JP2023152727A - Valve seat for internal combustion engine made of iron sintered alloy and production method - Google Patents

Valve seat for internal combustion engine made of iron sintered alloy and production method Download PDF

Info

Publication number
JP2023152727A
JP2023152727A JP2023022380A JP2023022380A JP2023152727A JP 2023152727 A JP2023152727 A JP 2023152727A JP 2023022380 A JP2023022380 A JP 2023022380A JP 2023022380 A JP2023022380 A JP 2023022380A JP 2023152727 A JP2023152727 A JP 2023152727A
Authority
JP
Japan
Prior art keywords
powder
iron
valve seat
member side
base
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2023022380A
Other languages
Japanese (ja)
Inventor
清 諏訪
Kiyoshi Suwa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Piston Ring Co Ltd
Original Assignee
Nippon Piston Ring Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Piston Ring Co Ltd filed Critical Nippon Piston Ring Co Ltd
Priority to CN202310318892.9A priority Critical patent/CN116890116A/en
Publication of JP2023152727A publication Critical patent/JP2023152727A/en
Pending legal-status Critical Current

Links

Images

Abstract

To provide a valve seat made of an iron sintered alloy excellent in wear resistance and falling resistance.SOLUTION: There is provided a two layer structure valve seat 1 which is obtained by integrating by sintering, a function member layer 11, and a support member layer 12, the function member layer includes in a matrix phase including mainly, 20.0% of a fine carbide precipitation phase, and an annealing martensite phase: dispersed hard particles or solid lubricant particles; and a high allow phase around the hard particles. The iron sintered alloy material includes in mass%, one or two or more kinds selected from: 0.5-2.0% of C; 0.1-1.0% of Si; 0.1-2.5% of Mn; 1.0-7.0% of Ni; 1.0-12.0% of Cr; 2.0-12.0% of Mo; 2.0-20.0% of Co; 0.1-2.0% of W; 0.01-1.0% of V, and further has a matrix part composition including 0-1.5% of S, and includes holes in which Cu is filled by infiltration.SELECTED DRAWING: Figure 1

Description

本発明は、内燃機関用鉄基焼結合金製バルブシートおよびその製造方法に係り、とくに、鋳鉄製シリンダヘッドに圧入されて使用されるバルブシートの耐摩耗性およびシリンダヘッドからの耐脱落性の向上に関する。 The present invention relates to a valve seat made of an iron-based sintered alloy for internal combustion engines and a method for manufacturing the same, and particularly to a valve seat that is press-fitted into a cast iron cylinder head and used, and has improved wear resistance and fall-off resistance from the cylinder head. Regarding improvement.

バルブシートは、燃焼ガスのシールと、バルブを冷却する役割を担って、エンジンのシリンダヘッドに圧入されて使用される。バルブシートには、バルブの繰返し当接による摩耗に十分に耐えられる耐摩耗性や、耐熱性、耐食性等に加えて、相手材であるバルブを摩耗させないため、相手攻撃性が低いことも要求されている。 A valve seat is used by being press-fitted into an engine's cylinder head, with the role of sealing combustion gas and cooling the valve. Valve seats are required to have sufficient wear resistance, heat resistance, and corrosion resistance to withstand wear caused by repeated contact with the valve, as well as low attack resistance to prevent the mating material, the valve, from wearing out. ing.

近年、エンジンの高効率化・高負荷化の促進に伴い、燃焼室周りの温度が上昇する傾向にあり、そのため、バルブシートへの熱負荷が一段と高くなり、厳しい使用環境に耐えることが要求されている。 In recent years, as engines have become more efficient and loaded, the temperature around the combustion chamber has tended to rise.As a result, the thermal load on valve seats has become even higher, requiring them to withstand harsh operating environments. ing.

このような要求に対し、例えば、特許文献1には、鋳鉄製シリンダヘッド用として好適な焼結合金製バルブシートが提案されている。特許文献1に記載された焼結合金製バルブシートは、表面層部と基層部との二層を一体に焼結し、表面層部の気孔率が5~20%、基層部の気孔率が5%以下である、焼結合金製バルブシートである。特許文献1に記載された焼結合金製バルブシートは、二層一体の焼結体としたのち、該焼結体に基層部側から冷間で回転鍛造を施し、さらに再焼結する工程を施して製造されている。 In response to such demands, for example, Patent Document 1 proposes a sintered alloy valve seat suitable for use in cast iron cylinder heads. The sintered metal valve seat described in Patent Document 1 has two layers, a surface layer and a base layer, which are sintered together, and the surface layer has a porosity of 5 to 20% and the base layer has a porosity of 5 to 20%. This is a valve seat made of sintered alloy with a carbon content of 5% or less. The sintered metal valve seat described in Patent Document 1 is manufactured by forming a two-layer integrated sintered body, then subjecting the sintered body to cold rotary forging from the base layer side, and then re-sintering the sintered body. It is manufactured by applying

また、特許文献2には、内燃機関用鉄基焼結合金製バルブシートが記載されている。特許文献2に記載されたバルブシートは、単層構造で、基地相が長径:30μm以下の微細炭化物を面積率で27%以下析出させた焼戻マルテンサイト相からなり、さらに基地相中に硬質粒子として、Cr-Mo-Si-Co系硬質粒子、Cr-Mo-Ni-Si-Co系硬質粒子およびMo系硬質粒子のうちから選ばれた1種または2種以上を面積率で、31~80%分散させたなる組織を有し、密度:7.3~8.2g/cm3、圧環強さ:400MPa以上で、耐摩耗性および耐脱落性に優れるとしている。特許文献2に記載されたバルブシートでは、所定の組成となるように原料粉を配合し混合粉とする混合工程と、混合粉を圧縮・成形して圧粉体とする成形工程と、圧粉体を加熱・焼結してバルブシート状焼結体とする焼結工程と施し、さらに、バルブシート状焼結体に熱間鍛造を行う熱間加工工程と、しかるのちにバルブシート状焼結体に所定の特性を付与する熱処理を行う熱処理工程を順次、施すと、している。特許文献2に記載された技術によれば、過酷な条件においても優れた耐久性を示すバルブシートを容易に製造できるとしている。 Further, Patent Document 2 describes a valve seat made of iron-based sintered alloy for internal combustion engines. The valve seat described in Patent Document 2 has a single-layer structure, and the base phase is composed of a tempered martensitic phase in which fine carbides with a major diameter of 30 μm or less are precipitated in an area ratio of 27% or less, and furthermore, the base phase contains hard particles. As particles, one or more types selected from Cr-Mo-Si-Co hard particles, Cr-Mo-Ni-Si-Co hard particles, and Mo-based hard particles are used in an area ratio of 31 to It has an 80% dispersed structure, a density of 7.3 to 8.2 g/cm 3 , a radial crushing strength of 400 MPa or more, and is said to have excellent wear resistance and drop-off resistance. The valve seat described in Patent Document 2 includes a mixing step of blending raw material powders to form a mixed powder so as to have a predetermined composition, a molding step of compressing and molding the mixed powder to form a compact, and a compacting process. A sintering process in which the body is heated and sintered to form a valve seat-shaped sintered body, followed by a hot working process in which the valve seat-shaped sintered body is hot forged, and then a valve seat-shaped sintered body is heated and sintered. A heat treatment process is sequentially performed to impart predetermined properties to the body. According to the technology described in Patent Document 2, it is possible to easily manufacture a valve seat that exhibits excellent durability even under severe conditions.

特公昭61-10644号公報Special Publication No. 61-10644 特開2018-178208号公報Japanese Patent Application Publication No. 2018-178208

しかし、特許文献1に記載された技術では、バルブシートの基層部の気孔率を小さくするために、焼結体に冷間での回転鍛造による圧縮鍛造を施し、さらに再焼結する工程を必要としている。このため、特許文献1に記載された技術では、工程が複雑になるという問題があった。また、特許文献2に記載された技術においても、バルブシートの密度が7.3g/cm3以上となるように、熱間鍛造を行う熱間加工を施すことを必要とし、工程が複雑になる。 However, in the technology described in Patent Document 1, in order to reduce the porosity of the base layer of the valve seat, it is necessary to subject the sintered body to compression forging using cold rotary forging, and then to re-sinter it. It is said that Therefore, the technique described in Patent Document 1 has a problem in that the process becomes complicated. Further, in the technique described in Patent Document 2, it is necessary to carry out hot working such as hot forging so that the density of the valve seat becomes 7.3 g/cm 3 or more, which complicates the process.

本発明は、上記した従来技術の問題を解決し、内燃機関のシリンダヘッド、とくに、鋳鉄製シリンダヘッドに圧入されて使用されるバルブシートとして好適な、従来技術に比べ安価で、耐摩耗性と耐脱落性に優れる高強度の鉄基焼結合金製バルブシートを提供することを目的とする。 The present invention solves the above-mentioned problems of the prior art, and is suitable for use as a valve seat press-fitted into a cylinder head of an internal combustion engine, particularly a cast iron cylinder head, and is inexpensive and wear-resistant compared to the prior art. The purpose of the present invention is to provide a high-strength iron-based sintered alloy valve seat with excellent drop-off resistance.

本発明者は、上記した目的を達成するため、まず、圧入されたバルブシートの耐脱落性に及ぼす各種要因について鋭意検討した。その結果、まず、バルブシートにCu溶浸処理を施して、空孔中にCuを含浸させ、バルブシートの高強度化を図り、さらに焼入焼戻処理(熱処理)を施して、基地相の安定化を図ることに思い至った。そして、さらに耐脱落性に加えて耐摩耗性を兼備させるために、基地相に分散させる硬質粒子を、高硬度でかつ相手攻撃性が低いNi-Cr-Mo-Co系金属間化合物粒子または、Cr-Mo-Co系金属間化合物粒子とすることに想到した。 In order to achieve the above-mentioned object, the present inventors first conducted extensive studies on various factors that affect the fall-off resistance of a press-fitted valve seat. As a result, the valve seat was first infiltrated with Cu to infiltrate the pores with Cu to increase the strength of the valve seat, and then quenched and tempered (heat treated) to strengthen the base phase. I came up with the idea of trying to stabilize it. Furthermore, in order to provide wear resistance in addition to shedding resistance, the hard particles dispersed in the base phase are made of Ni-Cr-Mo-Co intermetallic compound particles with high hardness and low attack properties, or We came up with the idea of using Cr-Mo-Co intermetallic compound particles.

本発明は、かかる知見に基づき、さらに検討を加えて完成されたものである。 The present invention was completed based on such knowledge and further studies.

すなわち、本発明の要旨はつぎのとおりである。
[1]内燃機関のシリンダヘッドに圧入されるバルブシートであって、
該バルブシートが、機能部材側層からなる単層構造を有し、
前記機能部材側層が、基地相中に硬質粒子あるいはさらに固体潤滑剤粒子を分散させた基地部と、溶浸でCuが充填された空孔を含み、
前記基地相が、機能部材側層全量に対する面積%で、20.0%以下の微細炭化物析出相と、焼戻マルテンサイト相からなり、
前記基地部が、機能部材側層全量に対する面積%で、前記基地相中に、前記硬質粒子を10.0~40.0%、あるいはさらに前記固体潤滑剤粒子を0.3~3.0%、分散させ、さらに前記硬質粒子のまわりに25.0%以下の高合金相を有する基地部組織と、基地部全量に対する質量%で、C:0.5~2.0%を含み、さらにSi:0.1~1.0%、Mn:0.1~2.5%、Ni:1.0~7.0%、Cr:1.0~12.0%、Mo:2.0~12.0%、Co:2.0~20.0%、W:0.1~2.0%、V:0.01~1.0%のうちから選ばれた1種または2種以上を含み、さらにS:0~1.5%を含有し、残部Feおよび不可避的不純物からなる基地部組成と、を有し、さらに前記空孔に溶浸で充填されたCuを、機能部材側層全量に対する面積%で1.0~20.0%含む鉄基焼結合金材からなることを特徴とする内燃機関用鉄基焼結合金製バルブシート。
[2]内燃機関のシリンダヘッドに圧入されるバルブシートであって、
該バルブシートが、機能部材側層と支持部材側層とを一体で焼結してなる二層構造を有し、
前記機能部材側層が、基地相中に硬質粒子あるいはさらに固体潤滑剤粒子を分散させた基地部と、溶浸でCuが充填された空孔を含み、前記基地相が、機能部材側層全量に対する面積%で、20.0%以下の微細炭化物析出相と、焼戻マルテンサイト相からなり、
前記基地部が、機能部材側層全量に対する面積%で、前記基地相中に、前記硬質粒子を10.0~40.0%、あるいはさらに前記固体潤滑剤粒子を0.3~3.0%、分散させ、さらに前記硬質粒子のまわりに25.0%以下の高合金相を有する基地部組織と、基地部全量に対する質量%で、C:0.5~2.0%を含み、さらに、Si:0.1~1.0%、Mn:0.1~2.5%、Ni:1.0~7.0%、Cr:1.0~12.0%、Mo:2.0~12.0%、Co:2.0~20.0%、W:0.1~2.0%、V:0.01~1.0%のうちから選ばれた1種または2種以上を含み、さらにS:0~1.5%を含有し、残部Feおよび不可避的不純物からなる基地部組成と、を有し、さらに前記空孔に溶浸で充填されたCuを、機能部材側層全量に対する面積%で1.0~20.0%含む鉄基焼結合金材からなり、
前記支持部材側層が、基地相中に固体潤滑剤粒子を分散させた基地部と、溶浸でCuが充填された空孔を含み、前記基地相が、焼戻マルテンサイト相からなり、前記基地部が、支持部材側層全量に対する面積%で、前記基地相中に、前記固体潤滑剤粒子を0~3.0%分散させた基地部組織と、基地部全量に対する質量%で、C:0.1~1.5%を含み、さらにCr:1.0~10.0%、Mo:0.1~3.0%、Ni:0.1~2.0%のうちから選ばれた1種または2種以上を含み、さらにMn:0~1.0%およびS:0~1.0%を含み、残部Feおよび不可避的不純物からなる基地部組成と、を有し、さらに前記空孔に溶浸で充填されたCuを、支持部材側層全量に対する面積%で1.0~20.0%含む鉄基焼結合金材からなることを特徴とする内燃機関用鉄基焼結合金製バルブシート。
[3]前記シリンダヘッドが鋳鉄製シリンダヘッドであることを特徴とする[1]または[2]に記載の内燃機関用鉄基焼結合金製バルブシート。
[4]前記硬質粒子が、質量%で、Ni:5.0~15.0%、Cr:20.0~30.0%、Mo:20.0~30.0%、Si:1.0~5.0%を含有し、残部Coからなる組成を有し、ビッカース硬さで900~1300HVの硬さを有する金属間化合物粒子または、質量%で、Cr:5.0~15.0%、Mo:25.0~35.0%、Si:1.0~5.0%を含有し、残部Coからなる組成を有し、ビッカース硬さで600~900HVの硬さを有する金属間化合物粒子であることを特徴とする[1]または[2]に記載の内燃機関用鉄基焼結合金製バルブシート。
[5]前記固体潤滑剤粒子が、MnS粒子であることを特徴とする[1]または[2]に記載の内燃機関用鉄基焼結合金製バルブシート。
[6][1]に記載の単層構造の内燃機関用鉄基焼結合金製バルブシートの製造方法であって、
前記単層構造の機能部材側層の基地部組成および基地部組織となるように、鉄基粉末と、黒鉛粉と、合金元素粉と、硬質粒子粉末と、あるいはさらに固体潤滑剤粒子粉末とを、所定量配合し、混合、混錬して、混合粉とするに当たり、
前記鉄基粉末を、純鉄粉、合金鉄粉、および合金鋼粉のうちから選ばれた1種または2種以上とし、前記混合粉全量に対する質量%で、
前記黒鉛粉を0.5~2.0%、前記合金元素粉を0~5.0%、前記硬質粒子粉末を10.0~40.0%、
前記固体潤滑剤粒子粉末を0~3.0%、それぞれ配合し、混合、混錬し、混合粉としたのち、
前記混合粉を、所定形状の金型に充填し、圧縮・成形し圧粉体を得る成形工程と、
得られた前記圧粉体に、還元雰囲気中で、加熱温度:1100~1200℃で焼結処理を施し焼結体を得る焼結工程と、
得られた前記焼結体に、Cu溶浸処理を施し前記焼結体の空孔にCuを充填するCu溶浸工程と、
空孔にCuを溶浸された焼結体に、さらに焼入れ加熱温度:800~1000℃に加熱したのち急冷し、さらに焼戻し加熱温度:500~700℃に加熱したのち冷却する焼入れ焼戻し処理を施す熱処理工程と、を備えることを特徴とする内燃機関用鉄基焼結合金製バルブシートの製造方法。
[7][2]に記載の二層構造の内燃機関用鉄基焼結合金製バルブシートの製造方法であって、
前記二層構造の基地部組成および基地部組織となるように、鉄基粉末と、黒鉛粉と、合金元素粉と、硬質粒子粉末と、あるいはさらに固体潤滑剤粒子粉末とを、所定量配合し、混合、混錬して、混合粉とするに当たり、
前記鉄基粉末を、純鉄粉、合金鉄粉、および合金鋼粉のうちから選ばれた1種または2種以上とし、前記混合粉全量に対する質量%で、
前記黒鉛粉を0.5~2.0%、前記合金元素粉を0~5.0%、前記硬質粒子粉末を10.0~40.0%、
前記固体潤滑剤粒子粉末を0~3.0%、それぞれ配合し、混合、混錬し、機能部材側層用混合粉とし、一方、
前記鉄基粉末を、純鉄粉、合金鉄粉のうちから選ばれた1種または2種とし、
前記混合粉全量に対する質量%で、
前記黒鉛粉を0.5~2.0%、前記合金元素粉末を0~5.0%、前記固体潤滑剤粒子粉末を0~3.0%、それぞれ配合し、混合、混錬して、支持部材側層用混合粉としたのち、
所定量の前記支持部材側層用混合粉と前記機能部材側層用混合粉とをこの順に、金型に充填し、一体として圧縮・成形し圧粉体を得る成形工程と、
得られた前記圧粉体に、還元雰囲気中で、加熱温度:1100~1200℃で焼結処理を施し焼結体を得る焼結工程と、
得られた前記焼結体に、Cu溶浸処理を施し前記焼結体の空孔にCuを充填するCu溶浸工程と、
空孔にCuを溶浸された焼結体に、さらに焼入れ加熱温度:800~1000℃に加熱したのち急冷し、さらに焼戻し加熱温度:500~700℃に加熱したのち冷却する焼入れ焼戻し処理を施す熱処理工程と、を備えることを特徴とする内燃機関用鉄基焼結合金製バルブシートの製造方法。
[8]前記焼結工程において、前記Cu溶浸工程を備えることを特徴とする[6]または[7]に記載の内燃機関用鉄基焼結合金製バルブシートの製造方法。
That is, the gist of the present invention is as follows.
[1] A valve seat press-fitted into the cylinder head of an internal combustion engine,
The valve seat has a single layer structure consisting of a functional member side layer,
The functional member side layer includes a base portion in which hard particles or further solid lubricant particles are dispersed in the base phase, and pores filled with Cu by infiltration,
The base phase is composed of a fine carbide precipitate phase of 20.0% or less and a tempered martensite phase in terms of area % with respect to the total amount of the functional member side layer,
The base portion has 10.0 to 40.0% of the hard particles dispersed in the base phase, or further 0.3 to 3.0% of the solid lubricant particles, in terms of area % based on the total amount of the functional member side layer, and further includes the hard particles. The base structure has a high alloy phase of 25.0% or less around the base, and contains C: 0.5 to 2.0% in mass % based on the total amount of the base, and further includes Si: 0.1 to 1.0%, Mn: 0.1 to 2.5%, and Ni. : 1 or 2 selected from 1.0 to 7.0%, Cr: 1.0 to 12.0%, Mo: 2.0 to 12.0%, Co: 2.0 to 20.0%, W: 0.1 to 2.0%, V: 0.01 to 1.0%. The functional component side contains Cu filled in the pores by infiltration. A valve seat made of an iron-based sintered alloy for an internal combustion engine, characterized in that it is made of an iron-based sintered alloy material containing 1.0 to 20.0% by area of the total layer.
[2] A valve seat press-fitted into a cylinder head of an internal combustion engine,
The valve seat has a two-layer structure formed by integrally sintering a functional member side layer and a supporting member side layer,
The functional member side layer includes a base portion in which hard particles or further solid lubricant particles are dispersed in the base phase, and pores filled with Cu by infiltration, and the base phase contains the entire functional member side layer. It consists of a fine carbide precipitate phase of 20.0% or less in area% and a tempered martensite phase,
The base portion has 10.0 to 40.0% of the hard particles dispersed in the base phase, or further 0.3 to 3.0% of the solid lubricant particles, in terms of area % based on the total amount of the functional member side layer, and further includes the hard particles. The base structure has a high alloy phase of 25.0% or less around the base, and contains C: 0.5 to 2.0% in mass% relative to the total amount of the base, and furthermore, Si: 0.1 to 1.0%, Mn: 0.1 to 2.5%, One type selected from Ni: 1.0 to 7.0%, Cr: 1.0 to 12.0%, Mo: 2.0 to 12.0%, Co: 2.0 to 20.0%, W: 0.1 to 2.0%, V: 0.01 to 1.0%, or It has a base composition containing two or more types, further containing S: 0 to 1.5%, and the balance consisting of Fe and unavoidable impurities, and furthermore, Cu filled into the pores by infiltration is used as a functional component. Made of iron-based sintered alloy material containing 1.0 to 20.0% in area% of the total amount of the side layer,
The supporting member side layer includes a base portion in which solid lubricant particles are dispersed in a base phase, and pores filled with Cu by infiltration, the base phase is made of a tempered martensitic phase, and the base phase is made of a tempered martensitic phase. The base portion is expressed in area% relative to the total amount of the supporting member side layer, and the base portion structure has the solid lubricant particles dispersed in the base phase at 0 to 3.0%, and C: 0.1 to mass % relative to the total amount of the base portion. Contains 1.5%, further contains one or more selected from Cr: 1.0 to 10.0%, Mo: 0.1 to 3.0%, Ni: 0.1 to 2.0%, and further contains Mn: 0 to 1.0% and S. : 0 to 1.0%, with the remainder being Fe and unavoidable impurities, and further Cu filled into the pores by infiltration is 1.0 to 1.0% by area with respect to the total amount of the supporting member side layer. A valve seat made of an iron-based sintered alloy for internal combustion engines, characterized by being made of an iron-based sintered alloy material containing 20.0%.
[3] The iron-based sintered alloy valve seat for an internal combustion engine according to [1] or [2], wherein the cylinder head is a cast iron cylinder head.
[4] The hard particles have a composition in mass % of Ni: 5.0 to 15.0%, Cr: 20.0 to 30.0%, Mo: 20.0 to 30.0%, Si: 1.0 to 5.0%, with the balance consisting of Co. Intermetallic compound particles having a Vickers hardness of 900 to 1300 HV, or containing Cr: 5.0 to 15.0%, Mo: 25.0 to 35.0%, Si: 1.0 to 5.0%, and the balance being Co. The iron-based sintered alloy valve for internal combustion engines according to [1] or [2], characterized in that the valve is made of intermetallic compound particles having a composition consisting of the following and having a Vickers hardness of 600 to 900HV. sheet.
[5] The iron-based sintered alloy valve seat for an internal combustion engine according to [1] or [2], wherein the solid lubricant particles are MnS particles.
[6] A method for manufacturing a single-layer structure iron-based sintered alloy valve seat for internal combustion engines according to [1], comprising:
An iron-based powder, a graphite powder, an alloying element powder, a hard particle powder, or further a solid lubricant particle powder is added so as to have the base composition and structure of the functional member side layer of the single-layer structure. , when blending a predetermined amount, mixing and kneading to make a mixed powder,
The iron-based powder is one or more selected from pure iron powder, alloyed iron powder, and alloyed steel powder, and the mass % based on the total amount of the mixed powder,
0.5 to 2.0% of the graphite powder, 0 to 5.0% of the alloy element powder, 10.0 to 40.0% of the hard particle powder,
After blending 0 to 3.0% of the solid lubricant particles, mixing and kneading to form a mixed powder,
a molding step of filling the mixed powder into a mold of a predetermined shape and compressing and molding it to obtain a green compact;
A sintering step in which the obtained green compact is subjected to a sintering treatment in a reducing atmosphere at a heating temperature of 1100 to 1200°C to obtain a sintered body;
a Cu infiltration step of subjecting the obtained sintered body to Cu infiltration treatment and filling the pores of the sintered body with Cu;
The sintered body whose pores are infiltrated with Cu is further subjected to a quenching and tempering process in which it is heated to a quenching heating temperature of 800 to 1000°C, then rapidly cooled, and further heated to a tempering heating temperature of 500 to 700°C and then cooled. A method of manufacturing a valve seat made of an iron-based sintered alloy for an internal combustion engine, comprising the steps of: a heat treatment step.
[7] A method for manufacturing a two-layer structure iron-based sintered alloy valve seat for internal combustion engines according to [2], comprising:
A predetermined amount of iron-based powder, graphite powder, alloying element powder, hard particle powder, or further solid lubricant particle powder is blended to obtain the base composition and structure of the two-layer structure. , when mixing and kneading to make a mixed powder,
The iron-based powder is one or more selected from pure iron powder, alloyed iron powder, and alloyed steel powder, and the mass % based on the total amount of the mixed powder,
0.5 to 2.0% of the graphite powder, 0 to 5.0% of the alloy element powder, 10.0 to 40.0% of the hard particle powder,
0 to 3.0% of the solid lubricant particles are blended, mixed, and kneaded to form a mixed powder for the functional member side layer;
The iron-based powder is one or two selected from pure iron powder and alloyed iron powder,
In mass % with respect to the total amount of the mixed powder,
0.5 to 2.0% of the graphite powder, 0 to 5.0% of the alloy element powder, and 0 to 3.0% of the solid lubricant particle powder are blended, mixed, and kneaded to form a mixed powder for the support member side layer. After that,
A molding step of filling a mold with a predetermined amount of the mixed powder for the support member side layer and the mixed powder for the functional member side layer in this order, and compressing and molding them as one body to obtain a green compact;
A sintering step in which the obtained green compact is subjected to a sintering treatment in a reducing atmosphere at a heating temperature of 1100 to 1200°C to obtain a sintered body;
a Cu infiltration step of subjecting the obtained sintered body to Cu infiltration treatment and filling the pores of the sintered body with Cu;
The sintered body whose pores are infiltrated with Cu is further subjected to a quenching and tempering process in which it is heated to a quenching heating temperature of 800 to 1000°C, then rapidly cooled, and further heated to a tempering heating temperature of 500 to 700°C and then cooled. A method of manufacturing a valve seat made of an iron-based sintered alloy for an internal combustion engine, comprising the steps of: a heat treatment step.
[8] The method for manufacturing a valve seat made of an iron-based sintered alloy for an internal combustion engine according to [6] or [7], characterized in that the sintering step includes the Cu infiltration step.

本発明によれば、高強度で、耐摩耗性および耐脱落性に優れた鉄基焼結合金製バルブシートを、安価に製造でき、産業上格段の効果を奏する。本発明によれば、従来に比べて、とくに耐摩耗性および耐脱落性に優れたバルブシートとなり、鋳鉄製シリンダヘッド用として優れた効果を奏する。 According to the present invention, a valve seat made of an iron-based sintered alloy that has high strength and excellent wear resistance and drop-off resistance can be manufactured at low cost, and has a significant industrial effect. According to the present invention, the valve seat has particularly excellent wear resistance and drop-off resistance compared to the conventional valve seat, and has excellent effects for use in cast iron cylinder heads.

本発明バルブシートの断面構造の一例を模式的に示す断面図である。FIG. 1 is a cross-sectional view schematically showing an example of the cross-sectional structure of the valve seat of the present invention. 単体リグ摩耗試験機の概略説明図である。FIG. 2 is a schematic explanatory diagram of a single rig wear tester. 脱落性試験機の概略説明図である。FIG. 2 is a schematic explanatory diagram of a shedding tester.

本発明バルブシート1は、図1に示すように、バルブが着座する側(機能部材側)11とヘッドに着座する側(支持部材側)12とが異なる材料で構成され、それらが一体で焼結されてなる二層構造であるか、機能部材側層11のみの単層構造(図示せず)のバルブシートである。 As shown in FIG. 1, in the valve seat 1 of the present invention, the side 11 on which the valve is seated (functional member side) and the side 12 on which the valve is seated (support member side) are made of different materials, and these are integrally baked. The valve seat may have a two-layer structure in which the valve seat is tied together, or a single-layer structure (not shown) in which only the functional member side layer 11 is formed.

まず、機能部材側層について説明する。
機能部材側層は、基地相中に硬質粒子あるいはさらに固体潤滑剤粒子を分散させた基地部と、空孔にCuが充填された溶浸部とを含む、鉄基焼結合金材からなる。
First, the functional member side layer will be explained.
The functional member side layer is made of an iron-based sintered alloy material including a base part in which hard particles or solid lubricant particles are dispersed in a base phase, and an infiltrated part in which the pores are filled with Cu.

本発明バルブシートでは、溶浸処理により、空孔にCuを充填し、バルブシートの強度向上を図る。なお、本発明バルブシートの機能部材側層では、溶浸前の気孔率は、面積%で、1.0~20.0%の範囲とする。気孔率が1.0%未満では、密度向上のための工程が複雑となり、大幅な製造コストの上昇を招く。一方、20.0%を超えると、耐摩耗性が低下する。 In the valve seat of the present invention, the pores are filled with Cu through infiltration treatment to improve the strength of the valve seat. In addition, the porosity of the functional member side layer of the valve seat of the present invention before infiltration is in the range of 1.0 to 20.0% in area %. If the porosity is less than 1.0%, the process for increasing density becomes complicated, leading to a significant increase in manufacturing costs. On the other hand, when it exceeds 20.0%, wear resistance decreases.

機能部材側層では、基地相は、機能部材側層に対する面積%で、20.0%以下の微細炭化物析出相と、焼戻マルテンサイト相からなる。 In the functional member side layer, the base phase consists of a fine carbide precipitate phase of 20.0% or less in area % with respect to the functional member side layer and a tempered martensite phase.

本発明バルブシートの機能部材側層では、基地相中に所定量(20.0%以下)の微細炭化物析出相を存在させる。基地相中に微細炭化物析出相を存在させると、空孔がCuで充填された機能部材側層(バルブシート)の耐摩耗性が向上する。このような効果を得るためには、好ましくは、機能部材側層に対する面積%で、20.0%以下、好ましくは1.0%以上20.0%以下の微細炭化物析出相の存在を必要とする。微細炭化物析出相が、20.0%を超えて多量に存在すると空孔が増加し、耐摩耗性が低下する。なお、ここで、「微細炭化物析出相」は、焼戻しマルテンサイト中にCr-Mo-W-V系炭化物等の微細炭化物が析出した相をいう。 In the functional component side layer of the valve seat of the present invention, a predetermined amount (20.0% or less) of a fine carbide precipitate phase is present in the base phase. The presence of a fine carbide precipitate phase in the base phase improves the wear resistance of the functional component side layer (valve seat) whose pores are filled with Cu. In order to obtain such an effect, the presence of a fine carbide precipitate phase is preferably required to be 20.0% or less, preferably 1.0% or more and 20.0% or less in terms of area % with respect to the functional member side layer. If the fine carbide precipitate phase is present in a large amount exceeding 20.0%, pores will increase and wear resistance will decrease. Note that the "fine carbide precipitated phase" herein refers to a phase in which fine carbides such as Cr-Mo-W-V carbides are precipitated in tempered martensite.

また、本発明バルブシートの機能部材側層では、上記した微細炭化物析出相以外の基地相は焼戻マルテンサイト相である。基地相の残部(主たる相)を焼戻マルテンサイト相とすることにより、強度および靭性が向上し、エンジンの燃焼温度が高温となる厳しい使用環境においても、十分に所定の機能を維持できるバルブシートとすることができる。 Further, in the functional member side layer of the valve seat of the present invention, the base phase other than the above-mentioned fine carbide precipitated phase is a tempered martensite phase. By making the remainder of the base phase (main phase) a tempered martensitic phase, the strength and toughness of the valve seat is improved and the valve seat can sufficiently maintain its intended function even in harsh operating environments where engine combustion temperatures are high. It can be done.

本発明バルブシートの機能部材側層では、基地部は、機能部材側層全量に対する面積%で、基地相中に、硬質粒子を10.0~40.0%、あるいはさらに固体潤滑剤粒子を0.3~3.0%、分散させ、さらに前記硬質粒子のまわりに25.0%以下の高合金相を有する基地部組織を有する。 In the functional member side layer of the valve seat of the present invention, the base portion contains 10.0 to 40.0% of hard particles in the base phase, or further 0.3 to 3.0% of solid lubricant particles, in terms of area % relative to the total amount of the functional member side layer. The hard particles are dispersed and further have a matrix structure having a high alloy phase of 25.0% or less around the hard particles.

基地相中に分散する硬質粒子は、耐摩耗性の向上に寄与し、その分散量は、面積%で、10.0~40.0%とする。硬質粒子の分散量が10.0%未満では、所望の耐摩耗性を維持できない。一方、40.0%を超えて分散すると、相手攻撃性が増加する。 The hard particles dispersed in the base phase contribute to improving the wear resistance, and the amount of hard particles dispersed in the base phase is 10.0 to 40.0% in area%. If the amount of hard particles dispersed is less than 10.0%, desired wear resistance cannot be maintained. On the other hand, when it is distributed over 40.0%, the opponent's aggressiveness increases.

基地相中に分散する硬質粒子としては、質量%で、Ni:5.0~15.0%、Cr:20.0~30.0%、Mo:20.0~30.0%、Si:1.0~5.0%を含有し、残部Coからなる組成を有し、ビッカース硬さで900~1300HVの硬さを有する金属間化合物粒子または、質量%で、Cr:5.0~15.0%、Mo:25.0~35.0%、Si:1.0~5.0%を含有し、残部Coからなる組成を有し、ビッカース硬さで600~900HVの硬さを有する金属間化合物粒子とすることが好ましい。Ni-Cr-Mo-Co系金属間化合物粒子、Cr-Mo-Co系金属間化合物粒子は、高硬度でかつ相手攻撃性が低い硬質粒子である。 The hard particles dispersed in the base phase contain Ni: 5.0 to 15.0%, Cr: 20.0 to 30.0%, Mo: 20.0 to 30.0%, Si: 1.0 to 5.0%, and the balance consists of Co. Intermetallic compound particles having the following composition and having a Vickers hardness of 900 to 1300 HV, or containing Cr: 5.0 to 15.0%, Mo: 25.0 to 35.0%, and Si: 1.0 to 5.0% in mass%. It is preferable that the intermetallic compound particles have a composition consisting of Co, the balance being Co, and have a Vickers hardness of 600 to 900 HV. Ni-Cr-Mo-Co based intermetallic compound particles and Cr-Mo-Co based intermetallic compound particles are hard particles that have high hardness and low aggressiveness to others.

また、基地相中に分散する固体潤滑剤粒子は、成形性、切削性の向上に寄与し、分散させる場合には、その分散量は、機能部材側層全量に対する面積%で、0.3~3.0%とすることが好ましい。固体潤滑剤粒子の分散量が、0.3%未満では、所望の潤滑効果が期待できなくなる。一方、3.0%を超えて多くなると、所望の効果が飽和する。このため、分散させる場合には、固体潤滑剤粒子は機能部材側層全量に対する面積%で、0.3~3.0%の範囲に限定することが好ましい。固体潤滑剤粒子としては、MnS粒子とすることが好ましい。 In addition, the solid lubricant particles dispersed in the base phase contribute to improving formability and machinability, and when dispersed, the amount of solid lubricant particles dispersed is 0.3 to 3.0% in area% relative to the total amount of the functional member side layer. It is preferable that If the amount of solid lubricant particles dispersed is less than 0.3%, the desired lubricating effect cannot be expected. On the other hand, when the amount exceeds 3.0%, the desired effect becomes saturated. Therefore, when dispersed, the solid lubricant particles are preferably limited to a range of 0.3 to 3.0% in terms of area percentage relative to the total amount of the functional member side layer. The solid lubricant particles are preferably MnS particles.

また、本発明バルブシートの機能部材側層では、基地部は、さらに、機能部材側層全量に対する面積%で、25.0%以下の高合金相を含む。高合金相は、焼結時、拡散により硬質粒子から合金元素が拡散し、高合金相として安定した相を形成したもので、硬質粒子の脱落防止や粒子間結合等に寄与する。なお、高合金相が面積率で1.0%未満では、上記した効果が期待できない。 Further, in the functional member side layer of the valve seat of the present invention, the base portion further includes a high alloy phase in an area percentage of 25.0% or less with respect to the total amount of the functional member side layer. During sintering, alloy elements diffuse from the hard particles during sintering, forming a stable high-alloy phase, which contributes to preventing hard particles from falling off, bonding between particles, and the like. Note that if the area ratio of the high alloy phase is less than 1.0%, the above effects cannot be expected.

また、本発明バルブシートの機能部材側層では、基地部は、基地部全量に対する質量%で、C:0.5~2.0%を含み、さらにSi:0.1~1.0%、Mn:0.1~2.5%、Ni:1.0~7.0%、Cr:1.0~12.0%、Mo:2.0~12.0%、Co:2.0~20.0%、W:0.1~2.0%、V:0.01~1.0%のうちから選ばれた1種または2種以上を含み、さらにS:0~1.5%を含有し、残部Feおよび不可避的不純物からなる基地部組成を有する。 In addition, in the functional member side layer of the valve seat of the present invention, the base portion contains C: 0.5 to 2.0% in mass % with respect to the total amount of the base portion, and further contains Si: 0.1 to 1.0%, Mn: 0.1 to 2.5%, and Ni. : 1 or 2 selected from 1.0 to 7.0%, Cr: 1.0 to 12.0%, Mo: 2.0 to 12.0%, Co: 2.0 to 20.0%, W: 0.1 to 2.0%, V: 0.01 to 1.0%. It has a base composition that further contains S: 0 to 1.5%, and the balance is Fe and unavoidable impurities.

以下、機能部材側層の基地部組成における各成分の限定理由について説明する。なお、組成における質量%は、単に%で示す。 The reason for limiting each component in the base portion composition of the functional member side layer will be explained below. In addition, mass % in a composition is simply shown as %.

C:0.5~2.0%
Cは、基地相中に含まれ、基地相の強化、耐摩耗性向上に寄与する元素であり、0.5%以上の含有を必要とする。一方、2.0%を超えると、耐摩耗性が低下する。このため、Cは0.5~2.0%の範囲に限定した。
C: 0.5-2.0%
C is an element contained in the base phase and contributes to strengthening the base phase and improving wear resistance, and needs to be contained in an amount of 0.5% or more. On the other hand, when it exceeds 2.0%, wear resistance decreases. For this reason, C was limited to a range of 0.5 to 2.0%.

Si:0.1~1.0%、Mn:0.1~2.5%、Ni:1.0~7.0%、Cr:1.0~12.0%、Mo:2.0~12.0%、Co:2.0~20.0%、W:0.1~2.0%、V:0.01~1.0%のうちから選ばれた1種または2種以上
Si:0.1~1.0%
Siは、基地相中に含まれ、基地相の強度上昇、耐摩耗性向上に寄与する元素である。0.1%未満では、上記した効果が認められない。1.0%を超える含有は相手攻撃性が増加する。このため、含有する場合、Siは0.1~0.7%の範囲に限定することが好ましい。
Si: 0.1-1.0%, Mn: 0.1-2.5%, Ni: 1.0-7.0%, Cr: 1.0-12.0%, Mo: 2.0-12.0%, Co: 2.0-20.0%, W: 0.1-2.0%, V : One or more types selected from 0.01 to 1.0%
Si: 0.1~1.0%
Si is an element that is included in the base phase and contributes to increasing the strength and wear resistance of the base phase. At less than 0.1%, the above effects are not observed. Containing more than 1.0% increases opponent's aggressiveness. Therefore, if Si is contained, it is preferable to limit it to a range of 0.1 to 0.7%.

Mn:0.1~2.5%
Mnは、基地相中に含まれ基地相の強化、耐摩耗性向上に寄与する元素であり、また一部は固体潤滑剤粒子MnSとして基地相中に分散して、成形性、切削性、耐摩耗性の向上に寄与する元素である。0.1%未満の含有では、上記した効果が認められない。一方、2.5%を超える含有は、相手攻撃性が増加する。このため、含有する場合、Mnは0.1~2.5%の範囲に限定することが好ましい。
Mn: 0.1-2.5%
Mn is an element that is contained in the base phase and contributes to strengthening the base phase and improving wear resistance, and some of it is dispersed in the base phase as solid lubricant particles MnS, improving formability, machinability, and wear resistance. It is an element that contributes to improving wear resistance. If the content is less than 0.1%, the above effects will not be observed. On the other hand, if the content exceeds 2.5%, the opponent's aggressiveness increases. Therefore, when Mn is contained, it is preferable to limit it to a range of 0.1 to 2.5%.

Ni:1.0~7.0%
Niは、基地相および硬質粒子に含まれ、耐摩耗性向上に加えて、強度(硬さ)、耐熱性を向上させる元素である。1.0%未満の含有では、上記した効果が少ないため、1.0%以上含有することが好ましい。一方、7.0%を超えて含有すると、耐摩耗性が低下する。このため、含有する場合、Niは1.0~7.0%の範囲に限定することが好ましい。
Ni: 1.0-7.0%
Ni is contained in the base phase and hard particles, and is an element that improves not only wear resistance but also strength (hardness) and heat resistance. If the content is less than 1.0%, the above-mentioned effects will be small, so the content is preferably 1.0% or more. On the other hand, if the content exceeds 7.0%, wear resistance will decrease. For this reason, if Ni is contained, it is preferable to limit it to a range of 1.0 to 7.0%.

Cr:1.0~12.0%
Crは、基地相、硬質粒子に含まれ、耐摩耗性向上に加えて、強度(硬さ)、耐熱性を向上させる元素である。1.0%未満の含有では、上記した効果が少ないため、1.0%以上含有することが好ましい。一方、12.0%を超える含有は、相手攻撃性が増加する。このため、含有する場合、Crは1.0~12.0%の範囲に限定することが好ましい。
Cr: 1.0-12.0%
Cr is contained in the base phase and hard particles, and is an element that improves not only wear resistance but also strength (hardness) and heat resistance. If the content is less than 1.0%, the above-mentioned effects will be small, so the content is preferably 1.0% or more. On the other hand, if the content exceeds 12.0%, the opponent's aggressiveness increases. Therefore, if Cr is contained, it is preferable to limit it to a range of 1.0 to 12.0%.

Mo:2.0~12.0%
Moは、Ni、Crと同様に、基地相、硬質粒子に含まれ、耐摩耗性向上に加えて、強度(硬さ)、耐熱性を向上させる元素であり、2.0%以上含有することが好ましい。一方、12.0%を超える含有は、相手攻撃性が増加する。このため、含有する場合、Moは2.0~12.0%の範囲に限定することが好ましい。
Mo:2.0~12.0%
Like Ni and Cr, Mo is included in the base phase and hard particles, and is an element that improves strength (hardness) and heat resistance in addition to improving wear resistance, and is preferably contained at 2.0% or more. . On the other hand, if the content exceeds 12.0%, the opponent's aggressiveness increases. Therefore, when Mo is contained, it is preferable to limit it to a range of 2.0 to 12.0%.

Co:2.0~20.0%
Coは、Ni、Crと同様に、基地相、硬質粒子に含まれ、耐摩耗性向上に加えて、強度(硬さ)、耐熱性を向上させるとともに、硬質粒子と基地相との結合を強化する元素であり、2.0%以上含有することが好ましい。一方、20.0%を超えて含有すると、相手攻撃性が増加する。このため、含有する場合、Coは2.0~20.0%の範囲に限定することが好ましい。
Co:2.0~20.0%
Like Ni and Cr, Co is included in the base phase and hard particles, and in addition to improving wear resistance, it also improves strength (hardness) and heat resistance, as well as strengthening the bond between the hard particles and the base phase. The element is preferably contained in an amount of 2.0% or more. On the other hand, if the content exceeds 20.0%, the opponent's aggressiveness increases. Therefore, when Co is contained, it is preferable to limit it to a range of 2.0 to 20.0%.

W:0.1~2.0%
Wは、微細炭化物として析出し基地相を強化し、耐摩耗性の向上に寄与する元素であり、0.1%以上含有することが好ましい。一方、2.0%を超える含有は、耐摩耗性が低下する。このため、含有する場合、Wは0.1~2.0%の範囲に限定することが好ましい。
W: 0.1-2.0%
W is an element that precipitates as fine carbides and strengthens the base phase, contributing to improving wear resistance, and is preferably contained in an amount of 0.1% or more. On the other hand, if the content exceeds 2.0%, wear resistance decreases. Therefore, when W is contained, it is preferable to limit it to a range of 0.1 to 2.0%.

V:0.01~1.0%
Vは、基地相を強化し耐摩耗性を向上させる元素であり、0.01%以上含有することが好ましい。一方、1.0%を超えて含有すると、相手攻撃性が増加する。このため、含有する場合には0.01~1.0%の範囲に限定することが好ましい。
V: 0.01~1.0%
V is an element that strengthens the base phase and improves wear resistance, and is preferably contained in an amount of 0.01% or more. On the other hand, if the content exceeds 1.0%, the opponent's aggressiveness increases. Therefore, if it is contained, it is preferably limited to a range of 0.01 to 1.0%.

上記した成分に加えてさらに、S:0~1.5%を含有してもよい。
S:0~1.5%
Sは、主として固体潤滑剤粒子MnSとして基地中に分散して、成形性、切削性、耐摩耗性の向上に寄与する元素である。含有する場合には、0.1%以上含有することが好ましい。一方、1.5%を超えて含有すると、耐摩耗性が低下する。このため、Sは、0~1.5%の範囲に限定した。
In addition to the above-mentioned components, it may further contain S: 0 to 1.5%.
S: 0-1.5%
S is an element that is mainly dispersed in the base as solid lubricant particles MnS and contributes to improving formability, machinability, and wear resistance. When it is contained, it is preferably contained in an amount of 0.1% or more. On the other hand, if the content exceeds 1.5%, wear resistance will decrease. Therefore, S was limited to a range of 0 to 1.5%.

上記した成分以外の残部は、Feおよび不可避的不純物からなる。
本発明バルブシートの機能部材側層における空孔にCuが充填された溶浸部(Cu溶浸量)は、機能部材側層全量に対する面積%で1.0~20.0%に限定する。溶浸部(Cu溶浸量)が1.0%未満では、所望のバルブシートの強度を確保できない。一方、20.0%を超えて多くなると、耐摩耗性が低下する。このため、機能部材側層における溶浸部(Cu溶浸量)は機能部材側層全量に対する面積%で1.0~20.0%の範囲に限定した。なお、好ましくは15.0%以下である。
The remainder other than the above-mentioned components consists of Fe and inevitable impurities.
The infiltrated portion (Cu infiltration amount) in which the pores in the functional member side layer of the valve seat of the present invention are filled with Cu is limited to 1.0 to 20.0% in area% relative to the total amount of the functional member side layer. If the infiltrated portion (Cu infiltration amount) is less than 1.0%, the desired valve seat strength cannot be secured. On the other hand, when the amount exceeds 20.0%, wear resistance decreases. For this reason, the infiltrated portion (Cu infiltration amount) in the functional component side layer was limited to a range of 1.0 to 20.0% in area% relative to the total amount of the functional component side layer. Note that it is preferably 15.0% or less.

また、本発明バルブシートの支持部材側層は、基地相中に固体潤滑剤粒子を分散させた基地部と、空孔にCuが充填された溶浸部を含む、鉄基焼結合金材からなる。なお、支持部材側層では、溶浸前の気孔率は、面積%で、1.0~20.0%の範囲とする。気孔率が1.0%未満では、密度向上のための工程が複雑となり、大幅な製造コストの上昇を招く。一方、20.0%を超えると、所望の強度を確保することができなくなる。 Furthermore, the supporting member side layer of the valve seat of the present invention is made of an iron-based sintered alloy material, including a base part in which solid lubricant particles are dispersed in the base phase, and an infiltrated part in which the pores are filled with Cu. Become. Note that the porosity of the support member side layer before infiltration is in the range of 1.0 to 20.0% in area %. If the porosity is less than 1.0%, the process for increasing density becomes complicated, leading to a significant increase in manufacturing costs. On the other hand, if it exceeds 20.0%, it becomes impossible to secure the desired strength.

本発明バルブシートの支持部材側層における基地相は、焼戻マルテンサイト相とする。基地相を焼戻マルテンサイト相とすることにより、支持部材側層の強度および耐脱落性が向上し、エンジンの燃焼温度が高温となる厳しい使用環境においても、十分に所望の機能(耐脱落性)を維持することができる。 The base phase in the supporting member side layer of the valve seat of the present invention is a tempered martensitic phase. By making the base phase a tempered martensitic phase, the strength and fall-off resistance of the support member side layer are improved, and even in harsh operating environments where engine combustion temperatures are high, the desired function (fall-off resistance) is improved. ) can be maintained.

そして、本発明バルブシートの支持部材側層における基地部は、支持部材側層全量に対する面積%で、基地相中に、固体潤滑剤粒子を0~1.0%分散させた基地部組織を有する。基地相中に分散する固体潤滑剤粒子が、1.0%を超えて多くなると、成形性、切削性を向上させる効果が飽和する。このため、分散する固体潤滑剤粒子は支持部材側層全量に対する面積%で、0~1.0%の範囲に限定することが好ましい。固体潤滑剤粒子としては、MnS粒子とすることが好ましい。 The base portion in the supporting member side layer of the valve seat of the present invention has a base portion structure in which solid lubricant particles are dispersed in the base phase in an area percentage of 0 to 1.0% based on the total amount of the supporting member side layer. When the amount of solid lubricant particles dispersed in the base phase exceeds 1.0%, the effect of improving formability and machinability is saturated. For this reason, it is preferable that the solid lubricant particles to be dispersed be limited to an area percentage of 0 to 1.0% based on the total amount of the support member side layer. The solid lubricant particles are preferably MnS particles.

また、支持部材側層における基地部は、上記した基地部組織と、基地部全量に対する質量%で、C:0.1~1.5%を含み、さらにCr:1.0~10.0%、Mo:0.1~3.0%、Ni:0.1~2.0%のうちから選ばれた1種または2種以上を含み、さらにMn:0~1.0%およびS:0~1.0%を含み、残部Feおよび不可避的不純物からなる基地部組成と、を有する。 In addition, the base portion in the support member side layer has the above-described base portion structure and contains C: 0.1 to 1.5% in mass % with respect to the total amount of the base portion, and further includes Cr: 1.0 to 10.0%, Mo: 0.1 to 3.0%, Contains one or more selected from Ni: 0.1 to 2.0%, further contains Mn: 0 to 1.0% and S: 0 to 1.0%, with the balance consisting of Fe and unavoidable impurities. , has.

つぎに、支持部材側層の基地部組成における各成分の限定理由について説明する。
C:0.1~1.5%
Cは、基地相中に含まれ、基地相の強化に寄与する元素であり、0.1%以上の含有を必要とする。一方、1.5%を超えると、硬度が低下する。このため、Cは0.1~1.5%の範囲に限定した。
Next, reasons for limiting each component in the base portion composition of the support member side layer will be explained.
C: 0.1-1.5%
C is an element that is included in the base phase and contributes to strengthening the base phase, and needs to be contained in an amount of 0.1% or more. On the other hand, if it exceeds 1.5%, the hardness decreases. For this reason, C was limited to a range of 0.1 to 1.5%.

Cr:1.0~10.0%
Crは、基地相に含まれ、強度(硬さ)、耐脱落性を向上させる元素であり、必要に応じて含有できる。含有する場合には、1.0%以上含有することが好ましい。一方、10.0%を超える含有は、切削性が低下する。このため、Crは1.0~10.0%の範囲に限定することが好ましい。
Cr: 1.0~10.0%
Cr is an element that is included in the base phase and improves strength (hardness) and drop-off resistance, and can be included as necessary. When it is contained, it is preferably contained in an amount of 1.0% or more. On the other hand, if the content exceeds 10.0%, machinability decreases. Therefore, it is preferable to limit Cr to a range of 1.0 to 10.0%.

Mo:0.1~3.0%
Moは、Crと同様に、基地相に含まれ、強度(硬さ)、耐脱落性を向上させる元素であり、必要に応じて含有できる。含有する場合には、0.1%以上含有することが好ましい。一方、3.0%を超える含有は、切削性が低下する。このため、Moは0.1~3.0%の範囲に限定することが好ましい。
Mo: 0.1~3.0%
Like Cr, Mo is an element that is included in the base phase and improves strength (hardness) and drop-off resistance, and can be included as necessary. When it is contained, it is preferably contained in an amount of 0.1% or more. On the other hand, if the content exceeds 3.0%, machinability decreases. Therefore, it is preferable to limit Mo to a range of 0.1 to 3.0%.

Ni:0.1~2.0%
Niは、基地相および硬質粒子に含まれ、耐摩耗性向上に加えて、強度(硬さ)、耐熱性を向上させる元素である。必要に応じて含有できる。含有する場合には、0.1%以上含有することが好ましい。一方、2.0%を超えて含有すると、オーステナイトが形成され、耐摩耗性が低下する。このため、Niは0.1~2.0%に限定することが好ましい。
Ni: 0.1~2.0%
Ni is contained in the base phase and hard particles, and is an element that improves not only wear resistance but also strength (hardness) and heat resistance. It can be included if necessary. When it is contained, it is preferably contained in an amount of 0.1% or more. On the other hand, if the content exceeds 2.0%, austenite is formed and wear resistance decreases. For this reason, it is preferable to limit Ni to 0.1 to 2.0%.

Mn:0~1.0%
Mnは、基地相中に含まれ基地相の強化に寄与する元素であり、また一部は固体潤滑剤粒子MnSとして基地相中に分散して成形性向上に寄与する元素で、必要に応じて含有できる。含有する場合には、0.1%以上含有することが好ましい。一方、1.0%を超える含有は、成形性が低下する。このため、Mnは0~1.0%の範囲に限定することが好ましい。
Mn: 0-1.0%
Mn is an element that is included in the base phase and contributes to strengthening the base phase, and some of it is dispersed in the base phase as solid lubricant particles MnS and contributes to improving formability. Can be included. When it is contained, it is preferably contained in an amount of 0.1% or more. On the other hand, if the content exceeds 1.0%, moldability decreases. Therefore, it is preferable to limit Mn to a range of 0 to 1.0%.

S:0~1.0%
Sは、主として固体潤滑剤粒子として基地中に分散して成形性、切削性の向上に寄与する元素であり、必要に応じて含有できる。含有する場合には、0.1%以上の含有とすることが好ましい。一方、1.0%を超えて含有すると、固体潤滑剤粒子が多くなりすぎて、強度(硬さ)が低下する。このため、Sは、0~1.0%の範囲に限定することが好ましい。
S: 0-1.0%
S is an element that is mainly dispersed in the matrix as solid lubricant particles and contributes to improving formability and machinability, and can be included as necessary. When it is contained, it is preferably contained at 0.1% or more. On the other hand, if the content exceeds 1.0%, the number of solid lubricant particles increases too much, resulting in a decrease in strength (hardness). Therefore, it is preferable to limit S to a range of 0 to 1.0%.

上記した成分以外の残部は、Feおよび不可避的不純物からなる。
支持部材側層は、上記した基地部組織と上記した基地部組成とを有し、さらに空孔にCuが充填された溶浸部(Cu溶浸量)を、支持部材側層全量に対する面積%で1.0~20.0%含む鉄基焼結合金材からなる。
The remainder other than the above-mentioned components consists of Fe and inevitable impurities.
The supporting member side layer has the above-described base structure and the above-described base composition, and further has an infiltrated portion (Cu infiltration amount) in which the pores are filled with Cu, as an area% of the total amount of the supporting member side layer. It consists of an iron-based sintered alloy material containing 1.0 to 20.0%.

なお、支持部材側層における空孔にCuが充填された溶浸部(Cu溶浸量)は、支持部材側層全量に対する面積%で1.0~20.0%に限定する。溶浸部(Cu溶浸量)が1.0%未満では、所望のバルブシートの強度を確保できない。一方、20.0%を超えて多くなると、耐摩耗性が低下する。このため、支持部材側層におけるCu溶浸量は支持部材側層全量に対する面積%で1.0~20.0%の範囲に限定した。なお、好ましくは15.0%以下、さらに好ましくは10.0%以下である。 Note that the infiltrated portion (Cu infiltration amount) in which the pores in the support member side layer are filled with Cu is limited to 1.0 to 20.0% in area% relative to the total amount of the support member side layer. If the infiltrated portion (Cu infiltration amount) is less than 1.0%, the desired valve seat strength cannot be secured. On the other hand, when the amount exceeds 20.0%, wear resistance decreases. For this reason, the amount of Cu infiltrated in the supporting member side layer was limited to a range of 1.0 to 20.0% in area% relative to the total amount of the supporting member side layer. In addition, it is preferably 15.0% or less, more preferably 10.0% or less.

つぎに、本発明バルブシートの好ましい製造方法について説明する。
まず、上記した機能部材側層の基地部組成および支持部材側層の基地部組成となるように、それぞれ原料粉を配合し混合して、機能部材側層用混合粉および支持部材側層用混合粉を用意する。
Next, a preferred method for manufacturing the valve seat of the present invention will be explained.
First, the raw material powders are blended and mixed so that the base part composition of the functional member side layer and the base part composition of the supporting member side layer are as described above, and the mixed powder for the functional member side layer and the mixed powder for the supporting member side layer are mixed. Prepare the powder.

機能部材側層用混合粉は、原料粉である鉄基粉末と、黒鉛粉と、合金元素粉と、硬質粒子粉と、あるいはさらに固体潤滑剤粒子粉と、を上記した機能部材側層の基地部組成となるように、配合し、混合して混合粉とする。なお、機能部材側層用混合粉に配合する基地相形成用の鉄基粉末としては、純鉄粉、合金鉄粉、合金鋼粉等が例示できる。純鉄粉としてはアトマイズ純鉄粉が、合金鉄粉としては、所定量のCr、Moを含むCr-Mo系合金鉄粉あるいはCr、Moに加えて所定量のNiを含む合金鉄粉が、また、合金鋼粉としては、C、Si、Mn、Cr、Mo、V、W、あるいはさらにCoを、それぞれ所定量含む、例えばJIS G 4403に規定される高速度工具鋼粉が、それぞれ例示できる。 The mixed powder for the functional component side layer includes the raw material powder iron-based powder, graphite powder, alloying element powder, hard particle powder, or solid lubricant particle powder as the base for the functional component side layer. and mix to obtain a mixed powder. Note that examples of the iron-based powder for forming the base phase to be added to the mixed powder for the functional member side layer include pure iron powder, alloyed iron powder, alloyed steel powder, and the like. The pure iron powder is atomized pure iron powder, and the alloy iron powder is Cr-Mo alloy iron powder containing a predetermined amount of Cr and Mo, or alloy iron powder containing a predetermined amount of Ni in addition to Cr and Mo. Examples of alloy steel powders include high-speed tool steel powders specified in JIS G 4403, which contain C, Si, Mn, Cr, Mo, V, W, or even Co in predetermined amounts. .

また、支持部材側層用混合粉は、原料粉である鉄基粉末と、黒鉛粉と、合金元素粉と、固体潤滑剤粒子粉と、を上記した支持部材側層の基地部組成となるように、配合し、混合して混合粉とする。なお、基地相形成用の鉄基粉末としては、純鉄粉、合金鉄粉が例示できる。純鉄粉としてはアトマイズ純鉄粉が、合金鉄粉としては、所定量のCr、Moを含むCr-Mo系合金鉄粉が、それぞれ例示できる。なお、合金鉄粉は、Cr、Moに加えてさらに所定量のNiを含有する合金鉄粉としてもよい。また、合金元素粉としては、Cr粉、Mo粉、Ni粉、Mn粉等が例示できる。 In addition, the mixed powder for the supporting member side layer has the base composition of the supporting member side layer as described above, including iron-based powder as raw material powder, graphite powder, alloying element powder, and solid lubricant particle powder. and mix to make a mixed powder. Note that examples of the iron-based powder for forming the matrix phase include pure iron powder and alloyed iron powder. Examples of the pure iron powder include atomized pure iron powder, and examples of the alloyed iron powder include Cr-Mo alloyed iron powder containing predetermined amounts of Cr and Mo. In addition, the alloy iron powder may be an alloy iron powder containing a predetermined amount of Ni in addition to Cr and Mo. Furthermore, examples of the alloying element powder include Cr powder, Mo powder, Ni powder, Mn powder, and the like.

ついで、本発明バルブシートの製造方法では、成形工程、焼結工程、Cu溶浸工程、熱処理工程を備える。成形工程では、得られた混合粉を金型に充填し、プレス成形機で圧縮・成形し圧粉体を得る。なお、二層構造のバルブシートとする場合には、二層構造となるように、支持部材側層用混合粉と機能部材側層用混合粉を順次金型に充填する。単層構造の場合には、機能部材側層用混合粉のみを金型に充填する。なお、成形工程では、所望の気孔率(密度)を有する圧粉体となるように、圧縮圧力を調整することは言うまでもない。 Next, the method for manufacturing a valve seat of the present invention includes a molding process, a sintering process, a Cu infiltration process, and a heat treatment process. In the molding process, the obtained mixed powder is filled into a mold and compressed and molded using a press molding machine to obtain a green compact. In addition, when forming a valve seat with a two-layer structure, the mixed powder for the support member side layer and the mixed powder for the functional member side layer are sequentially filled into a mold so as to have a two-layer structure. In the case of a single layer structure, only the mixed powder for the functional member side layer is filled into the mold. In addition, in the molding process, it goes without saying that the compression pressure is adjusted so that the green compact has a desired porosity (density).

ついで、焼結工程では、得られた圧粉体に、焼結処理を施し焼結体とする。焼結処理は、アンモニア分解ガス等の還元雰囲気中で、1000~1200℃の温度範囲に加熱し、10~30min保持する処理とすることが好ましい。なお、成形工程と焼結工程を繰り返す、2P2S工程としてもよい。 Next, in the sintering step, the obtained green compact is subjected to a sintering treatment to form a sintered body. The sintering treatment is preferably a treatment in which the material is heated to a temperature range of 1000 to 1200° C. and held for 10 to 30 minutes in a reducing atmosphere such as ammonia decomposition gas. Note that it may also be a 2P2S process in which the molding process and the sintering process are repeated.

ついで、Cu溶浸工程では、Cu溶浸処理を施し、焼結体の空孔にCuを充填する。
なお、Cu溶浸処理は、焼結処理時に行っても、あるいは焼結処理とは別に行ってもよい。
Next, in the Cu infiltration step, Cu infiltration treatment is performed to fill the pores of the sintered body with Cu.
Note that the Cu infiltration treatment may be performed during the sintering treatment or separately from the sintering treatment.

ついで熱処理工程では、空孔にCuを充填された焼結体に、さらに、所望の強度および基地安定化を付与するために、熱処理(焼入焼戻処理)を施す。なお、焼入れ処理は、焼入れ加熱温度:800~1000℃の範囲に加熱し保持したのち、急冷(N2ガス急冷または油冷)する処理とすることが好ましい。焼入れ処理後、さらに焼戻処理を施す。焼戻し処理は、500~700℃に加熱し保持したのち、冷却(N2ガス急冷または空冷)する処理とすることが好ましい。 Next, in the heat treatment step, the sintered body whose pores are filled with Cu is further subjected to heat treatment (quenching and tempering treatment) in order to impart desired strength and base stabilization. Note that the quenching treatment is preferably a treatment in which the material is heated to a quenching heating temperature in the range of 800 to 1000°C, maintained, and then rapidly cooled (N 2 gas quenching or oil cooling). After the hardening process, a further tempering process is performed. The tempering treatment is preferably performed by heating and holding at 500 to 700°C, and then cooling (quenching with N 2 gas or air cooling).

熱処理を施された焼結体は、切削、研削等の加工により所定形状のバルブシート(製品)とされる。 The heat-treated sintered body is processed into a valve seat (product) in a predetermined shape by cutting, grinding, etc.

以下、さらに実施例に基づき、さらに本発明について説明する。 Hereinafter, the present invention will be further explained based on Examples.

表1に示す原料粉(鉄系粉末、黒鉛粉末、合金元素粉末、硬質粒子粉末、固体潤滑剤粒子粉末)を、表1に示す配合量で配合し、混合して、各種の機能部材側層用混合粉とした。また、表2に示す原料粉(鉄系粉末、黒鉛粉末、合金元素粉末、固体潤滑剤粒子粉末)を、表2に示す配合量で配合し、混合して各種の支持部材側層用混合粉とした。なお、使用した鉄系粉末の組成を表3に、使用した硬質粒子粉末の組成を表4に、それぞれ示す。 The raw material powders shown in Table 1 (iron-based powder, graphite powder, alloying element powder, hard particle powder, solid lubricant particle powder) are blended in the amounts shown in Table 1 and mixed to form various functional component side layers. It was made into a mixed powder. In addition, the raw material powders shown in Table 2 (iron-based powder, graphite powder, alloying element powder, solid lubricant particle powder) are blended in the amounts shown in Table 2, and mixed to produce mixed powder for various support member side layers. And so. The composition of the iron-based powder used is shown in Table 3, and the composition of the hard particle powder used is shown in Table 4.

Figure 2023152727000002
Figure 2023152727000002

Figure 2023152727000003
Figure 2023152727000003

Figure 2023152727000004
Figure 2023152727000004

Figure 2023152727000005
Figure 2023152727000005

ついで、これら混合粉を、プレス成形機で一体的に加圧成形して、二層構造のバルブシート用圧粉体を得た。なお、一部は、単層構造のバルブシート用圧粉体とした。 Next, these mixed powders were integrally pressure-molded using a press molding machine to obtain a compacted powder body for a valve seat having a two-layer structure. In addition, some of the compacts were made into single-layer structure powder compacts for valve seats.

得られた圧粉体に、さらに焼結処理を施し、焼結体とした。焼結処理は、加熱温度:1000~1200℃で、アンモニア分解ガス雰囲気中で行う処理とした。なお、焼結に際しては、Cu溶浸処理を施し、空孔内にCuを充填した。なお、焼結体No.2(従来例)は、焼結体に鍛造処理(冷間での回転鍛造)を施し、さらに再焼結処理を施した。なお、Cu溶浸処理は施さなかった。 The obtained compact was further subjected to sintering treatment to obtain a sintered body. The sintering process was carried out at a heating temperature of 1000 to 1200°C in an ammonia decomposition gas atmosphere. Note that during sintering, Cu infiltration treatment was performed to fill the pores with Cu. For sintered body No. 2 (conventional example), the sintered body was subjected to forging treatment (cold rotary forging) and then re-sintered. Note that Cu infiltration treatment was not performed.

ついで、得られた焼結体に、熱処理を施したのち、切削、研削により、外径:37.7mmΦ×内径:31.2mmΦ×厚さ:6.0mmのバルブシート(製品)とした。なお、熱処理は、焼入焼戻処理とし、焼入れ処理は、加熱温度:870℃に加熱後、油冷する処理、焼戻し処理は、加熱温度:640℃に加熱した後、空冷する処理とした。 Next, the obtained sintered body was subjected to heat treatment, and then cut and ground to obtain a valve seat (product) having an outer diameter of 37.7 mmΦ x an inner diameter of 31.2 mmΦ and a thickness of 6.0 mm. The heat treatment was a quenching and tempering process, the quenching process was heating to a heating temperature of 870°C and then oil cooling, and the tempering process was a process of heating to a heating temperature of 640°C and then air cooling.

バルブシート(製品)から試験片を採取し、各層について発光分析により各成分の含有量(質量%)を分析し、各層の組成を測定した。 A test piece was taken from the valve seat (product), and the content (mass %) of each component in each layer was analyzed by luminescence analysis to measure the composition of each layer.

得られた結果を表5に示す。 The results obtained are shown in Table 5.

Figure 2023152727000006
Figure 2023152727000006

また、バルブシート(製品)の断面を研磨し、ナイタール液腐食して各層の組織を現出し、走査型電子顕微鏡(または光学顕微鏡)(倍率:200倍)を用いて観察し、撮像した。得られた組織写真から、画像解析により各層における組織分率を算出した。得られた結果を表6に示す。なお、表中に示した組織以外は空孔(Cu溶浸)である。 In addition, the cross section of the valve seat (product) was polished and corroded with nital liquid to reveal the structure of each layer, which was observed and imaged using a scanning electron microscope (or optical microscope) (magnification: 200x). From the obtained tissue photographs, the tissue fraction in each layer was calculated by image analysis. The results obtained are shown in Table 6. Note that structures other than those shown in the table are pores (Cu infiltration).

Figure 2023152727000007
Figure 2023152727000007

つぎに、得られたバルブシート(製品)を試験片として、図2に示す単体リグ摩耗試験機に装着し、耐摩耗性試験を実施した。試験条件は下記の通りとした。
試験温度 :300℃(着座面)
試験時間 :4hr
カム回転数 :2500rpm
バルブ回転数:10rpm
バルブ材質 :SUH35窒化膜付き
熱源 :LPG
バルブシート1をシリンダヘッド相当品の治具2に圧入したのち、試験機に装着した熱源3によりバルブ4およびバルブシート1を加熱しながらクランク機構によりバルブ4を上下させて試験した。バルブシートの摩耗量は試験前後の形状変化から算出した。バルブ4の摩耗量は、試験後の形状測定からシート当り面の凹量を測定して算出した。
Next, the obtained valve seat (product) was used as a test piece and was mounted on a single rig wear tester shown in FIG. 2, and a wear resistance test was conducted. The test conditions were as follows.
Test temperature: 300℃ (seating surface)
Exam time: 4hr
Cam rotation speed: 2500rpm
Valve rotation speed: 10rpm
Valve material: SUH35 with nitride film Heat source: LPG
After the valve seat 1 was press-fitted into a jig 2 equivalent to a cylinder head, the valve 4 and the valve seat 1 were heated by a heat source 3 attached to a testing machine, and the valve 4 was moved up and down by a crank mechanism for testing. The amount of wear on the valve seat was calculated from the change in shape before and after the test. The amount of wear of the valve 4 was calculated by measuring the amount of concavity on the seat contact surface from the shape measurement after the test.

得られた結果を表7に示す。 The results obtained are shown in Table 7.

また、得られたバルブシート(製品)を試験片として、図3に示す耐脱落性試験機を用いて、耐脱落性試験を実施した。試験条件は下記の通りとした。
試験温度 :500℃
保持時間 :1hr
初期締め代 :90μm
熱サイクル条件:500℃×1hr加熱保持した後、100℃以下まで空冷する処理を10サイク ル繰り返す。
Further, using the obtained valve seat (product) as a test piece, a drop resistance test was conducted using a drop resistance tester shown in FIG. 3. The test conditions were as follows.
Test temperature: 500℃
Holding time: 1hr
Initial tightening allowance: 90μm
Thermal cycle conditions: After heating and holding at 500℃ for 1 hour, air cooling to below 100℃ is repeated for 10 cycles.

常温で、バルブシート1をシリンダヘッド相当品(試験治具5)に圧入する。そして、圧入したままで、一定温度に保持された冷却水9中に保持された耐熱耐水容器6のなかで、バルブシート1にカートリッジヒータ7で所定の熱サイクルを負荷する。所定の熱サイクルを負荷したのち、押し治具(万能試験機)を用いてバルブシート1を押し、シリンダヘッド相当品(試験治具5)から抜き出すときの荷重(抜け荷重)および残留締代を測定した。得られた結果を表7に示す。 Press fit the valve seat 1 into a cylinder head equivalent (test jig 5) at room temperature. Then, while being press-fitted, the valve seat 1 is subjected to a predetermined heat cycle by the cartridge heater 7 in the heat-resistant and water-resistant container 6 held in the cooling water 9 maintained at a constant temperature. After applying the prescribed heat cycle, push the valve seat 1 using a pushing jig (universal testing machine) to measure the load (pull-out load) and residual tightness when pulling out from the cylinder head equivalent (test jig 5). It was measured. The results obtained are shown in Table 7.

また、得られたバルブシート(製品)について、JIS Z 2507の規定に準拠して、圧環強さを求めた。 Furthermore, the radial crushing strength of the obtained valve seat (product) was determined in accordance with the provisions of JIS Z 2507.

得られた結果を表7に併記した。 The obtained results are also listed in Table 7.

Figure 2023152727000008
Figure 2023152727000008

本発明例はいずれも、焼結体No.1(従来例)に比べて、摩耗量が29%以下と耐摩耗性が、抜き荷重が356%以上、残留締代が165%以上(機能部材側層)、と耐脱落性が向上している。このことから、本発明バルブシートの組織、組成とすることにより、従来に比べて、耐摩耗性、耐脱落性が顕著に向上することがわかる。また、本発明例はいずれも、回転鍛造を付加された焼結体No.2(従来例)と比べて、同等あるいはそれ以上の耐摩耗性を有し、ほぼ同等の耐脱落性、しかも同等以上の圧環強さを有している。 Compared to sintered body No. 1 (conventional example), all examples of the present invention have wear resistance of 29% or less, pull-out load of 356% or more, and residual tightness of 165% or more (functional component side layer), and has improved resistance to falling off. From this, it can be seen that the structure and composition of the valve seat of the present invention significantly improves the wear resistance and drop-off resistance compared to the conventional valve seat. In addition, all of the examples of the present invention have the same or higher wear resistance than sintered body No. 2 (conventional example) to which rotary forging has been added, and have almost the same resistance to falling off, and also have the same It has a radial crushing strength of

このようなことから、耐脱落性および耐摩耗性が優れた本発明バルブート(焼結体)は、鋳鉄製シリンダヘッド用として好適であることがわかる。一方、本発明の範囲を外れる比較例は、従来例に比べて、耐摩耗性および耐脱落性の向上、圧環強さの増加が少ない。 From these facts, it can be seen that the valve boot (sintered body) of the present invention, which has excellent drop-off resistance and wear resistance, is suitable for use in cast iron cylinder heads. On the other hand, comparative examples outside the scope of the present invention show less improvement in abrasion resistance and drop-off resistance and less increase in radial crushing strength than conventional examples.

1 バルブシート
2 治具
3 熱源
4 バルブ
5 試験治具
6 耐熱耐水容器
7 カートリッジヒータ
8 ダミー試験片
9 冷却水
11 機能部材側層
12 支持部材側層
1 Valve seat 2 Jig 3 Heat source 4 Valve 5 Test jig 6 Heat-resistant and water-resistant container 7 Cartridge heater 8 Dummy test piece 9 Cooling water 11 Functional member side layer 12 Support member side layer

Claims (8)

内燃機関のシリンダヘッドに圧入されるバルブシートであって、
該バルブシートが、機能部材側層からなる単層構造を有し、
前記機能部材側層が、基地相中に硬質粒子あるいはさらに固体潤滑剤粒子を分散させた基地部と、溶浸でCuが充填された空孔を含み、
前記基地相が、機能部材側層全量に対する面積%で、20.0%以下の微細炭化物析出相と、焼戻マルテンサイト相からなり、
前記基地部が、機能部材側層全量に対する面積%で、前記基地相中に、前記硬質粒子を10.0~40.0%、あるいはさらに前記固体潤滑剤粒子を0.3~3.0%、分散させ、さらに前記硬質粒子のまわりに25.0%以下の高合金相を有する基地部組織と、基地部全量に対する質量%で、C:0.5~2.0%を含み、さらにSi:0.1~1.0%、Mn:0.1~2.5%、Ni:1.0~7.0%、Cr:1.0~12.0%、Mo:2.0~12.0%、Co:2.0~20.0%、W:0.1~2.0%、V:0.01~1.0%のうちから選ばれた1種または2種以上を含み、さらにS:0~1.5%を含有し、残部Feおよび不可避的不純物からなる基地部組成と、を有し、さらに前記空孔に溶浸で充填されたCuを、機能部材側層全量に対する面積%で1.0~20.0%含む鉄基焼結合金材からなることを特徴とする内燃機関用鉄基焼結合金製バルブシート。
A valve seat that is press-fitted into a cylinder head of an internal combustion engine,
The valve seat has a single layer structure consisting of a functional member side layer,
The functional member side layer includes a base portion in which hard particles or further solid lubricant particles are dispersed in the base phase, and pores filled with Cu by infiltration,
The base phase is composed of a fine carbide precipitate phase of 20.0% or less and a tempered martensite phase in terms of area % with respect to the total amount of the functional member side layer,
The base portion has 10.0 to 40.0% of the hard particles dispersed in the base phase, or further 0.3 to 3.0% of the solid lubricant particles, in terms of area % based on the total amount of the functional member side layer, and further includes the hard particles. The base structure has a high alloy phase of 25.0% or less around the base, and contains C: 0.5 to 2.0% in mass % based on the total amount of the base, and further includes Si: 0.1 to 1.0%, Mn: 0.1 to 2.5%, and Ni. : 1 or 2 selected from 1.0 to 7.0%, Cr: 1.0 to 12.0%, Mo: 2.0 to 12.0%, Co: 2.0 to 20.0%, W: 0.1 to 2.0%, V: 0.01 to 1.0%. The functional component side contains Cu filled in the pores by infiltration. A valve seat made of an iron-based sintered alloy for an internal combustion engine, characterized in that it is made of an iron-based sintered alloy material containing 1.0 to 20.0% by area of the total layer.
内燃機関のシリンダヘッドに圧入されるバルブシートであって、
該バルブシートが、機能部材側層と支持部材側層とを一体で焼結してなる二層構造を有し、
前記機能部材側層が、基地相中に硬質粒子あるいはさらに固体潤滑剤粒子を分散させた基地部と、溶浸でCuが充填された空孔を含み、前記基地相が、機能部材側層全量に対する面積%で、20.0%以下の微細炭化物析出相と、焼戻マルテンサイト相からなり、
前記基地部が、機能部材側層全量に対する面積%で、前記基地相中に、前記硬質粒子を10.0~40.0%、あるいはさらに前記固体潤滑剤粒子を0.3~3.0%、分散させ、さらに前記硬質粒子のまわりに25.0%以下の高合金相を有する基地部組織と、基地部全量に対する質量%で、C:0.5~2.0%を含み、さらに、Si:0.1~1.0%、Mn:0.1~2.5%、Ni:1.0~7.0%、Cr:1.0~12.0%、Mo:2.0~12.0%、Co:2.0~20.0%、W:0.1~2.0%、V:0.01~1.0%のうちから選ばれた1種または2種以上を含み、さらにS:0~1.5%を含有し、残部Feおよび不可避的不純物からなる基地部組成と、を有し、さらに前記空孔に溶浸で充填されたCuを、機能部材側層全量に対する面積%で1.0~20.0%含む鉄基焼結合金材からなり、
前記支持部材側層が、基地相中に固体潤滑剤粒子を分散させた基地部と、溶浸でCuが充填された空孔を含み、前記基地相が、焼戻マルテンサイト相からなり、前記基地部が、支持部材側層全量に対する面積%で、前記基地相中に、前記固体潤滑剤粒子を0~3.0%分散させた基地部組織と、基地部全量に対する質量%で、C:0.1~1.5%を含み、さらにCr:1.0~10.0%、Mo:0.1~3.0%、Ni:0.1~2.0%のうちから選ばれた1種または2種以上を含み、さらにMn:0~1.0%およびS:0~1.0%を含み、残部Feおよび不可避的不純物からなる基地部組成と、を有し、さらに前記空孔に溶浸で充填されたCuを、支持部材側層全量に対する面積%で1.0~20.0%含む鉄基焼結合金材からなることを特徴とする内燃機関用鉄基焼結合金製バルブシート。
A valve seat that is press-fitted into a cylinder head of an internal combustion engine,
The valve seat has a two-layer structure formed by integrally sintering a functional member side layer and a supporting member side layer,
The functional member side layer includes a base portion in which hard particles or further solid lubricant particles are dispersed in the base phase, and pores filled with Cu by infiltration, and the base phase contains the entire functional member side layer. It consists of a fine carbide precipitate phase of 20.0% or less in area% and a tempered martensite phase,
The base portion has 10.0 to 40.0% of the hard particles dispersed in the base phase, or further 0.3 to 3.0% of the solid lubricant particles, in terms of area % based on the total amount of the functional member side layer, and further includes the hard particles. The base structure has a high alloy phase of 25.0% or less around the base, and contains C: 0.5 to 2.0% in mass% relative to the total amount of the base, and furthermore, Si: 0.1 to 1.0%, Mn: 0.1 to 2.5%, One type selected from Ni: 1.0 to 7.0%, Cr: 1.0 to 12.0%, Mo: 2.0 to 12.0%, Co: 2.0 to 20.0%, W: 0.1 to 2.0%, V: 0.01 to 1.0%, or It has a base composition containing two or more types, further containing S: 0 to 1.5%, and the balance consisting of Fe and unavoidable impurities, and furthermore, Cu filled into the pores by infiltration is used as a functional component. Made of iron-based sintered alloy material containing 1.0 to 20.0% in area% of the total amount of the side layer,
The supporting member side layer includes a base portion in which solid lubricant particles are dispersed in a base phase, and pores filled with Cu by infiltration, the base phase is made of a tempered martensitic phase, and the base phase is made of a tempered martensitic phase. The base portion is expressed in area% relative to the total amount of the supporting member side layer, and the base portion structure has the solid lubricant particles dispersed in the base phase at 0 to 3.0%, and C: 0.1 to mass % relative to the total amount of the base portion. Contains 1.5%, further contains one or more selected from Cr: 1.0 to 10.0%, Mo: 0.1 to 3.0%, Ni: 0.1 to 2.0%, and further contains Mn: 0 to 1.0% and S. : 0 to 1.0%, with the remainder being Fe and unavoidable impurities, and further Cu filled into the pores by infiltration is 1.0 to 1.0% by area with respect to the total amount of the support member side layer. A valve seat made of an iron-based sintered alloy for internal combustion engines, characterized by being made of an iron-based sintered alloy material containing 20.0%.
前記シリンダヘッドが鋳鉄製シリンダヘッドであることを特徴とする請求項1または2に記載の内燃機関用鉄基焼結合金製バルブシート。 The iron-based sintered alloy valve seat for an internal combustion engine according to claim 1 or 2, wherein the cylinder head is a cast iron cylinder head. 前記硬質粒子が、質量%で、Ni:5.0~15.0%、Cr:20.0~30.0%、Mo:20.0~30.0%、Si:1.0~5.0%を含有し、残部Coからなる組成を有し、ビッカース硬さで900~1300HVの硬さを有する金属間化合物粒子または、質量%で、Cr:5.0~15.0%、Mo:25.0~35.0%、Si:1.0~5.0%を含有し、残部Coからなる組成を有し、ビッカース硬さで600~900HVの硬さを有する金属間化合物粒子であることを特徴とする請求項1または2に記載の内燃機関用鉄基焼結合金製バルブシート。 The hard particles have a composition in mass % of Ni: 5.0 to 15.0%, Cr: 20.0 to 30.0%, Mo: 20.0 to 30.0%, Si: 1.0 to 5.0%, the balance being Co, and Intermetallic compound particles having a hardness of 900 to 1300 HV, or a composition containing Cr: 5.0 to 15.0%, Mo: 25.0 to 35.0%, Si: 1.0 to 5.0%, with the balance being Co. The valve seat made of an iron-based sintered alloy for an internal combustion engine according to claim 1 or 2, characterized in that the valve seat is an intermetallic compound particle having a Vickers hardness of 600 to 900 HV. 前記固体潤滑剤粒子が、MnS粒子であることを特徴とする請求項1または2に記載の内燃機関用鉄基焼結合金製バルブシート。 The iron-based sintered alloy valve seat for an internal combustion engine according to claim 1 or 2, wherein the solid lubricant particles are MnS particles. 請求項1に記載の単層構造の内燃機関用鉄基焼結合金製バルブシートの製造方法であって、
前記単層構造の機能部材側層の基地部組成および基地部組織となるように、鉄基粉末と、黒鉛粉と、合金元素粉と、硬質粒子粉末と、あるいはさらに固体潤滑剤粒子粉末とを、所定量配合し、混合、混錬して、混合粉とするに当たり、
前記鉄基粉末を、純鉄粉、合金鉄粉、および合金鋼粉のうちから選ばれた1種または2種以上とし、前記混合粉全量に対する質量%で、
前記黒鉛粉を0.5~2.0%、前記合金元素粉を0~5.0%、前記硬質粒子粉末を10.0~40.0%、
前記固体潤滑剤粒子粉末を0~3.0%、それぞれ配合し、混合、混錬し、混合粉としたのち、
前記混合粉を、所定形状の金型に充填し、圧縮・成形し圧粉体を得る成形工程と、
得られた前記圧粉体に、還元雰囲気中で、加熱温度:1100~1200℃で焼結処理を施し焼結体を得る焼結工程と、
得られた前記焼結体に、Cu溶浸処理を施し前記焼結体の空孔にCuを充填するCu溶浸工程と、
空孔にCuを溶浸された焼結体に、さらに焼入れ加熱温度:800~1000℃に加熱したのち急冷し、さらに焼戻し加熱温度:500~700℃に加熱したのち冷却する焼入れ焼戻し処理を施す熱処理工程と、を備えることを特徴とする内燃機関用鉄基焼結合金製バルブシートの製造方法。
A method for manufacturing a single-layer structure iron-based sintered alloy valve seat for internal combustion engines according to claim 1, comprising:
An iron-based powder, a graphite powder, an alloying element powder, a hard particle powder, or further a solid lubricant particle powder is added so as to have the base composition and structure of the functional member side layer of the single-layer structure. , when blending a predetermined amount, mixing and kneading to make a mixed powder,
The iron-based powder is one or more selected from pure iron powder, alloyed iron powder, and alloyed steel powder, and the mass % based on the total amount of the mixed powder,
0.5 to 2.0% of the graphite powder, 0 to 5.0% of the alloy element powder, 10.0 to 40.0% of the hard particle powder,
After blending 0 to 3.0% of the solid lubricant particles, mixing and kneading to form a mixed powder,
a molding step of filling the mixed powder into a mold of a predetermined shape and compressing and molding it to obtain a green compact;
A sintering step in which the obtained green compact is subjected to a sintering treatment in a reducing atmosphere at a heating temperature of 1100 to 1200°C to obtain a sintered body;
a Cu infiltration step of subjecting the obtained sintered body to Cu infiltration treatment and filling the pores of the sintered body with Cu;
The sintered body whose pores are infiltrated with Cu is further subjected to a quenching and tempering process in which it is heated to a quenching heating temperature of 800 to 1000°C, then rapidly cooled, and further heated to a tempering heating temperature of 500 to 700°C and then cooled. A method of manufacturing a valve seat made of an iron-based sintered alloy for an internal combustion engine, comprising the steps of: a heat treatment step.
請求項2に記載の二層構造の内燃機関用鉄基焼結合金製バルブシートの製造方法であって、
前記二層構造の基地部組成および基地部組織となるように、鉄基粉末と、黒鉛粉と、合金元素粉と、硬質粒子粉末と、あるいはさらに固体潤滑剤粒子粉末とを、所定量配合し、混合、混錬して、混合粉とするに当たり、
前記鉄基粉末を、純鉄粉、合金鉄粉、および合金鋼粉のうちから選ばれた1種または2種以上とし、前記混合粉全量に対する質量%で、
前記黒鉛粉を0.5~2.0%、前記合金元素粉を0~5.0%、前記硬質粒子粉末を10.0~40.0%、
前記固体潤滑剤粒子粉末を0~3.0%、それぞれ配合し、混合、混錬し、機能部材側層用混合粉とし、一方、
前記鉄基粉末を、純鉄粉、合金鉄粉のうちから選ばれた1種または2種とし、
前記混合粉全量に対する質量%で、
前記黒鉛粉を0.5~2.0%、前記合金元素粉末を0~5.0%、前記固体潤滑剤粒子粉末を0~3.0%、それぞれ配合し、混合、混錬して、支持部材側層用混合粉としたのち、
所定量の前記支持部材側層用混合粉と前記機能部材側層用混合粉とをこの順に、金型に充填し、一体として圧縮・成形し圧粉体を得る成形工程と、
得られた前記圧粉体に、還元雰囲気中で、加熱温度:1100~1200℃で焼結処理を施し焼結体を得る焼結工程と、
得られた前記焼結体に、Cu溶浸処理を施し前記焼結体の空孔にCuを充填するCu溶浸工程と、
空孔にCuを溶浸された焼結体に、さらに焼入れ加熱温度:800~1000℃に加熱したのち急冷し、さらに焼戻し加熱温度:500~700℃に加熱したのち冷却する焼入れ焼戻し処理を施す熱処理工程と、を備えることを特徴とする内燃機関用鉄基焼結合金製バルブシートの製造方法。
A method for manufacturing a two-layer structure iron-based sintered alloy valve seat for internal combustion engines according to claim 2,
A predetermined amount of iron-based powder, graphite powder, alloying element powder, hard particle powder, or further solid lubricant particle powder is blended to obtain the base composition and structure of the two-layer structure. , when mixing and kneading to make a mixed powder,
The iron-based powder is one or more selected from pure iron powder, alloyed iron powder, and alloyed steel powder, and the mass % based on the total amount of the mixed powder,
0.5 to 2.0% of the graphite powder, 0 to 5.0% of the alloy element powder, 10.0 to 40.0% of the hard particle powder,
0 to 3.0% of the solid lubricant particles are blended, mixed, and kneaded to form a mixed powder for the functional member side layer;
The iron-based powder is one or two selected from pure iron powder and alloyed iron powder,
In mass % with respect to the total amount of the mixed powder,
0.5 to 2.0% of the graphite powder, 0 to 5.0% of the alloy element powder, and 0 to 3.0% of the solid lubricant particle powder are blended, mixed, and kneaded to form a mixed powder for the support member side layer. After that,
A molding step of filling a mold with a predetermined amount of the mixed powder for the support member side layer and the mixed powder for the functional member side layer in this order, and compressing and molding them as one body to obtain a green compact;
A sintering step in which the obtained green compact is subjected to a sintering treatment in a reducing atmosphere at a heating temperature of 1100 to 1200°C to obtain a sintered body;
a Cu infiltration step of subjecting the obtained sintered body to Cu infiltration treatment and filling the pores of the sintered body with Cu;
The sintered body whose pores are infiltrated with Cu is further subjected to a quenching and tempering process in which it is heated to a quenching heating temperature of 800 to 1000°C, then rapidly cooled, and further heated to a tempering heating temperature of 500 to 700°C and then cooled. A method of manufacturing a valve seat made of an iron-based sintered alloy for an internal combustion engine, comprising the steps of: a heat treatment step.
前記焼結工程において、前記Cu溶浸工程を備えることを特徴とする請求項6または7に記載の内燃機関用鉄基焼結合金製バルブシートの製造方法。 The method for manufacturing a valve seat made of an iron-based sintered alloy for an internal combustion engine according to claim 6 or 7, wherein the sintering step includes the Cu infiltration step.
JP2023022380A 2022-03-31 2023-02-16 Valve seat for internal combustion engine made of iron sintered alloy and production method Pending JP2023152727A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202310318892.9A CN116890116A (en) 2022-03-31 2023-03-29 Iron-based sintered alloy valve seat for internal combustion engine and method for manufacturing same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022059126 2022-03-31
JP2022059126 2022-03-31

Publications (1)

Publication Number Publication Date
JP2023152727A true JP2023152727A (en) 2023-10-17

Family

ID=88349305

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2023022380A Pending JP2023152727A (en) 2022-03-31 2023-02-16 Valve seat for internal combustion engine made of iron sintered alloy and production method

Country Status (1)

Country Link
JP (1) JP2023152727A (en)

Similar Documents

Publication Publication Date Title
US7089902B2 (en) Sintered alloy valve seat and method for manufacturing the same
JP3952344B2 (en) Wear-resistant iron-based sintered alloy material for valve seat and valve seat made of iron-based sintered alloy
JP3520093B2 (en) Secondary hardening type high temperature wear resistant sintered alloy
US20110023808A1 (en) Iron-based sintered alloy for valve seat, and valve seat for internal combustion engine
JP2765811B2 (en) Hard phase dispersed iron-based sintered alloy and method for producing the same
JP2003268414A (en) Sintered alloy for valve seat, valve seat and its manufacturing method
WO2015141331A1 (en) Valve seat constituted of iron-based sintered alloy
JPH10226855A (en) Valve seat for internal combustion engine made of wear resistant sintered alloy
JP4299042B2 (en) Iron-based sintered alloy, valve seat ring, raw material powder for producing iron-based sintered alloy, and method for producing iron-based sintered alloy
WO2012099239A1 (en) Iron-based sintered alloy valve seat
US6802883B2 (en) Iron-based sintered alloy for use as valve seat and its production method
JPH1171651A (en) Ferrous sintered alloy for valve seat
JP3763782B2 (en) Method for producing wear-resistant iron-based sintered alloy material for valve seat
JPWO2018180942A1 (en) Valve seat made of iron-based sintered alloy with excellent thermal conductivity for internal combustion engines
JP3186816B2 (en) Sintered alloy for valve seat
JP3809944B2 (en) Hard particle dispersed sintered alloy and method for producing the same
JP3434527B2 (en) Sintered alloy for valve seat
JP2023152727A (en) Valve seat for internal combustion engine made of iron sintered alloy and production method
JP2023152728A (en) Valve seat formed of iron sintered alloy for internal combustion engine and production method of the same
JP2007064165A (en) Combination of valve and valve seat for internal combustion engine
JP3942136B2 (en) Iron-based sintered alloy
JP4516697B2 (en) Hard particle dispersion type iron-based sintered alloy
WO2022185758A1 (en) Valve seat made of iron-based sintered alloy
CN116890116A (en) Iron-based sintered alloy valve seat for internal combustion engine and method for manufacturing same
JP3573872B2 (en) Method of manufacturing sintered alloy joint valve seat and sintered alloy material for joint valve seat