JPH1121659A - Wear resistant iron-base sintered alloy material - Google Patents

Wear resistant iron-base sintered alloy material

Info

Publication number
JPH1121659A
JPH1121659A JP18902497A JP18902497A JPH1121659A JP H1121659 A JPH1121659 A JP H1121659A JP 18902497 A JP18902497 A JP 18902497A JP 18902497 A JP18902497 A JP 18902497A JP H1121659 A JPH1121659 A JP H1121659A
Authority
JP
Japan
Prior art keywords
particles
base
alloy
hard particles
phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP18902497A
Other languages
Japanese (ja)
Other versions
JP3957234B2 (en
Inventor
Teruo Takahashi
輝夫 高橋
Arata Kakiuchi
新 垣内
Hiroyuki Sano
博幸 佐野
Original Assignee
Nippon Piston Ring Co Ltd
日本ピストンリング株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Piston Ring Co Ltd, 日本ピストンリング株式会社 filed Critical Nippon Piston Ring Co Ltd
Priority to JP18902497A priority Critical patent/JP3957234B2/en
Publication of JPH1121659A publication Critical patent/JPH1121659A/en
Application granted granted Critical
Publication of JP3957234B2 publication Critical patent/JP3957234B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide an iron-base sintered alloy material excellent in wear resistance, suitable for a sliding member such as valve seat for internal combustion engine. SOLUTION: The matrix part of this material, containing hard grains, has a composition consisting of, by weight, 0.7-1.6% C, 0.1-1% Si, 0.05-1% Mn, 1-8% Cr, 1-10% Mo, 0.1-2% V, 1-20% Co, and the balance Fe with inevitable impurities. At this time, the hard grains are one or more kinds among Cr-Mo-Si-Co intermetallic compound grains, Fe-Mo grains, and Fe-Si-Mo intermetallic compound grains, each having 10 to 150 μm grain size. The hard grains are dispersed by 5 to 30% by area ratio, and further, one or more kinds among CaF2 , MnS, and BN, each having 1 to 50 μm grain size, are dispersed by 1 to 40% in total by area ratio. It is desirable to regulate the matrix-phase structure so that it consists of 40 to 90% pearlite, 7 to 40% bainite, and 3 to 20% Co- enriched high alloy phase.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION
【0001】[0001]
【発明の属する技術分野】本発明は、焼結合金材に係
り、とくに内燃機関用のバルブシート等摺動部材に好適
な鉄基焼結合金材に関する。
The present invention relates to a sintered alloy material, and more particularly to an iron-based sintered alloy material suitable for a sliding member such as a valve seat for an internal combustion engine.
【0002】[0002]
【従来の技術】バルブシートは、燃焼ガスのシールとバ
ルブを冷却する役割を担ってエンジンのシリンダヘッド
に圧入されて使用されてきた。バルブシートは、耐熱
性、耐摩耗性、耐食性に加えて、相手材であるバルブを
摩耗させない相手攻撃性が要求されている。
2. Description of the Related Art A valve seat has been used by being press-fitted into a cylinder head of an engine to play a role of sealing a combustion gas and cooling a valve. Valve seats are required to have heat resistance, abrasion resistance, and corrosion resistance, as well as aggressiveness that does not cause abrasion of a valve that is a mating material.
【0003】従来のバルブシート用焼結合金材として
は、例えば、特開昭59-25959号公報には、C、Ni、Cr、
Mo、Coを多量に含み、基地組織中にC−Cr−W−Co−Fe
粒子とFe−Mo粒子の硬質粒子が分散し、連続空孔が銅合
金にて溶浸されたバルブシート用焼結合金材が開示さ
れ、強度および剛性に優れかつ耐摩耗性にすぐれたバル
ブシートとして使用されてきた。
[0003] Conventional sintered alloy materials for valve seats include, for example, C, Ni, Cr,
Contains a large amount of Mo and Co, and contains C-Cr-W-Co-Fe
Disclosed is a sintered alloy material for a valve seat in which particles and hard particles of Fe-Mo particles are dispersed and continuous pores are infiltrated with a copper alloy, and the valve seat is excellent in strength and rigidity and excellent in wear resistance. Has been used as
【0004】しかし、最近は自動車エンジンにおいて、
長寿命化、高出力化、排出ガス浄化、燃費向上等に対す
る改善要求が一段と高まり、このため、自動車エンジン
用バルブシートに対しても、従来にも増して厳しい使用
環境に耐えることが要求され、耐熱性、耐摩耗性をより
一層向上させるとともに、高温での耐食性を向上させる
必要が生じてきている。
However, recently, in automobile engines,
The demands for improvements such as longer life, higher output, purification of exhaust gas, and improved fuel efficiency have been further increased.For this reason, valve seats for automobile engines have been required to withstand more severe use environments than ever before. There has been a need to further improve the heat resistance and the wear resistance and to improve the corrosion resistance at high temperatures.
【0005】このような問題に対し、例えば、特開昭62
-202058 号公報には、Pb合金等を含浸させたFe−C−Co
−Ni系基地組織中にFe−Mo粒子およびFe−W粒子からな
る硬質粒子を分散させた焼結合金が開示させている。ま
た、例えば、特開平6-57387号公報には、Cr、Ni、Mn、M
o、Vのうち1種または2種以上を合計で2〜10%と、
Cを0.5 〜2.0 %を含有する鉄基合金素地中に、比重比
0.2 〜0.8 、粒子径20〜150 μm のCr、W、Mo、Fe、
C、CoからなるCo基合金粒子15〜35%と、固体潤滑粒子
を分散させたバルブシート用鉄基合金が開示されてい
る。
To solve such a problem, see, for example,
-202058 discloses that Fe-C-Co impregnated with Pb alloy etc.
A sintered alloy in which hard particles composed of Fe-Mo particles and Fe-W particles are dispersed in a Ni-based base structure is disclosed. Further, for example, in JP-A-6-57387, Cr, Ni, Mn, M
o, one or two or more of V and 2 to 10% in total;
Specific gravity ratio in iron-based alloy base containing 0.5 to 2.0% C
Cr, W, Mo, Fe, 0.2-0.8, particle size 20-150 μm,
An iron-based alloy for a valve seat in which 15 to 35% of Co-based alloy particles composed of C and Co and solid lubricating particles are dispersed is disclosed.
【0006】しかしながら、自動車用エンジンにおける
気体燃料の使用あるいは筒内噴射等の新しい方式の採用
に伴い、その吸気側においてバルブシートでは、燃料潤
滑がなくなり、相手材との金属接触が生じるたため、上
記した従来組成のバルブシートでは、摩耗が著しくな
り、さらに、バルブシートの基地組織や硬質粒子の種類
によっては、相手材を攻撃するという問題もあった。ま
た、排気側のバルブシートにあっても使用条件がますま
す苛酷となってきており、一層の耐摩耗性向上が要求さ
れている。さらに、潤滑効果を付与する目的で添加され
るPbは、人体に有害であるため環境への排出を制限する
環境汚染防止対策を必要とし、また、固体潤滑剤は粒
径、添加量によっては、焼結材の機械的性質、焼結性を
劣化させる傾向を有するなどの問題があった。
However, with the use of gaseous fuel in an automobile engine or the adoption of a new system such as in-cylinder injection, fuel lubrication is lost in the valve seat on the intake side, and metal contact with the mating material occurs. In the valve seat of the conventional composition described above, abrasion becomes remarkable, and further, there is a problem that the mating member is attacked depending on the base structure of the valve seat and the type of hard particles. Further, even in the case of a valve seat on the exhaust side, use conditions are becoming increasingly severe, and further improvement in wear resistance is required. In addition, Pb added for the purpose of imparting a lubricating effect is harmful to the human body, and therefore requires environmental pollution prevention measures to limit discharge to the environment. There are problems such as a tendency to deteriorate the mechanical properties and sinterability of the sintered material.
【0007】[0007]
【発明が解決しようとする課題】本発明は、上記した問
題点を有利に解決し、相手材への攻撃性を減少し、耐摩
耗性を向上させ、内燃機関用バルブシート等の摺動部材
として好適な耐摩耗性に優れた鉄基焼結合金材を提供す
ることを目的とする。
DISCLOSURE OF THE INVENTION The present invention advantageously solves the above-mentioned problems, reduces aggressiveness to a counterpart material, improves wear resistance, and provides a sliding member such as a valve seat for an internal combustion engine. It is an object of the present invention to provide an iron-based sintered alloy material excellent in abrasion resistance and suitable as the above.
【0008】[0008]
【課題を解決するための手段】本発明は、基地相中に硬
質粒子を分散させた鉄基焼結合金材であって、硬質粒子
を含む基地部の組成が、重量%で、C:0.7 〜1.6 %、
Si:0.1 〜1%、Mn:0.05〜1%、Cr:1〜8%、Mo:
1〜10%、V:0.1 〜2%、Co:1〜20%を含み、残部
Feおよび不可避的不純物からなり、前記硬質粒子が粒径
10〜150 μm のCr−Mo−Si−Co系金属間化合物粒子、Fe
−Mo粒子およびFe−Si−Mo金属間化合物粒子から選ばれ
た1種または2種以上からなり、該硬質粒子を面積率で
5〜30%、あるいは重量%で5〜25%分散させ、さらに
粒径1〜50μm のCaF2、MnS およびBNの固体潤滑剤粒子
のうち1種または2種以上を合計で、面積率で1〜40
%、あるいは重量%で0.1 〜7%分散させたことを特徴
とする耐摩耗性に優れた鉄基焼結合金材であり、前記基
地部の組織が、前記硬質粒子を除く基地相面積を100%
とする面積率で、40〜90%のパーライトと7〜40%のベ
イナイトと3〜20%のCoリッチ高合金相からなる組織と
するのが好ましい。
The present invention relates to an iron-based sintered alloy material in which hard particles are dispersed in a matrix phase, wherein the composition of the matrix containing the hard particles is C: 0.7% by weight%. ~ 1.6%,
Si: 0.1-1%, Mn: 0.05-1%, Cr: 1-8%, Mo:
1 to 10%, V: 0.1 to 2%, Co: 1 to 20%, balance
Fe and inevitable impurities, the hard particles having a particle size
10-150 μm Cr-Mo-Si-Co-based intermetallic compound particles, Fe
-Mo particles and one or more selected from Fe-Si-Mo intermetallic compound particles, and the hard particles are dispersed in an area ratio of 5 to 30%, or 5 to 25% by weight, and further dispersed. One or two or more of solid lubricant particles of CaF 2 , MnS and BN having a particle size of 1 to 50 μm, and a total area ratio of 1 to 40
%, Or 0.1 to 7% by weight, which is an iron-based sintered alloy material having excellent wear resistance, wherein the structure of the base portion has a base phase area of 100% excluding the hard particles. %
It is preferable to have a structure composed of 40 to 90% pearlite, 7 to 40% bainite, and 3 to 20% Co-rich high alloy phase.
【0009】[0009]
【発明の実施の形態】本発明の鉄基焼結合金材は、鉄基
低合金組成からなる基地相と該基地相中に分散した硬質
粒子とからなる基地部と、さらに、分散した固体潤滑剤
粒子とから構成される。まず、基地部の組成限定につい
て説明する。
BEST MODE FOR CARRYING OUT THE INVENTION The iron-based sintered alloy material of the present invention comprises a base comprising a base phase having an iron-based low alloy composition and hard particles dispersed in the base phase; Agent particles. First, the composition limitation of the base portion will be described.
【0010】C:0.7 〜1.6 % Cは、基地相を強靱化し耐摩耗性を向上させる元素であ
り、0.7 %未満では、組織がフェライト化し耐摩耗性を
劣化させる。一方、1.6 %を超えると融点が低下し、過
焼結となり、強度が低下する。このため、Cは0.7 〜1.
6 %の範囲とした。
C: 0.7 to 1.6% C is an element which strengthens the base phase and improves wear resistance. If it is less than 0.7%, the structure becomes ferritic and the wear resistance is deteriorated. On the other hand, if it exceeds 1.6%, the melting point decreases, resulting in oversintering and a decrease in strength. Therefore, C is 0.7 to 1.
The range was 6%.
【0011】Si:0.1 〜1% Siは、主として硬質粒子中に含まれ、耐摩耗性を向上さ
せる。しかし、0.1 %未満では、焼結性が低下するとと
もに硬質粒子量が減少するため、所望の耐摩耗性が得ら
れなくなる。一方、1%を超えると硬質粒子量が増加す
るとともにSiが過拡散するため、相手材攻撃性が増加す
る。このため、Siは0.1 〜1%の範囲に限定した。
Si: 0.1-1% Si is mainly contained in hard particles and improves wear resistance. However, if it is less than 0.1%, the desired wear resistance cannot be obtained because the sinterability is reduced and the amount of hard particles is reduced. On the other hand, if it exceeds 1%, the amount of hard particles increases and Si is excessively diffused, so that the aggressiveness of the counterpart material increases. For this reason, Si is limited to the range of 0.1 to 1%.
【0012】Mn:0.05〜1% Mnは、基地相を強化し耐摩耗性を向上させる元素であ
り、0.05%以上の添加でその効果が認められないが、1
%を超える添加では硬さが増加し相手材攻撃性が増加す
る。このため、Mnは0.05〜1%の範囲に限定した。 Cr:1〜8% Crは、基地相あるいは硬質粒子中に含まれ、硬さ、耐摩
耗性、耐熱性を高める元素であるが、1%未満では硬質
粒子量が不足し、硬さが低下し耐摩耗性に悪影響を及ぼ
し、一方、8%を超えると硬質粒子量が過多となり、硬
さが増加しすぎて相手材攻撃性が増加する。このような
ことから、Crは1〜8%に限定した。
Mn: 0.05 to 1% Mn is an element that strengthens the base phase and improves wear resistance, and its effect is not recognized when added at 0.05% or more.
%, The hardness increases and the counterpart material aggressiveness increases. For this reason, Mn was limited to the range of 0.05 to 1%. Cr: 1 to 8% Cr is an element contained in the base phase or the hard particles and increases the hardness, abrasion resistance, and heat resistance. However, if less than 1%, the amount of the hard particles is insufficient, and the hardness is reduced. On the other hand, if it exceeds 8%, the amount of hard particles becomes excessive, and the hardness is excessively increased to increase the counterpart material attack. For these reasons, Cr is limited to 1 to 8%.
【0013】Mo:1〜10% Moは、基地相を強化するとともに、硬質粒子に含まれ、
耐摩耗性を向上する。1%未満では、硬質粒子量が不足
し、硬さが低下し耐摩耗性が劣化する。一方、10%を超
えると、硬質粒子量が過多となり、硬さが増加しすぎて
相手材攻撃性が増加する。このようなことから、Moは1
〜10%に限定した。
Mo: 1-10% Mo strengthens the base phase and is contained in the hard particles,
Improves wear resistance. If it is less than 1%, the amount of hard particles is insufficient, the hardness is reduced, and the wear resistance is deteriorated. On the other hand, if it exceeds 10%, the amount of the hard particles becomes excessive, and the hardness is excessively increased, thereby increasing the aggressiveness of the counterpart material. Therefore, Mo is 1
Limited to ~ 10%.
【0014】V:0.1 〜2% Vは、基地相を強化し耐摩耗性を向上する。0.1 %未満
では、硬さの増加が少なく耐摩耗性が劣化する。一方、
2%を超えると、硬さが増加しすぎて相手材攻撃性が増
加する。このようなことから、Vは0.1 〜2%に限定し
た。 Co:1〜20% Coは、基地相あるいは硬質粒子中に含まれ、耐摩耗性を
向上させる。Coは硬質粒子と基地相との結合を強化した
り、基地中に固溶し耐熱性を向上させる効果を有する。
しかし、1%未満ではその効果が認められない。一方、
20%を超えると硬質粒子量が増加するため、相手材攻撃
性が増加する。このため、Coは1〜20%の範囲に限定し
た。
V: 0.1 to 2% V strengthens the base phase and improves wear resistance. If it is less than 0.1%, the increase in hardness is small and the wear resistance deteriorates. on the other hand,
If it exceeds 2%, the hardness will increase too much and the aggressiveness of the opponent material will increase. For this reason, V is limited to 0.1 to 2%. Co: 1 to 20% Co is contained in the base phase or the hard particles and improves wear resistance. Co has the effect of strengthening the bond between the hard particles and the base phase, or forming a solid solution in the base to improve the heat resistance.
However, if less than 1%, the effect is not recognized. on the other hand,
If it exceeds 20%, the amount of hard particles increases, so that the aggressiveness of the counterpart material increases. For this reason, Co was limited to the range of 1 to 20%.
【0015】本発明の焼結合金材の基地部は上記元素以
外の残部は実質的にFeからなる。また、本発明の焼結合
金材の基地部に分散する硬質粒子は、Cr−Mo−Si−Co系
金属間化合物粒子、Fe−Mo粒子およびFe−Si−Mo金属間
化合物粒子から選ばれた1種または2種以上からなる。
硬質粒子であるCr−Mo−Si−Co系金属間化合物粒子は、
Cr、Mo、Siの総量が20〜50%の範囲で残部が実質的にCo
である金属間化合物粉末として添加するのが好ましい。
Cr、Mo、Siの総量が20%未満では、基地中へのCoの過拡
散が生じやすく、またCr、Mo、Siの総量が50%を超える
と、相手材攻撃性が増加する。
The base portion of the sintered alloy material of the present invention is substantially composed of Fe except for the above elements. Further, the hard particles dispersed in the matrix of the sintered alloy material of the present invention are selected from Cr-Mo-Si-Co-based intermetallic compound particles, Fe-Mo particles and Fe-Si-Mo intermetallic compound particles. It consists of one kind or two or more kinds.
Cr-Mo-Si-Co-based intermetallic compound particles, which are hard particles,
When the total amount of Cr, Mo, and Si is in the range of 20 to 50%, the balance is substantially Co.
Is preferably added as an intermetallic compound powder.
If the total amount of Cr, Mo, and Si is less than 20%, overdiffusion of Co easily occurs in the matrix, and if the total amount of Cr, Mo, and Si exceeds 50%, the aggressiveness of the counterpart material increases.
【0016】硬質粒子であるFe−Mo粒子は、Mo:50〜70
%のフェロモリブデン粉末として添加するのが好まし
い。硬質粒子であるFe−Si−Mo金属間化合物粒子は、F
e、Siが50〜80%の範囲で残部が実質的にMoからなる金
属間化合物粉末として添加するのが好ましい。本発明で
は上記した硬質粒子の粒径は10〜150 μm とする。10μ
m 未満の粒では、焼結時に硬質粒子成分が基地相に拡散
し、硬度が低下する。また、150 μmを超える粒では、
被削性が低下し、相手材攻撃性が増加する。
The Fe—Mo particles, which are hard particles, have a Mo content of 50-70.
% Ferromolybdenum powder. Fe-Si-Mo intermetallic compound particles, which are hard particles,
e, Si is preferably added as an intermetallic compound powder consisting of 50 to 80% with the balance being substantially Mo. In the present invention, the particle size of the hard particles is 10 to 150 μm. 10μ
If the particle size is less than m 2, the hard particle component diffuses into the base phase during sintering, and the hardness decreases. Also, for grains larger than 150 μm,
The machinability decreases and the aggressive material aggression increases.
【0017】上記した硬質粒子を基地相中に、硬質粒
子、固体潤滑剤粒子を除いた基地相に対する面積率で5
〜30%、あるいは基地相、硬質粒子、固体潤滑剤粒子の
合計量に対し重量%で5〜25%分散させる。硬質粒子が
面積率で5%未満、あるいは重量%で5%未満では、硬
質粒子量が少なく耐摩耗性が低下する。一方、硬質粒子
を面積率で30%超、重量%で25%を超えて分散させる
と、圧粉性、被削性が低下するとともに相手材への攻撃
性が増加する。
The above hard particles are contained in the base phase in an area ratio of 5 to the base phase excluding the hard particles and the solid lubricant particles.
-30%, or 5-25% by weight based on the total amount of the base phase, hard particles and solid lubricant particles. If the hard particles are less than 5% in area ratio or less than 5% in weight%, the amount of hard particles is small and the wear resistance is reduced. On the other hand, when the hard particles are dispersed in an area ratio of more than 30% and a weight% of more than 25%, the compaction property and the machinability are reduced, and the aggressiveness to the counterpart material is increased.
【0018】本発明の焼結合金材では、基地相、硬質粒
子に加えて固体潤滑剤粒子を分散させる。固体潤滑剤粒
子は、粒径1〜50μm のCaF2、MnS およびBNのうち1種
または2種以上を添加できる。固体潤滑剤粒子は、被削
性、耐摩耗性を向上させ、相手攻撃性を減少させるため
に分散させる。
In the sintered alloy material of the present invention, solid lubricant particles are dispersed in addition to the base phase and the hard particles. One or more of CaF 2 , MnS and BN having a particle size of 1 to 50 μm can be added to the solid lubricant particles. The solid lubricant particles are dispersed to improve machinability, wear resistance, and reduce opponent aggression.
【0019】固体潤滑剤粒子は、硬質粒子、固体潤滑剤
粒子を除いた基地相に対する面積率で、合計1〜40%、
あるいは基地相、硬質粒子、固体潤滑剤粒子の合計量に
対し重量%で、合計0.1 〜7%分散させる。固体潤滑剤
粒子量が面積率で1%未満、あるいは重量%で 0.1%未
満では、固体潤滑剤粒子量が少なく耐摩耗性が低下する
とともに相手材に対する攻撃性が増加する。一方、固体
潤滑剤粒子量が面積率で40%を超えると、あるいは重量
%で7%を超えると、圧粉性、焼結性、被削性、機械的
特性が低下する。
The solid lubricant particles have a total area ratio to the base phase excluding the hard particles and the solid lubricant particles of 1 to 40%,
Alternatively, 0.1 to 7% by weight of the total amount of the base phase, the hard particles and the solid lubricant particles is dispersed. When the amount of the solid lubricant particles is less than 1% in area ratio or less than 0.1% in weight%, the amount of solid lubricant particles is small, the wear resistance is reduced, and the aggressiveness to the counterpart material is increased. On the other hand, if the amount of the solid lubricant particles exceeds 40% in area ratio or exceeds 7% in weight%, the compactibility, sinterability, machinability, and mechanical properties decrease.
【0020】固体潤滑剤粒子は、CaF2単独では、面積率
で10〜40%、あるいは重量%で0.5〜7%の範囲とする
のが好ましく、MnS 単独では面積率で1〜15%、あるい
は重量%で0.1 〜5%の範囲、BN単独では面積率で1〜
15%、あるいは重量%で0.1〜3%の範囲とするのが好
ましい。また、固体潤滑剤粒子の粒径が1μm 未満で
は、その効果が期待できず、一方、50μm を超えると、
焼結性、圧粉性に悪影響を及ぼす。このため、固体潤滑
剤粒子の粒径は1〜50μm に限定した。
The solid lubricant particles preferably have an area ratio of 10 to 40% or 0.5 to 7% by weight of CaF 2 alone, or 1 to 15% or an area ratio of MnS alone. Weight% in the range of 0.1 to 5%, BN alone with an area ratio of 1 to
It is preferred to be 15%, or in the range of 0.1 to 3% by weight. When the particle size of the solid lubricant particles is less than 1 μm, the effect cannot be expected. On the other hand, when the particle size exceeds 50 μm,
It has an adverse effect on sinterability and compactibility. For this reason, the particle size of the solid lubricant particles is limited to 1 to 50 μm.
【0021】また、基地部の組織が、前記硬質粒子を除
く基地相面積を100 %とする面積率で、40〜90%のパー
ライトと7〜40%のベイナイトと3〜20%のCoリッチ高
合金相からなる組織とするのが好ましい。基地相の組織
のうち、パーライトが40%未満では基地硬さが高くなり
相手材への攻撃性が増加する。また、ベイナイト40%を
超えると基地硬さが高くなり相手材への攻撃性が増加
し、ベイナイト7%未満では基地硬さが低下し耐摩耗性
が低下する。また、Coリッチ高合金相が20%を超えると
基地硬さが高くなり相手材への攻撃性が増加し、Coリッ
チ高合金相が3%未満では基地硬さが低下し耐摩耗性が
低下する。
Further, the structure of the base portion has an area ratio of 100% of the base phase area excluding the hard particles, and is 40 to 90% of pearlite, 7 to 40% of bainite, and 3 to 20% of Co-rich height. It is preferable that the structure be composed of an alloy phase. When the pearlite is less than 40% of the base phase structure, the base hardness increases and the aggressiveness to the opponent material increases. On the other hand, when the bainite exceeds 40%, the base hardness increases and the aggressiveness to the counterpart material increases, and when the bainite is less than 7%, the base hardness decreases and the wear resistance decreases. Also, if the Co-rich high alloy phase exceeds 20%, the base hardness increases and the aggressiveness to the counterpart material increases, and if the Co-rich high alloy phase is less than 3%, the base hardness decreases and the wear resistance decreases. I do.
【0022】本発明の焼結合金材の組織の1例を図1に
示す。MBは、基地部であり、基地相(M)と基地相中
に硬質粒子(H、この例はCr-Mo-Si-Co 金属間化合物粒
子)が分散している。SJは固体潤滑材粒子であり、こ
の例はCaF2である。基地相の組織は、パーライト(P)
ベイナイト(B) とCoリッチ高合金相(C)と硬質粒子
からなっている。Coリッチ高合金相は、Co拡散相からな
り、硬さHv 500程度の硬さを有し、基地相中に分散して
耐摩耗性を向上させる。
FIG. 1 shows an example of the structure of the sintered alloy material of the present invention. MB is a base portion, and hard particles (H, in this example, Cr-Mo-Si-Co intermetallic compound particles) are dispersed in the base phase (M) and the base phase. SJ is a solid lubricant particle, in this example CaF 2 . The organization of the base phase is perlite (P)
It consists of bainite (B), a Co-rich high alloy phase (C) and hard particles. The Co-rich high alloy phase is composed of a Co diffusion phase, has a hardness of about Hv 500, and is dispersed in the matrix phase to improve wear resistance.
【0023】本発明の焼結合金材の組織の他の1例を図
2に示す。MBは、基地部であり、基地相(M)と基地
相中に硬質粒子(H、この例はCr-Mo-Si-Co 金属間化合
物粒子)が分散している。SJは固体潤滑剤粒子であ
り、この例はMnS である。本発明の焼結合金材を得るに
は、純鉄粉に、Si、Mn、Cr、Mo、VあるいはさらにCoの
単粉を混合するか、純鉄にSi、Mn、Cr、Mo、Vあるいは
さらにCoを予合金した高Cr系合金粉あるいは高Cr系合金
粉と合金元素単粉との混合粉にC粉および硬質粒子粉を
上記基地部組成となるように配合し、さらに、固体潤滑
剤粉末を上記した範囲内となるように配合し混練する。
なお、潤滑剤としてステアリン酸亜鉛等を配合してもよ
い。
FIG. 2 shows another example of the structure of the sintered alloy material of the present invention. MB is a base portion, and hard particles (H, in this example, Cr-Mo-Si-Co intermetallic compound particles) are dispersed in the base phase (M) and the base phase. SJ is a solid lubricant particle, an example of which is MnS. To obtain the sintered alloy material of the present invention, pure iron powder is mixed with a single powder of Si, Mn, Cr, Mo, V or further Co, or pure iron is mixed with Si, Mn, Cr, Mo, V or Further, C powder and hard particle powder are blended with the high Cr-based alloy powder pre-alloyed with Co or the mixed powder of the high Cr-based alloy powder and the single alloy element powder so as to have the above base composition, and further, a solid lubricant The powder is blended and kneaded so as to be within the above range.
In addition, you may mix zinc stearate etc. as a lubricant.
【0024】これら粉末を金型に充填し、成型プレス等
により圧縮・成型し圧粉体とする。ついで、圧粉体を焼
結させて焼結体を得る。本発明の焼結合金材は、圧粉体
を1080〜1200℃の温度範囲で加熱し、焼結させるのが好
ましい。1080℃未満では、焼結拡散が不足し、基地の形
成が不十分であり、1200℃を超えると硬質粒子、基地の
過拡散が生じ、耐摩耗性が劣化する。
These powders are filled in a mold, and compressed and molded by a molding press or the like to obtain a green compact. Next, the green compact is sintered to obtain a sintered body. The sintered alloy material of the present invention is preferably heated and sintered in a temperature range of 1080 to 1200 ° C. If the temperature is lower than 1080 ° C., the sintering diffusion is insufficient, and the formation of the matrix is insufficient. If the temperature exceeds 1200 ° C., the hard particles and the matrix are excessively diffused, and the wear resistance is deteriorated.
【0025】[0025]
【実施例】鉄を主体とし、Cr、Mo、V、Mnを含む高Cr系
合金粉にC粉と、あるいはCo粉と、硬質粒子粉とを表1
に示す基地部組成になるように配合し、さらに表1に示
す量の固体潤滑剤を配合し混練し、混合粉とする。これ
ら混合粉を金型に充填し、成形プレスにより圧縮・成形
し圧粉体とする。ついで、これら圧粉体を1080℃〜1200
℃の還元雰囲気中で15〜70min の焼結を行い焼結体とし
た。得られた焼結体の基地部の組成、および組織を表1
に示す。
[Examples] Table 1 shows that a high Cr alloy powder mainly composed of iron and containing Cr, Mo, V, and Mn is composed of C powder, Co powder, and hard particle powder.
And the solid lubricant in the amount shown in Table 1 is further mixed and kneaded to obtain a mixed powder. These mixed powders are filled in a mold and compressed and molded by a molding press to obtain a green compact. Next, these green compacts are heated at 1080 ° C to 1200 ° C.
Sintering was performed for 15 to 70 min in a reducing atmosphere at ℃ to obtain a sintered body. Table 1 shows the composition and structure of the base part of the obtained sintered body.
Shown in
【0026】これら焼結体からバルブシートを加工し、
図3に示す単体リグ摩耗試験機で耐摩耗性を調査した。
試験条件は、つぎのとおりである。 試験温度:400 ℃(シート面) コンタクト数:1.6 ×106 カム回転数:3000rpm バルブ回転数:20rpm スプリング荷重:35kgf (セット時) バルブ材:SUH 35 リフト量:7mm 試験結果を表2に示す。
A valve seat is processed from these sintered bodies,
Wear resistance was investigated with a single rig wear tester shown in FIG.
The test conditions are as follows. Test temperature: 400 ° C (seat surface) Number of contacts: 1.6 × 10 6 Cam rotation: 3000 rpm Valve rotation: 20 rpm Spring load: 35 kgf (when set) Valve material: SUH 35 Lift: 7 mm Test results are shown in Table 2. .
【0027】なお、比較例として、表1に示す基地部組
成となるように純鉄粉、合金粉あるいは金属単粉、およ
びC粉、硬質粒子粉を混合し、あるいはさらに固体潤滑
剤を添加し混練し混合粉とし、本発明例と同じ条件で焼
結した。バルブシートの耐摩耗性を本発明例と同様に調
査し結果を表2に示す。
As a comparative example, pure iron powder, alloy powder or single metal powder, C powder and hard particle powder were mixed so as to have the base composition shown in Table 1, or a solid lubricant was further added. The mixture was kneaded to obtain a mixed powder, and sintered under the same conditions as in the present invention. The abrasion resistance of the valve seat was investigated in the same manner as in the present invention, and the results are shown in Table 2.
【0028】[0028]
【表1】 [Table 1]
【0029】[0029]
【表2】 [Table 2]
【0030】[0030]
【表3】 [Table 3]
【0031】[0031]
【表4】 [Table 4]
【0032】[0032]
【表5】 本発明例の試験No. 1〜15では、バルブシートの摩耗量
が10〜29μm であり、相手材の摩耗量も0〜22μm であ
り、本発明の範囲を外れる比較例の試験No.16〜21にお
けるバルブシートの摩耗量15〜50μm 、相手材の摩耗量
3〜45μm にくらべ摩耗量が少なく、耐摩耗性が向上し
かつ相手材攻撃性も低下していることがわかる。とく
に、基地部の組織が本発明の範囲を外れる比較例の試験
No.17 は、ベイナイト、Coリッチ高合金相の量が高く、
相手材攻撃性が増加している。また、硬質粒子径が本発
明の範囲を低く外れる試験No.18 は、バルブシートの摩
耗量が増加している。硬質粒子径が本発明の範囲を高く
外れる試験No.19 は、バルブの摩耗量が増加して、相手
材攻撃性が増加する。さらに、固体潤滑剤無添加の試験
No.16 、No.20 、No.21 はバルブシートの耐摩耗性が劣
化している。
[Table 5] In Test Nos. 1 to 15 of the present invention, the wear amount of the valve seat was 10 to 29 μm, and the wear amount of the mating member was 0 to 22 μm. It can be seen that the abrasion amount of the valve seat is 15 to 50 μm and the abrasion amount of the mating material is 3 to 45 μm in 21, the abrasion is small, the abrasion resistance is improved, and the aggressiveness of the mating material is reduced. In particular, a test of a comparative example in which the base tissue is out of the scope of the present invention
No. 17 has a high content of bainite and Co-rich high alloy phase,
Opponent material aggression is increasing. In Test No. 18, in which the hard particle diameter was out of the range of the present invention, the wear amount of the valve seat was increased. In Test No. 19, in which the hard particle diameter is out of the range of the present invention, the amount of wear of the valve increases and the aggressiveness of the counterpart material increases. In addition, tests without solid lubricant
No. 16, No. 20, and No. 21 have deteriorated wear resistance of the valve seat.
【0033】[0033]
【発明の効果】本発明によれば、厳しい運転状況にも適
用できる耐摩耗性に優れた焼結合金材が得られ、自動車
用バルブシート等摺動部材に適用でき産業上格別の効果
を奏する。
According to the present invention, a sintered alloy material having excellent wear resistance which can be applied to severe driving conditions can be obtained, and can be applied to sliding members such as valve seats for automobiles, and has an industrially outstanding effect. .
【図面の簡単な説明】[Brief description of the drawings]
【図1】(a)は、本発明例の焼結合金材の光学顕微鏡
組織を示す写真であり、(b)は(a)のスケッチ図で
ある。
FIG. 1A is a photograph showing an optical microscope structure of a sintered alloy material of an example of the present invention, and FIG. 1B is a sketch diagram of FIG.
【図2】(a)は、本発明例の焼結合金材の光学顕微鏡
組織を示す写真であり、(b)は(a)のスケッチ図で
ある。
FIG. 2A is a photograph showing an optical microscope structure of a sintered alloy material of an example of the present invention, and FIG. 2B is a sketch diagram of FIG.
【図3】単体リグ摩耗試験機の概略説明図である。FIG. 3 is a schematic explanatory view of a single-piece rig wear tester.

Claims (2)

    【特許請求の範囲】[Claims]
  1. 【請求項1】 鉄基合金組成からなる基地相中に硬質粒
    子を分散させた鉄基焼結合金材であって、硬質粒子を含
    む基地部の組成が、重量%で、C:0.7 〜1.6 %、Si:
    0.1 〜1%、Mn:0.05〜1%、Cr:1〜8%、Mo:1〜
    10%、V:0.1 〜2%、Co:1〜20%を含み、残部Feお
    よび不可避的不純物からなり、前記硬質粒子が粒径10〜
    150 μm のCr−Mo−Si−Co系金属間化合物粒子、Fe−Mo
    粒子およびFe−Si−Mo金属間化合物粒子から選ばれた1
    種または2種以上からなり、該硬質粒子を重量%で5〜
    25%分散させ、さらに粒径1〜50μm のCaF2、MnS およ
    びBNの固体潤滑剤粒子のうち1種または2種以上を合計
    で、重量%で0.1 〜7%分散させたことを特徴とする耐
    摩耗性に優れた鉄基焼結合金材。
    An iron-based sintered alloy material in which hard particles are dispersed in a base phase having an iron-based alloy composition, wherein the composition of the base portion containing the hard particles is C: 0.7 to 1.6 by weight%. %, Si:
    0.1-1%, Mn: 0.05-1%, Cr: 1-8%, Mo: 1
    10%, V: 0.1 to 2%, Co: 1 to 20%, the balance being Fe and unavoidable impurities, and the hard particles having a particle size of 10 to 10%.
    150 μm Cr-Mo-Si-Co intermetallic compound particles, Fe-Mo
    1 selected from particles and Fe-Si-Mo intermetallic compound particles
    Or two or more kinds, and the hard particles are 5 to 5% by weight.
    25%, and one or more of solid lubricant particles of CaF 2 , MnS and BN having a particle size of 1 to 50 μm are dispersed by 0.1 to 7% by weight in total. Iron-based sintered alloy material with excellent wear resistance.
  2. 【請求項2】 前記基地部の組織が、前記硬質粒子を除
    く基地面積を100 %とする面積率で、40〜90%のパーラ
    イトと7〜40%のベイナイトと3〜20%のCoリッチ高合
    金相からなることを特徴とする請求項1記載の鉄基焼結
    合金材。
    2. The structure of the base portion has an area ratio where the base area excluding the hard particles is 100%, and is 40 to 90% pearlite, 7 to 40% bainite, and 3 to 20% Co-rich height. The iron-based sintered alloy material according to claim 1, comprising an alloy phase.
JP18902497A 1997-06-30 1997-06-30 Wear-resistant iron-based sintered alloy material Expired - Fee Related JP3957234B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18902497A JP3957234B2 (en) 1997-06-30 1997-06-30 Wear-resistant iron-based sintered alloy material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18902497A JP3957234B2 (en) 1997-06-30 1997-06-30 Wear-resistant iron-based sintered alloy material

Publications (2)

Publication Number Publication Date
JPH1121659A true JPH1121659A (en) 1999-01-26
JP3957234B2 JP3957234B2 (en) 2007-08-15

Family

ID=16234031

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18902497A Expired - Fee Related JP3957234B2 (en) 1997-06-30 1997-06-30 Wear-resistant iron-based sintered alloy material

Country Status (1)

Country Link
JP (1) JP3957234B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1284300A2 (en) * 2001-08-06 2003-02-19 Hitachi Powdered Metals Co., Ltd. Wear resistant sintered member and process of manufacture therefor
US7045112B2 (en) 2001-11-30 2006-05-16 Kaya Ama Inc. Method of making manganese sulfide compositions
JP2007107034A (en) * 2005-10-12 2007-04-26 Hitachi Powdered Metals Co Ltd Method for producing abrasion-resistant sintered member
JP2007169713A (en) * 2005-12-21 2007-07-05 Jfe Steel Kk Iron-based powdery mixture for powder metallurgy
JP2007534848A (en) * 2004-04-26 2007-11-29 ホガナス アクチボラゲット Iron-based powders, additives, and sintered products containing composite additives for improving machinability
CN101925969A (en) * 2008-01-22 2010-12-22 阿塞洛米塔尔不锈钢镍合金公司 The Fe-Co alloy that is used for high dynamic electromagnetic actuators
JP2011094605A (en) * 2009-10-30 2011-05-12 Man Diesel & Turbo Filial Af Man Diesel & Turbo Se Tyskland Exhaust valve spindle for internal combustion engine, and method for manufacturing the same
JP2012052167A (en) * 2010-08-31 2012-03-15 Toyota Motor Corp Iron-based mixed powder for sintering and iron-based sintered alloy
CN102994917A (en) * 2012-12-11 2013-03-27 奇瑞汽车股份有限公司 Alloy material, valve retainer, and preparation method and installation method thereof
JPWO2017057464A1 (en) * 2015-10-02 2018-06-14 株式会社リケン Sintered valve seat

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1284300A3 (en) * 2001-08-06 2005-08-17 Hitachi Powdered Metals Co., Ltd. Wear resistant sintered member and process of manufacture therefor
EP1284300A2 (en) * 2001-08-06 2003-02-19 Hitachi Powdered Metals Co., Ltd. Wear resistant sintered member and process of manufacture therefor
US7045112B2 (en) 2001-11-30 2006-05-16 Kaya Ama Inc. Method of making manganese sulfide compositions
JP2007534848A (en) * 2004-04-26 2007-11-29 ホガナス アクチボラゲット Iron-based powders, additives, and sintered products containing composite additives for improving machinability
JP2007107034A (en) * 2005-10-12 2007-04-26 Hitachi Powdered Metals Co Ltd Method for producing abrasion-resistant sintered member
JP4582587B2 (en) * 2005-10-12 2010-11-17 日立粉末冶金株式会社 Method for producing wear-resistant sintered member
JP2007169713A (en) * 2005-12-21 2007-07-05 Jfe Steel Kk Iron-based powdery mixture for powder metallurgy
JP4640162B2 (en) * 2005-12-21 2011-03-02 Jfeスチール株式会社 Iron-based mixed powder for powder metallurgy and iron-based sintered body
CN101925969A (en) * 2008-01-22 2010-12-22 阿塞洛米塔尔不锈钢镍合金公司 The Fe-Co alloy that is used for high dynamic electromagnetic actuators
JP2011094605A (en) * 2009-10-30 2011-05-12 Man Diesel & Turbo Filial Af Man Diesel & Turbo Se Tyskland Exhaust valve spindle for internal combustion engine, and method for manufacturing the same
JP2012052167A (en) * 2010-08-31 2012-03-15 Toyota Motor Corp Iron-based mixed powder for sintering and iron-based sintered alloy
CN102994917A (en) * 2012-12-11 2013-03-27 奇瑞汽车股份有限公司 Alloy material, valve retainer, and preparation method and installation method thereof
JPWO2017057464A1 (en) * 2015-10-02 2018-06-14 株式会社リケン Sintered valve seat

Also Published As

Publication number Publication date
JP3957234B2 (en) 2007-08-15

Similar Documents

Publication Publication Date Title
JP3952344B2 (en) Wear-resistant iron-based sintered alloy material for valve seat and valve seat made of iron-based sintered alloy
JP4213060B2 (en) Ferrous sintered alloy material for valve seats
JP3469435B2 (en) Valve seat for internal combustion engine
US20020084004A1 (en) Iron-based sintered alloy material for valve seat and valve seat made of iron-based sintered alloy
JPH1121659A (en) Wear resistant iron-base sintered alloy material
JP3614237B2 (en) Valve seat for internal combustion engine
JP3763782B2 (en) Method for producing wear-resistant iron-based sintered alloy material for valve seat
JP3434527B2 (en) Sintered alloy for valve seat
JP3794452B2 (en) Ferrous sintered alloy material for valve seats
JP4335189B2 (en) Combining valve and valve seat for internal combustion engine
JP3225649B2 (en) Wear resistant iron-based sintered alloy
JP3226618B2 (en) Iron-based sintered alloy for valve seat
JP2684774B2 (en) Iron-based sintered alloy for valve seats
JP3942136B2 (en) Iron-based sintered alloy
JP3068127B2 (en) Wear-resistant iron-based sintered alloy and method for producing the same
JP3573872B2 (en) Method of manufacturing sintered alloy joint valve seat and sintered alloy material for joint valve seat
JPH0633184A (en) Production of sintered alloy for valve seat excellent in wear resistance
JP3569166B2 (en) Wear-resistant sintered alloy and method for producing the same
JP3264092B2 (en) Wear-resistant iron-based sintered alloy and method for producing the same
JP2833116B2 (en) Sintered alloy for valve seat
JP3763605B2 (en) Sintered alloy material for valve seats
JPH10280108A (en) Wear resistant iron base sintered alloy
JP3068128B2 (en) Wear-resistant iron-based sintered alloy and method for producing the same
JP3304805B2 (en) Iron-based sintered alloy with excellent wear resistance
JPH0633185A (en) Production of sintered alloy for valve seat excellent in wear resistance

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040331

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060815

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061016

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070206

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070502

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070507

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110518

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120518

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130518

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140518

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees