, W is limited to the range of 1.0 to 3.8%. In addition, more preferably, it is 1.3 to 3.3%. W is preferably added as a C-Cr-W-Co-Fe alloy powder.
[0018]
Co: 4.5 to 8.5%
Co improves wear resistance by forming C-Cr-W-Co-Fe particles. Further, Co has an effect of strengthening the bond between the hard particles and the matrix, or forming a solid solution in the matrix to improve heat resistance. If it is less than 4.5%, the effect is not recognized, and if it exceeds 8.5%, the hard particles are excessive and the strength of the sintered body is insufficient. For this reason, Co is set in the range of 4.5 to 8.5%. In addition, more preferably, it is 5.0 to 8.0%. Co is preferably added as a C—Cr—W—Co—Fe alloy powder and a Co powder. Instead of the Co powder, a part thereof may be alloyed and added to the iron powder.
[0019]
The balance of the sintered alloy material for a valve seat of the present invention is substantially Fe.
The sintered alloy material for a valve seat of the present invention has the above composition, and further comprises, as hard particles, C-Cr-W-Co-Fe particles of 250 mesh or less, or C-Cr-W-Co-Fe particles. It contains 8 to 14% by volume of particles and Fe-Mo particles.
When a coarse powder exceeding 250 mesh is used as the hard particles, the compression moldability of the mixed powder is reduced, and further, the hard particles fall off in the sintered alloy, and the wear resistance is reduced due to non-uniformity. 250 mesh or less.
[0020]
If the amount of the hard particles is less than 8% by volume, the hard particles are insufficient and the wear resistance is deteriorated. On the other hand, when the content exceeds 14% by volume, the amount of the hard particles becomes excessive, and the compression moldability of the mixed powder is reduced, and the strength of the sintered body is insufficient.
Any iron powder such as atomized iron powder or reduced iron powder can be suitably used as the base iron powder. The alloying element may be pre-alloyed to the iron powder in advance.
[0021]
C-Cr-W-Co-Fe particles, which are hard particles, contain C: 2.0 to 3.0%, Co: 7.0 to 15%, W: 15 to 25%, and Fe: 1.0 to 8%. 0.0%, with the balance being substantially Cr.
The Fe-Mo particles, which are hard particles, are preferably added as a ferromolybdenum powder having a Mo content of 50 to 70%.
[0022]
In order to obtain the sintered alloy material for a valve seat of the present invention, a single powder of Ni and Co is mixed with pure iron powder, or an alloy iron powder obtained by pre-alloying C, Ni, and Co with pure iron powder, An alloy powder and a C powder which are to be hard particles are blended and kneaded so as to have the above-mentioned composition. In addition, you may mix zinc stearate etc. as a lubricant.
Next, these powders are filled in a mold, and compressed and molded by a molding press to obtain a green compact. Next, the compact is sintered to obtain a sintered body.
[0023]
As for the sintering conditions, it is desirable that the green compact be heated to a temperature range of 1100 to 1200 ° C. in a protective atmosphere and sintered. If the temperature is lower than 1100 ° C., the sintering diffusion is insufficient. If the temperature exceeds 1200 ° C., the hard particles and the matrix are excessively diffused and the wear resistance is deteriorated.
The sintered body is further heated together with the copper alloy for infiltration to a temperature equal to or higher than the melting point of the copper alloy and subjected to infiltration treatment for infiltrating the copper alloy into the pores. This infiltration treatment may be performed simultaneously with the heat treatment of the sintered body described later.
[0024]
Next, in the present invention, after performing the infiltration treatment on the sintered body having the above composition, or without performing the infiltration treatment, a heat treatment of heating and cooling is performed.
In the present invention, the structure of the sintered alloy material is austenite + bainite + granular pearlite structure in order to improve the elongation characteristics of the sintered alloy material to 1.0% or more. Therefore, heat treatment conditions are limited.
[0025]
The heating temperature of the heat treatment is set to a temperature from the Ac3 or Acm transformation point of the sintered body to 1200 ° C or less.
If the heating temperature is lower than the Ac3 or Acm transformation point, an austenite + bainite + granular pearlite structure with excellent elongation characteristics cannot be obtained, and a tempered martensite + pearlite structure cannot be obtained, and improvement in elongation value cannot be expected. On the other hand, when the temperature exceeds 1200 ° C., the crystal grains become coarse, and the hard particles and the matrix are excessively diffused, and the ductility, toughness and wear resistance are deteriorated. For this reason, the heating temperature of the heat treatment is set to a temperature equal to or higher than the Ac3 or Acm transformation point, and preferably equal to or lower than 1200 ° C. Preferably, it is 750 ° C or more and 1200 ° C or less. The sintered body that has not been subjected to the infiltration treatment may be heated together with the copper alloy for infiltration to a temperature equal to or higher than the melting point of the copper alloy at the time of heating to perform the infiltration treatment at the same time.
[0026]
After heating to the above-mentioned heating temperature, it is cooled to 650 ° C. or less at a cooling rate of 4.5 ° C./min or less, and then air-cooled.
When the cooling rate to 650 ° C. or lower exceeds 4.5 ° C./min, an austenite + bainite + granular pearlite structure having excellent elongation characteristics cannot be obtained, but a martensite + bainite structure is obtained, and a high elongation value is obtained. Absent. If the cooling rate is controlled up to a temperature exceeding 650 ° C., a structure having a predetermined elongation characteristic cannot be obtained.
[0027]
After performing the above-described heat treatment, tempering may be performed as necessary.
By combining the above composition and heat treatment, the elongation characteristics of the sintered alloy material are improved, and even when the sintered alloy material of the present invention is applied to a joint type valve seat, no crack is observed. In addition, it is preferable to apply copper plating to at least the joint surface of the joint valve seat made of the sintered alloy of the present invention from the viewpoint of improving the jointability.
[0028]
The joint type valve seat is formed by processing a sintered alloy material into a predetermined shape, and is joined to a cylinder head by resistance welding, friction welding, electron beam welding, or the like.
[0029]
【Example】
First, test no. 1 to No. 7, no. 13 is a raw material powder in terms of% by weight, C powder (-325 mesh) 1.2%, Co powder (5 μm or less) 6.0%, Ni powder (-325 mesh) 2.0%, Fe-60% Mo Powder (-250 mesh) 1.0%, 2.5% C-1.0% Co-19% W-63.5% Cr-5% Fe alloy powder (-250 mesh) 11.5%, remaining atomized 1% zinc stearate was mixed with pure iron powder and kneaded. Test No. 8 to No. 12 is 1.2% of C powder (−325 mesh), 6.0% of Co powder (5 μm or less), 2.0% of Ni powder (−325 mesh), and 2.5% of C as a raw material powder by weight. -1% of 1.0% Co-19% W-63.5% Cr-5% Fe alloy powder (-250 mesh) and the remaining atomized pure iron powder mixed with 1% of zinc stearate and kneaded. . These mixed raw material powders were compacted at a pressure of 6 ton / cm 2 , sintered in a reducing atmosphere at 1110 ° C. for 60 minutes, and a copper alloy for infiltration was placed thereon and subjected to infiltration treatment at 1130 ° C. for 60 minutes. . Some of the sintered bodies (test Nos. 7, 12) were not subjected to the infiltration treatment.
[0030]
Next, the sintered body was heat-treated under the heating and cooling conditions shown in Table 1. Test No. 7, no. In No. 12, a copper alloy for infiltration was placed at the time of heating, and infiltration was performed simultaneously.
[0031]
[Table 1]
Figure 0003573872
[0032]
Test No. 1 to No. The composition of the sintered alloy material of No. 7 is C: 1.3%, Ni: 2.0%, Cr: 7.5%, Mo: 0.6%, W: 2.2%, Co: 7.5. %, The balance of impurities and Fe, and 13% by volume of the hard particles dispersed in the matrix. Test No. 8 to No. The composition of the sintered alloy material of No. 12 was C: 1.3%, Ni: 2.0%, Cr: 7.5%, W: 2.2%, Co: 7.5%, the balance of impurities and Fe. Yes, the hard particles dispersed in the matrix were 12% by volume. Copper alloy was infiltrated into 10 to 15% of the sintered pores. The transformation point (A cm ) of this sintered alloy material was 735 ° C. After the heat treatment, a tensile test was performed on the sintered alloy material, and the elongation was measured. Table 1 also shows the measurement results.
[0033]
Test No. of the application example of the present invention. 1-3, No. Nos. 5 to 7; 8-9, No. Test Nos. 11 to 12 have an elongation of 1.0% or more, whereas Test No. 4, no. The elongation of each of Test No. 10 was 0.8% and 0.6%, respectively. The elongation of No. 13 is 0.3% and less than 1.0%, which indicates that the application examples of the present invention have excellent elongation characteristics.
Test No. of the application example of the present invention. Test No. 1 of the conventional example. After processing under the same composition and processing conditions as in Example 13 and processing into a valve seat, it was joined to a cylinder head (material: ADC4) by resistance welding. Due to the thermal stress at the time of this joining, the test No. of the application example of the present invention was performed. No crack was observed in the valve seat of No. 1. However, Test No. In the valve seat of No. 13, cracks occurred in the radial direction. Within the scope of the present invention, even when applied to a joint-type valve seat, cracks do not occur due to thermal stress during joining.
[0034]
The heat-treated sintered alloy material shown in Table 1 was processed into a normal press-fit type valve seat, and the wear resistance was confirmed by a simple rig wear test. The test conditions are as follows.
Test temperature: 350 ° C (sheet side)
Number of contacts: 1.6 × 10 6 times Number of cam rotation: 3000 rpm
Valve rotation speed: 20 rpm
Spring load: 30kgf (at the time of lift)
Valve material: SUH35 (Stellite No. 6 metal)
Lift amount: 7.2mm
The test results are shown in FIG.
[0035]
Test No. of the application example of the present invention. 1-3, No. Nos. 5 to 7; 8-9, No. In Nos. 11 to 12, the wear amount of the valve seat was 9 to 11 µm. 13 showed the same abrasion resistance.
[0036]
【The invention's effect】
According to the present invention, a sintered alloy material having excellent elongation and toughness and excellent wear resistance can be obtained. The effect of being able to maintain is obtained.
[Brief description of the drawings]
FIG. 1 is a graph showing the amount of valve seat wear after a single rig test.

Claims (6)

重量%で、C:0.5 〜1.7 %、Ni:0.5 〜2.5 %、Cr:3.0 〜8.0 %、W:1.0 〜3.8 %、Co:4.5 〜8.5 %を含有し残部が不可避的不純物およびFeからなり、かつ250 メッシュ以下のC−Cr−W−Co−Fe粒子を容量%で8 〜14%有し、焼結空孔が銅合金にて溶浸され、基地組織がオーステナイト、ベイナイトと粒状パーライトからなり、 1.0 %以上の伸びを有する焼結合金材からなることを特徴とする焼結合金製接合型バルブシート。% By weight, C: 0.5 to 1.7%, Ni: 0.5 to 2.5%, Cr: 3.0 to 8.0%, W: 1.0 to 3.8%, Co: 4.5 to 8.5%, the balance consisting of unavoidable impurities and Fe And C-Cr-W-Co-Fe particles of 250 mesh or less having a volume percentage of 8 to 14%, the sintered pores are infiltrated with a copper alloy, and the matrix structure is composed of austenite, bainite and granular pearlite. Do Ri, sintered alloy joined type valve seat, characterized in Rukoto such a sintered alloy material having an elongation of 1.0% or more. 重量%で、C:0.5 〜1.7 %、Ni:0.5 〜2.5 %、Cr:3.0 〜8.0 %、Mo:0.1 〜0.9 %、W:1.0 〜3.8 %、Co:4.5 〜8.5 %を含有し残部が不可避的不純物およびFeからなり、かつ250 メッシュ以下のC−Cr−W−Co−Fe粒子とFe−Mo粒子とを容量%で8 〜14%有し、焼結空孔が銅合金にて溶浸され、基地組織がオーステナイト、ベイナイトと粒状パーライトからなり、 1.0 %以上の伸びを有する焼結合金材からなることを特徴とする焼結合金製接合型バルブシート。By weight%, C: 0.5 to 1.7%, Ni: 0.5 to 2.5%, Cr: 3.0 to 8.0%, Mo: 0.1 to 0.9%, W: 1.0 to 3.8%, Co: 4.5 to 8.5%, with the balance being the balance It has 8 to 14% by volume of C-Cr-W-Co-Fe particles and Fe-Mo particles consisting of unavoidable impurities and Fe and having a mesh size of 250 mesh or less. soaked, the base tissue austenite, Ri Do bainite and granular perlite, sintered alloy joined type valve seat, characterized in Rukoto such a sintered alloy material having an elongation of 1.0% or more. 重量%で、C:0.5 〜1.7 %、Ni:0.5 〜2.5 %、Cr:3.0 〜8.0 %、W:1.0 〜3.8 %、Co:4.5 〜8.5 %を含有し残部が不可避的不純物およびFeからなり、かつ250 メッシュ以下のC−Cr−W−Co−Fe粒子を容量%で8 〜14%有する焼結体を、溶浸用銅合金とともに銅合金の融点以上に加熱し、空孔に銅合金を溶浸させ、さらに、Ac3あるいはAcm変態点以上1200℃以下の温度に加熱したのち、4.5 ℃/min以下の冷却速度で650 ℃以下まで冷却しついで空冷することを特徴とする伸び特性・耐摩耗性に優れた接合型バルブシート用焼結合金材の製造方法。By weight%, C: 0.5 to 1.7%, Ni: 0.5 to 2.5%, Cr: 3.0 to 8.0%, W: 1.0 to 3.8%, Co: A sintered body containing 4.5 to 8.5%, the balance being unavoidable impurities and Fe, and having 8 to 14% by volume of C-Cr-W-Co-Fe particles of 250 mesh or less, The copper alloy is heated together with the copper alloy for infiltration to a temperature higher than the melting point of the copper alloy, the pores are infiltrated with the copper alloy, and further heated to a temperature not lower than the Ac3 or A cm transformation point and not higher than 1200 ° C. A method for producing a sintered alloy material for a joined type valve seat having excellent elongation characteristics and abrasion resistance, characterized by cooling to 650 ° C. or lower at a cooling rate of not more than min and then air cooling. 重量%で、C:0.5 〜1.7 %、Ni:0.5 〜2.5 %、Cr:3.0 〜8.0 %、Mo:0.1 〜0.9 %、W:1.0 〜3.8 %、Co:4.5 〜8.5 %を含有し残部が不可避的不純物およびFeからなり、かつ250 メッシュ以下のC−Cr−W−Co−Fe粒子とFe−Mo粒子とを容量%で8 〜14%有する焼結体を、溶浸用銅合金とともに銅合金の融点以上に加熱し、空孔に銅合金を溶浸させ、さらに、Ac3あるいはAcm変態点以上1200℃以下の温度に加熱したのち、4.5 ℃/min以下の冷却速度で650 ℃以下まで冷却しついで空冷することを特徴とする伸び特性・耐摩耗性に優れた接合型バルブシート用焼結合金材の製造方法。By weight%, C: 0.5 to 1.7%, Ni: 0.5 to 2.5%, Cr: 3.0 to 8.0%, Mo: 0.1 to 0.9%, W: C-Cr-W-Co-Fe particles containing 1.0 to 3.8%, Co: 4.5 to 8.5%, the balance being unavoidable impurities and Fe, and having a mesh size of 250 mesh or less and Fe- the sintered body having from 8 to 14% by volume% and Mo particles, heated with infiltration copper alloy or a copper alloy melting point, voids infiltrated with copper alloy, further, a c3 or a cm transformation A joint type valve seat having excellent elongation characteristics and abrasion resistance, wherein the valve is heated to a temperature not lower than the point and not higher than 1200 ° C., and then cooled at a cooling rate of 4.5 ° C./min or lower to 650 ° C. or lower and air-cooled. Manufacturing method for sintered alloy material. 重量%で、C:0.5 〜1.7 %、Ni:0.5 〜2.5 %、Cr:3.0 〜8.0 %、W:1.0 〜3.8 %、Co:4.5 〜8.5 %を含有し残部が不可避的不純物およびFeからなり、かつ250 メッシュ以下のC−Cr−W−Co−Fe粒子を容量%で8 〜14%有する焼結体を、溶浸用銅合金とともにAc3あるいはAcm変態点以上でかつ銅合金の融点以上1200℃以下の温度に加熱したのち、4.5 ℃/min以下の冷却速度で650 ℃以下まで冷却しついで空冷することを特徴とする伸び特性・耐摩耗性に優れた接合型バルブシート用焼結合金材の製造方法。By weight%, C: 0.5 to 1.7%, Ni: 0.5 to 2.5%, Cr: 3.0 to 8.0%, W: 1.0 to 3.8%, Co: A sintered body containing 4.5 to 8.5%, the balance being unavoidable impurities and Fe, and having 8 to 14% by volume of C-Cr-W-Co-Fe particles of 250 mesh or less, After heating together with the copper alloy for infiltration to a temperature not lower than the Ac3 or A cm transformation point and not lower than the melting point of the copper alloy and not higher than 1200 ° C., it is cooled to 650 ° C. or lower at a cooling rate of 4.5 ° C./min and then air-cooled. A method for producing a sintered alloy material for a joined valve seat having excellent elongation characteristics and abrasion resistance. 重量%で、C:0.5 〜1.7 %、Ni:0.5 〜2.5 %、Cr:3.0 〜8.0 %、Mo:0.1 〜0.9 %、W:1.0 〜3.8 %、Co:4.5 〜8.5 %を含有し残部が不可避的不純物およびFeからなり、かつ250 メッシュ以下のC−Cr−W−Co−Fe粒子とFe−Mo粒子とを容量%で8 〜14%有する焼結体を、溶浸用銅合金とともにAc3あるいはAcm変態点以上でかつ銅合金の融点以上1200℃以下の温度に加熱したのち、4.5 ℃/min以下の冷却速度で650 ℃以下まで冷却しついで空冷することを特徴とする伸び特性・耐摩耗性に優れた接合型バルブシート用焼結合金材の製造方法。By weight%, C: 0.5 to 1.7%, Ni: 0.5 to 2.5%, Cr: 3.0 to 8.0%, Mo: 0.1 to 0.9%, W: C-Cr-W-Co-Fe particles containing 1.0 to 3.8%, Co: 4.5 to 8.5%, the balance being unavoidable impurities and Fe, and having a mesh size of 250 mesh or less and Fe- 3. A sintered body having 8 to 14% by volume of Mo particles is heated together with the copper alloy for infiltration to a temperature not lower than the Ac3 or Acm transformation point and not lower than the melting point of the copper alloy and not higher than 1200 ° C. A method for producing a sintered alloy material for a joint-type valve seat having excellent elongation characteristics and wear resistance, comprising cooling at a cooling rate of 5 ° C./min or less to 650 ° C. or less and then air cooling.
JP10511696A 1996-04-25 1996-04-25 Method of manufacturing sintered alloy joint valve seat and sintered alloy material for joint valve seat Expired - Lifetime JP3573872B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10511696A JP3573872B2 (en) 1996-04-25 1996-04-25 Method of manufacturing sintered alloy joint valve seat and sintered alloy material for joint valve seat

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10511696A JP3573872B2 (en) 1996-04-25 1996-04-25 Method of manufacturing sintered alloy joint valve seat and sintered alloy material for joint valve seat

Publications (2)

Publication Number Publication Date
JPH09287422A JPH09287422A (en) 1997-11-04
JP3573872B2 true JP3573872B2 (en) 2004-10-06

Family

ID=14398864

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10511696A Expired - Lifetime JP3573872B2 (en) 1996-04-25 1996-04-25 Method of manufacturing sintered alloy joint valve seat and sintered alloy material for joint valve seat

Country Status (1)

Country Link
JP (1) JP3573872B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030021916A (en) * 2001-09-10 2003-03-15 현대자동차주식회사 A compound of wear-resistant sintered alloy for valve seat and its manufacturing method
GB2440737A (en) * 2006-08-11 2008-02-13 Federal Mogul Sintered Prod Sintered material comprising iron-based matrix and hard particles
CN111014693B (en) * 2019-11-07 2022-07-01 西安理工大学 Preparation method of 93W-4.9Ni-2.1Fe/20 steel bimetallic material

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55164060A (en) * 1979-05-07 1980-12-20 Nippon Piston Ring Co Ltd Abrasion resistant iron-based sintered alloy material
JPS5925959A (en) * 1982-07-28 1984-02-10 Nippon Piston Ring Co Ltd Valve seat made of sintered alloy
JPH03158444A (en) * 1989-11-16 1991-07-08 Mitsubishi Materials Corp Valve seat made of fe-base sintered alloy excellent in wear resistance
JPH07189628A (en) * 1993-12-28 1995-07-28 Yamaha Motor Co Ltd Joined type valve seat

Also Published As

Publication number Publication date
JPH09287422A (en) 1997-11-04

Similar Documents

Publication Publication Date Title
KR101245069B1 (en) A powder metal engine composition
JP3926320B2 (en) Iron-based sintered alloy valve seat and method for manufacturing the same
KR100868152B1 (en) Iron-based sintered alloy valve seat material for an internal combustion engine
JP2765811B2 (en) Hard phase dispersed iron-based sintered alloy and method for producing the same
EP0418943A1 (en) Sintered materials
JPH0350823B2 (en)
JP4693170B2 (en) Wear-resistant sintered alloy and method for producing the same
JP3784926B2 (en) Ferrous sintered alloy for valve seat
JPH08134607A (en) Wear resistant ferrous sintered alloy for valve seat
KR100691097B1 (en) Sintered steel material
JP4467013B2 (en) Sintered valve seat manufacturing method
JP3763782B2 (en) Method for producing wear-resistant iron-based sintered alloy material for valve seat
JP3573872B2 (en) Method of manufacturing sintered alloy joint valve seat and sintered alloy material for joint valve seat
JP3186816B2 (en) Sintered alloy for valve seat
JPH1121659A (en) Wear resistant iron-base sintered alloy material
JP3434527B2 (en) Sintered alloy for valve seat
JP3492088B2 (en) Method for manufacturing joint valve seat made of sintered alloy and joint valve seat material
JP3809944B2 (en) Hard particle dispersed sintered alloy and method for producing the same
JP3758748B2 (en) Sintered alloy joint type valve seat and method for producing sintered alloy material for joint type valve seat
JPH0137466B2 (en)
JP3492087B2 (en) Sintered alloy joint valve seat
JPH0633184A (en) Production of sintered alloy for valve seat excellent in wear resistance
JP2002220645A (en) Iron-based sintered alloy of hard-particle dispersion type
JP3068127B2 (en) Wear-resistant iron-based sintered alloy and method for producing the same
JP3264092B2 (en) Wear-resistant iron-based sintered alloy and method for producing the same

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040216

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040224

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040421

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040629

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040630

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090709

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090709

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100709

Year of fee payment: 6