JPS6220143B2 - - Google Patents

Info

Publication number
JPS6220143B2
JPS6220143B2 JP54002275A JP227579A JPS6220143B2 JP S6220143 B2 JPS6220143 B2 JP S6220143B2 JP 54002275 A JP54002275 A JP 54002275A JP 227579 A JP227579 A JP 227579A JP S6220143 B2 JPS6220143 B2 JP S6220143B2
Authority
JP
Japan
Prior art keywords
low
expansion
powder
glass
cordierite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP54002275A
Other languages
Japanese (ja)
Other versions
JPS5594975A (en
Inventor
Keiichiro Suzuki
Jiro Chiba
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP227579A priority Critical patent/JPS5594975A/en
Publication of JPS5594975A publication Critical patent/JPS5594975A/en
Publication of JPS6220143B2 publication Critical patent/JPS6220143B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)
  • Glass Compositions (AREA)
  • Adhesives Or Adhesive Processes (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は接着用低膨脹性粉末組成物、特には非
酸化物部品(部分)同志、なかでも窒化珪素部品
(部分)同志、炭化珪素部品(部分)同志、ある
いは窒化珪素部品(部分)と炭化珪素部品(部
分)を接着するのに好適な低膨脹性粉末組成物に
関するものである。 近年、エンジニアリングセラミクスとして窒化
珪素、炭化珪素を主組成とするものが研究、開発
されつつある。 しかしながら、これらエンジニアリングセラミ
クスとしての用途が例えば、ガスタービンのロー
ター、ステーター、内燃機関、デイーゼルエンジ
ンのシリンダー、ピストンあるいは燃料噴射弁等
であるため、その形状、寸法、精度等に対する要
求が厳しく、予め一体形状で製作することが困難
な場合が多い。従つて、単純形状のパーツを作つ
ておいて、それらを接着して複雑な形状の部品に
仕上げることが考えられ、その具体的な方法もい
くつか提案されている。例えば、特開昭47―
34410号公報に記載されている如く、粉末ガラス
を窒化珪素被接着部材の間にサンドイツチして加
圧加熱するもの及び特開昭48―25008号公報に記
載されている如く、結晶粉末を被接着部材の間に
サンドイツチして加圧加熱するものなどが挙げら
れる。 いずれにしても、公知の方法は接着部分の強度
を上げるために加圧しつつ、熱処理することが必
要ないしは望ましいとされるものである。しかし
ながら、前述の如く、エンジニアリングセラミク
スとして応用される部品は複雑な形状である場合
が多く、必ずしも接着面に均一な圧力を加えつ
つ、熱処理することが可能とは限らず、むしろ、
加圧せずに熱処理をすることが望まれる場合が多
い。 そこで、本発明者等は、熱処理の際、加圧をせ
ずとも、取り扱いに充分な強度を有し、かつ耐熱
衝撃性の優れた接着を可能ならしめるために種々
検討を加えた結果、窒化珪素セラミクス、炭化珪
素セラミクスと適度の反応性を有し、窒化珪素、
炭化珪素との濡れ性の優れた新規な接着用組成物
を見出したので、ここに本発明として提案するも
のであつて、その要旨とする所は、 重量%表示で本質的に、 SiO2 30〜65% Al2O3 0.5〜25 B2O3 0.1〜25 PbO 0.5〜45 CaO 0〜20 TiO2 0〜18 ZnO 0.1〜30 MgO 0〜10 BaO 0〜10 SrO 0〜10 Na2O 0〜10 Li2O 0〜10 K2O 0〜10 Sb2O3 0〜3 As2O3 0〜3 SnO2 0〜5 F 0〜3 の組成を有するガラス粉末10〜55重量%と、低膨
脹性フイラー粉末として、コーデイエライト、β
―スポジユメン、チタン酸アルミニウム、ジルコ
ンの少くとも1種45〜90重量%とからなる非酸化
物系セラミクスの接着用低膨脹性粉末組成物とす
るものである。 前記低膨脹性ガラス粉末の組成限定の理由を説
明する。 SiO2:30%より少ないとガラスの軟化温度が低
くなり過ぎると共に、熱膨脹係数も大きくな
り過ぎる恐れがある。65%より多いとガラス
の軟化温度が高くなり過ぎ、溶解性も悪くな
る。好ましくは35〜60%の範囲である。 Al2O3;0.5%より少ないとガラスの失透が生じ溶
解性が悪い。25%以上の場合にはガラスの軟
化点を高くしすぎ、溶解性の点で好ましくな
い。好ましくは1〜20%の範囲である。 B2O3;本成分はフラツクス剤として用いる。0.1
%より少ないとガラス化困難となり、ガラス
化した場合でも軟化点が高くなり過ぎる。一
方25%を越えると軟化点が低くなり過ぎると
共に、熱膨脹係数を増大せしめる為、好まし
くない。好ましい範囲としては0.5〜20%で
ある。 PbO;上記成分と同様にフラツクス剤として用い
る。0.5%以下であるとガラス化が困難であ
る。また45%を越えると熱膨脹係数を増大す
ることおよび非酸化物系セラミクスとの接触
反応により著しく還元され、本来の特性が損
なわれる恐れがある。好ましくは1〜40%の
範囲である。 ZnO;フラツクス剤的に用いると共に一部には結
晶化調整の効果も有し、必須成分である。さ
らに非酸化物系セラミクスとの接触反応の面
でもPbOよりは効果的である。0.1%より少
ないとガラスの溶解性が悪くなり、結晶化タ
イプのものについては結晶化し難くなり好ま
しくない。30%を越えるとガラス溶解時に失
透が生じ好ましくない。0.5〜25%が好まし
い範囲である。 CaO,TiO2,BaO,SrO,MgO}必須成分では
ないが、これら成分を導入することによりガ
ラスの溶解性および粘性特性さらには熱膨脹
係数を調整し得る。 CaO;20%を越えるとガラス溶解時に失透が
生ずるおそれがある。好ましくは0〜18%
である。 TiO2;18%を越えるとガラス溶解時に失透
が生ずる恐れがある。好ましくは0〜15%
の範囲である。 MgO,BaO,SrO;いずれもガラス溶解性を
向上する目的で使用する。但し、いずれも
10%を越えると膨脹係数が大きくなり過ぎ
る。好ましくは0〜8%の範囲である。 Na2O,Li2O,K2O}必須成分ではないが、フラ
ツクス剤として用い、ガラスの溶解性を向上
することが可能。但し、10%を越えると軟化
点が低くなり過ぎると共に熱膨脹係数が大き
くなり過ぎる。好ましくは0〜8%である。 Sb2O3,As2O3,F}ガラス溶解時における溶解
性および清澄効果を有する本成分を導入する
ことも可能である。但し、必要以上に導入し
ても効果はなく、好ましい範囲としては0〜
2%である。 SnO2;必須成分ではないが、本成分を導入する
とガラス特性のうち、耐水性が良くなる面を
有する。従つて耐水性向上を目的とする場合
には効果がある。但し、5%以上導入すると
ガラス溶解時に失透が生じ均質なガラスが得
られない。好ましくは0〜4%の範囲であ
る。 以上の組成を有する低膨脹性ガラス粉末は、軟
化点が500〜900℃、熱膨脹係数が30〜60×10-7
℃という特性をもつものであつて、窒化珪素セラ
ミクス、炭化珪素セラミクスと接触させた場合、
その界面での反応が比較的よく行われるのが発泡
はほとんど見られず、接着に関して極めて良好な
ものである。しかしながら、ほとんどのものは、
このままのガラス組成では熱膨脹係数が大きすぎ
る(窒化珪素セラミクスの場合、熱膨脹係数は約
34×10-7/℃、炭化珪素セラミクスの場合のそれ
は約45×10-7/℃である)ため、接着面に過度の
熱応力が発生することになり、良好な接着強度が
得られない。以上の熱膨脹係数の不整合及び加熱
時流動性を調節するために、本発明では低膨脹性
フイラー粉末としてコーデイエライト、β―スポ
ジユメン、チタン醸アルミニウム、ジルコンの少
くとも1者を45〜90%加えて接着用低膨脹性粉末
組成物を構成する。フイラー粉末としては、熱膨
脹性、耐熱性の点からみてコーデイエライトが優
れている。 β―スポジユメン(Li2O,Al2O3,4SiO2)も又
同様に、化学量論組成の原料配合物を1500℃程度
で熔融ガラス化し、冷却、粉砕した後900℃で再
加熱して製造する。 ジルコン(ZrO2,SiO2)は通常天然品が使用さ
れるが、ZrO2粉末とSiO2粉末とを固相反応によ
つて合成したものを用いることができる。 チタン酸アルミニウム(Al2O3,TiO2)は、
Al2O3粉末とTiO2粉末の等モル混合物にSiO2
Fe2O3等の焼結助剤を加えて1400〜1500℃の高温
で焼成し、固有反応により合成し、得られた焼結
体を微粉砕して製造される。 これらのフイラーの熱膨脹係数は次の通りであ
る。 β―スポジユメン 5〜15×10-7-1 ジルコン 40〜48 〃 チタン酸アルミニウム −10〜15×10-7-1 コーデイエライト(菫青石)は純粋なものは
2MgO,2Al2O3,5SiO2の化学式で表わされるも
ので、天然に存在するものは、必ずしも上記化学
式の如く、MgO,Al2O3,SiO2が化学量論的にな
つてはいない。また、コーデイエライトは1500℃
以上に溶融した後、急冷すると非晶質となるが、
この非晶質コーデイエライトは、熱膨脹係数が大
きい。この非晶質コーデイエライトを1300〜1400
℃で熱処理すると結晶質のコーデイエライトとな
る。結晶質コーデイエライトは熱膨脹係数が小さ
いことではつとに有名であり、その熱膨脹係数
は、上記熱処理の条件(熱処理温度、熱処理温度
までの昇温速度、熱処理温度までの保持時間、熱
処理時の雰囲気等)により変化するが、概ね10〜
20×10-7/℃の範囲に入るものが多く、また、こ
の範囲内にあれば効果的に使用されうるものであ
る。本発明に用いられる低膨脹性フイラーとして
は上記の方法で合成された熱膨脹係数10〜20×
10-7/℃の結晶質コーデイエライトが最適である
が勿論、天然の結晶質コーデイエライトも使用可
能である。本発明で用いられる結晶質コーデイエ
ライトは必ずしも化学量論的なものであることは
必要でなく、熱膨脹係数が10〜25×10-7/℃範囲
に入つておればよい。 本発明では既述の如く、上記のフイラーを45〜
90%用いるものである。 フイラー種・量は被接着物の熱膨脹率、使用温
度に応じて決められるが、流動性の点からみると
上限より多いと、加熱時の流動性が減少し過ぎ被
接着物に対して濡れず接着力が小さくなる。下限
より少ないと加熱時の流動性が逆に増大し、接着
層の安定性が減少し、また発泡も多くなる。より
好ましくは55〜85%である。 以上、説明してきた低膨脹性ガラス粉末、低膨
脹性フイラー粉末ともに、あまり細かすぎると、
高温で溶融せしめた時に、内包するガスが抜けに
くく、気泡を包んだ接着力となり、また加熱によ
る収縮が大きく、あまりに大きすぎると被接着物
の界面に均一に存在せしめることが困難となるこ
とから、これらの粒度は0.5〜44μ、好ましくは
1〜10μとするのがよい。 次に、実施例により、本発明をさらに詳しく説
明する。 実施例 (1) 第1工程 まず、各成分原料例えば、珪砂、水酸化アル
ミニウム、無水硼酸、酸化アンチモン、亜砒
酸、鉛丹、石灰石、水酸化マグネシウム、アル
カリ金属炭酸塩などを目標組成に従つて配合
し、混合してバツチを調整し、バツチを白金ル
ツボに入れ電気炉中で1300〜1500℃で2〜4時
間加熱溶融する。そしてこの溶融ガラスを水砕
し、又は板状に成形した後、ボールミルで粒径
1〜10μ程度まで粉砕する。 (2) 第2工程 次に、水酸化マグネシウム、アルミナ、珪砂
を、化学量論的なコーデイエライトを生成する
如く配合し、混合した後、白金ルツボに入れて
電気炉中で1500℃またはそれ以上の温度で加熱
溶融する。そして、この溶融ガラスを水砕して
得られた1〜10mm程度の非晶質コーデイエライ
トを約1350℃で5〜20時間熱処理し結晶質コー
デイエライトを得た。 次に、この結晶質コーデイエライトをボールミ
ルで粉砕して10〜70μの微粒子にした。 (3) 第3工程 第1工程で得られた低膨脹性ガラス粉末と第
2工程で得られた低膨脹性フイラー粉末又は、
粒度10〜70μに粉砕した天然コーデイエライト
を所定量配合し、ポツトで混合を兼ねてさらに
微粉砕し、接着用低膨脹性粉末組成物を得た。 第1工程及び第2工程で得られた低膨脹性ガラ
ス粉末及び低膨脹性フイラー粉末の組成を第1表
に示す。これらの粉末を用いた接着試験結果を第
2表に示す。また、第3工程で得られた接着用低
膨脹性粉末組成物の平均粒度は1〜10μで全て
0.5〜44μの間に入るものであつた。
The present invention provides a low-expansion powder composition for bonding, particularly between non-oxide parts (parts), especially between silicon nitride parts (parts), between silicon carbide parts (parts), or between silicon nitride parts (parts). The present invention relates to a low-expansion powder composition suitable for bonding silicon parts (parts). In recent years, engineering ceramics whose main composition is silicon nitride or silicon carbide are being researched and developed. However, since these engineering ceramics are used for, for example, rotors and stators of gas turbines, cylinders, pistons, and fuel injection valves of internal combustion engines and diesel engines, there are strict requirements regarding their shape, dimensions, precision, etc. It is often difficult to manufacture the shape. Therefore, it may be possible to create parts with simple shapes and then glue them together to create parts with complex shapes, and several specific methods have been proposed. For example, JP-A-47-
As described in Japanese Patent Publication No. 34410, powdered glass is sandwiched between silicon nitride members to be bonded and heated under pressure, and as described in Japanese Patent Application Laid-Open No. 1982-25008, crystal powder is bonded. Examples include those that apply pressure and heat by sandwiching a sandwich between members. In any case, in the known methods, it is necessary or desirable to heat-treat while applying pressure in order to increase the strength of the bonded portion. However, as mentioned above, parts used as engineering ceramics often have complex shapes, and it is not always possible to heat-treat them while applying uniform pressure to the bonding surface.
It is often desirable to perform heat treatment without applying pressure. Therefore, the present inventors conducted various studies in order to make it possible to bond with sufficient strength for handling and excellent thermal shock resistance without applying pressure during heat treatment. It has moderate reactivity with silicon ceramics and silicon carbide ceramics, and is highly reactive with silicon nitride,
Having discovered a new adhesive composition with excellent wettability with silicon carbide, we hereby propose it as the present invention, the gist of which is as follows: SiO 2 30 ~65% Al 2 O 3 0.5 ~ 25 B 2 O 3 0.1 ~ 25 PbO 0.5 ~ 45 CaO 0 ~ 20 TiO 2 0 ~ 18 ZnO 0.1 ~ 30 MgO 0 ~ 10 BaO 0 ~ 10 SrO 0 ~ 10 Na 2 O 0 10-55% by weight of a glass powder having a composition of ~ 10 Li2O0-10K2O0-10Sb2O30-3As2O30-3SnO20-5F0-3 ; Cordierite, β as a low expansion filler powder
- A low-expansion powder composition for bonding non-oxide ceramics comprising 45 to 90% by weight of at least one of spodumene, aluminum titanate, and zircon. The reason for limiting the composition of the low-expansion glass powder will be explained. SiO 2 : If it is less than 30%, the softening temperature of the glass may become too low and the coefficient of thermal expansion may become too large. When it is more than 65%, the softening temperature of the glass becomes too high and the solubility becomes poor. Preferably it is in the range of 35 to 60%. Al 2 O 3 : If it is less than 0.5%, the glass will devitrify and its solubility will be poor. If it is more than 25%, the softening point of the glass becomes too high, which is not preferable in terms of solubility. Preferably it is in the range of 1 to 20%. B 2 O 3 ; This component is used as a fluxing agent. 0.1
If it is less than %, it will be difficult to vitrify, and even if vitrified, the softening point will be too high. On the other hand, if it exceeds 25%, the softening point becomes too low and the coefficient of thermal expansion increases, which is not preferable. The preferred range is 0.5 to 20%. PbO: Used as a flux agent in the same way as the above components. If it is less than 0.5%, vitrification is difficult. Moreover, if it exceeds 45%, the coefficient of thermal expansion increases and the contact reaction with non-oxide ceramics causes significant reduction, which may impair the original properties. Preferably it is in the range of 1 to 40%. ZnO: Used as a flux agent and also has the effect of regulating crystallization in part, and is an essential component. Furthermore, it is more effective than PbO in terms of contact reactions with non-oxide ceramics. If it is less than 0.1%, the solubility of the glass deteriorates, and crystallization types become difficult to crystallize, which is not preferable. If it exceeds 30%, devitrification occurs during glass melting, which is undesirable. A preferred range is 0.5-25%. CaO, TiO 2 , BaO, SrO, MgO} Although not essential components, the solubility and viscosity properties of the glass as well as the coefficient of thermal expansion can be adjusted by introducing these components. CaO: If it exceeds 20%, devitrification may occur during glass melting. Preferably 0-18%
It is. TiO 2 : If it exceeds 18%, devitrification may occur during glass melting. Preferably 0-15%
is within the range of MgO, BaO, SrO: All are used to improve glass meltability. However, both
If it exceeds 10%, the expansion coefficient becomes too large. Preferably it is in the range of 0 to 8%. Na 2 O, Li 2 O, K 2 O} Although not essential components, they can be used as fluxing agents to improve the solubility of glass. However, if it exceeds 10%, the softening point becomes too low and the coefficient of thermal expansion becomes too large. Preferably it is 0 to 8%. Sb 2 O 3 , As 2 O 3 , F} It is also possible to introduce these components that have solubility and a clarifying effect during glass melting. However, there is no effect if it is introduced more than necessary, and the preferable range is 0 to 0.
It is 2%. SnO 2 ; Although not an essential component, the introduction of this component improves water resistance among glass properties. Therefore, it is effective when the purpose is to improve water resistance. However, if it is introduced in an amount of 5% or more, devitrification occurs during glass melting, making it impossible to obtain a homogeneous glass. Preferably it is in the range of 0 to 4%. The low expansion glass powder having the above composition has a softening point of 500 to 900℃ and a thermal expansion coefficient of 30 to 60×10 -7 /
℃, and when brought into contact with silicon nitride ceramics or silicon carbide ceramics,
Because the reaction at the interface is relatively good, there is almost no foaming, and the adhesion is extremely good. However, most of the
The thermal expansion coefficient of the glass composition as it is is too large (in the case of silicon nitride ceramics, the thermal expansion coefficient is approx.
34×10 -7 /℃, and in the case of silicon carbide ceramics it is about 45×10 -7 /℃), so excessive thermal stress will occur on the bonding surface, making it impossible to obtain good bond strength. . In order to control the above-mentioned thermal expansion coefficient mismatch and fluidity upon heating, the present invention uses 45 to 90% of at least one of cordierite, β-spodium, titanium-brown aluminum, and zircon as a low-expansion filler powder. In addition, it constitutes a low expansion powder composition for adhesive use. As a filler powder, cordierite is excellent in terms of thermal expansion and heat resistance. Similarly, β-spodumene (Li 2 O, Al 2 O 3 , 4SiO 2 ) is produced by melting and vitrifying a stoichiometric raw material mixture at about 1500°C, cooling it, pulverizing it, and then reheating it at 900°C. Manufacture. Zircon (ZrO 2 , SiO 2 ) is usually a natural product, but it is also possible to use one synthesized by solid-phase reaction of ZrO 2 powder and SiO 2 powder. Aluminum titanate (Al 2 O 3 , TiO 2 ) is
SiO 2 in an equimolar mixture of Al 2 O 3 powder and TiO 2 powder,
It is manufactured by adding a sintering aid such as Fe 2 O 3 and firing at a high temperature of 1400 to 1500°C, synthesizing it by an inherent reaction, and pulverizing the obtained sintered body. The coefficient of thermal expansion of these fillers is as follows. β-spodiumen 5~15×10 -7-1 Zircon 40~48 〃 Aluminum titanate -10~15×10 -7-1 Cordierite is pure
It is represented by the chemical formulas of 2MgO, 2Al 2 O 3 and 5SiO 2 , and naturally occurring ones do not necessarily have stoichiometric MgO, Al 2 O 3 and SiO 2 as shown in the above chemical formula. In addition, cordierite is heated to 1500℃
After melting, it becomes amorphous when rapidly cooled.
This amorphous cordierite has a large coefficient of thermal expansion. 1300~1400 of this amorphous cordierite
When heat treated at ℃, it becomes crystalline cordierite. Crystalline cordierite is famous for its low coefficient of thermal expansion, and its coefficient of thermal expansion depends on the above heat treatment conditions (heat treatment temperature, heating rate to the heat treatment temperature, holding time to the heat treatment temperature, atmosphere during heat treatment) etc.), but approximately 10~
Many of them fall within the range of 20×10 -7 /°C, and they can be used effectively as long as they fall within this range. The low-expansion filler used in the present invention has a thermal expansion coefficient of 10 to 20× synthesized by the above method.
Crystalline cordierite with a temperature of 10 -7 /°C is optimal, but natural crystalline cordierite can also be used. The crystalline cordierite used in the present invention does not necessarily have to be stoichiometric, but only needs to have a coefficient of thermal expansion within the range of 10 to 25 x 10 -7 /°C. In the present invention, as mentioned above, the above filler is
It is used 90% of the time. The type and amount of filler is determined depending on the thermal expansion coefficient of the adhered object and the operating temperature, but from the fluidity point of view, if the amount exceeds the upper limit, the fluidity during heating will decrease too much and it will not wet the adhered object. Adhesive force will be reduced. If the amount is less than the lower limit, the fluidity during heating will increase, the stability of the adhesive layer will decrease, and foaming will increase. More preferably it is 55-85%. If the low-expansion glass powder and low-expansion filler powder explained above are too fine,
When melted at high temperatures, it is difficult for the contained gas to escape, creating an adhesive force that envelops air bubbles, and shrinkage is large due to heating. The particle size of these particles is preferably 0.5 to 44μ, preferably 1 to 10μ. Next, the present invention will be explained in more detail with reference to Examples. Example (1) First step First, each raw material such as silica sand, aluminum hydroxide, boric anhydride, antimony oxide, arsenous acid, red lead, limestone, magnesium hydroxide, alkali metal carbonate, etc. is mixed according to the target composition. The mixture is mixed to prepare a batch, and the batch is placed in a platinum crucible and heated and melted at 1300 to 1500°C for 2 to 4 hours in an electric furnace. Then, this molten glass is pulverized or formed into a plate shape, and then ground in a ball mill to a particle size of about 1 to 10 μm. (2) Second step Next, magnesium hydroxide, alumina, and silica sand are blended to produce stoichiometric cordierite. After mixing, the mixture is placed in a platinum crucible and heated to 1500°C or higher in an electric furnace. Heat and melt at a temperature above. Then, amorphous cordierite of about 1 to 10 mm obtained by crushing this molten glass was heat-treated at about 1350° C. for 5 to 20 hours to obtain crystalline cordierite. Next, this crystalline cordierite was ground into fine particles of 10 to 70μ in size using a ball mill. (3) Third step The low expansion glass powder obtained in the first step and the low expansion filler powder obtained in the second step, or
A predetermined amount of natural cordierite pulverized to a particle size of 10 to 70 μm was blended, and the mixture was mixed and further finely pulverized in a pot to obtain a low-expansion powder composition for adhesive use. Table 1 shows the compositions of the low-expansion glass powder and low-expansion filler powder obtained in the first and second steps. Table 2 shows the results of adhesion tests using these powders. In addition, the average particle size of the low expansion powder composition for adhesive obtained in the third step was 1 to 10μ, and all
It was between 0.5 and 44μ.

【表】【table】

【表】【table】

【表】【table】

【表】 第2表における試験及び評価は以下に依つた。 (1) フローボタン試験 第3工程で得られた接着用低膨脹性粉末組成
物1.5gを20Kg/cm2でプレス成形し12.5mmφ×5
mmのフローボタンを製作した。次にこれを表面
を平滑に研磨した窒化珪素焼成体〓1または炭
化珪素焼成体〓2上に載置し、窒素雰囲気中あ
るいは空気中で1200℃×30分加熱処理した。 〓1Y2O35wt%、Al2O35wt%、残りが窒化
珪素粉末からなる配合物を、窒素雰囲気中
で1750℃×5時間ホツトプレスして得られ
た99%密度の50mmφ×10mmの焼成体。 〓2B4C0.5wt%、C1wt%、残りが炭化珪素
粉末からなる配合物をAr雰囲気中で2000
℃×1時間ホツトプレストして得られた99
%密度の50mmφ×10mmの焼成体。 (イ) 流動性の評価は、 〇…フローボタンの角が丸くなり、被接着物
に対してヌレがかなり認められる。 △…〇,×の中間 ×…フローボタン形状が溶融して完全にくず
れる、あるいは変化せず被接着物に対し
て全くヌレが認められない。 (ロ) 接着性の評価は、 〇…容易に剥離しない。 △…一応接着しているが、接着界面にくさび
を打込むと剥離する。 ×…一応接着しているが、手で剥すことがで
きる。 (ハ) 発泡性 〇…肉眼観察で泡がほとんどみられない。 △…肉眼観察で泡が少し認められる。 ×…肉眼観察で泡が多く認められる。 (2) 熱膨脹係数 第3工程で得られた接着用低膨脹性粉末組成
物を200Kg/cm2でプレス成形し20×2.0×35mmの
成形体を白金ルツボに入れ、第2表の焼成温
度、焼成時間の欄に示すが焼成条件で焼成して
得られたガラスから5mmφ×20mmの円柱を切り
出し、熱膨脹率測定装置で室温〜1000℃の範囲
で測定した平均値。 (3) 接着曲げ強度 フローボタン試験に用いたものと同じプロセ
スで製作した6mm×6mm×12.5mmの窒化珪素焼
成体及び炭化珪素焼成体の6mm×6mmの面に、
第3工程で得られた接着用低膨脹性粉末組成物
に酢酸イソアミル及びニトロセルロースを含む
ビヒクルあるいは水(例はすべて水添加であ
る)を添加して作つた泥漿を0.1mm以下の厚み
に塗布し、窒化珪素焼成体同志及び炭化珪素焼
成体同志を接着し、第2表の焼成温度、焼成時
間の欄に示す焼成条件で焼成した。かくして得
られた6mm×6mm×25mmの接合体の中央部(即
ち、接着部分)に0.5mm/分のクロスヘツドス
ピードで荷重をかけ、20mmスパンで曲げ強度試
験を行つた。試料は全て接着部分から剥離を生
じた。接着曲げ強度は以下の計算式により算出
した。 R=3Wl/2bd R:接着曲げ強度(Kg/cm2) W:荷重(Kg) l: 〃 スパン(cm) b:試料巾(cm) d: 〃 厚(cm) 以上、説明してきたことから分る通り、本発明
の接着用低膨脹性粉末組成物は優れた性能を示す
ものである。
[Table] The tests and evaluations in Table 2 were based on the following. (1) Flow button test 1.5g of the low expansion powder composition for adhesive obtained in the third step was press-molded at 20Kg/cm 2 to 12.5mmφ x 5
I made a mm flow button. Next, this was placed on a silicon nitride fired body 1 or a silicon carbide fired body 2 whose surface had been polished to a smooth surface, and heat-treated at 1200° C. for 30 minutes in a nitrogen atmosphere or in air. 〓1 A mixture consisting of 5wt% Y 2 O 3 , 5wt% Al 2 O 3 , and the rest silicon nitride powder was hot pressed at 1750°C for 5 hours in a nitrogen atmosphere, resulting in a 50mmφ x 10mm piece with a 99% density. body. 〓2B4 A mixture consisting of 0.5wt% C, 1wt% C, and the rest silicon carbide powder was heated to 2000% in an Ar atmosphere.
99 obtained by hot pressing for 1 hour at ℃
% density 50mmφ x 10mm fired body. (b) Fluidity evaluation: 〇…The corners of the flow button are rounded and there is considerable wetting against the adhered object. Δ...Intermediate between 〇 and × ×...The shape of the flow button melts and completely collapses, or does not change and no wetting is observed against the adhered object. (b) Evaluation of adhesion: 〇…Does not peel off easily. △...Although it is adhered for a while, it peels off when a wedge is driven into the adhesive interface. ×...Although it is glued for now, it can be removed by hand. (c) Foaming property 〇…Visible to the naked eye, almost no bubbles are observed. △: Some bubbles are observed by naked eye observation. ×...Many bubbles are observed by visual observation. (2) Coefficient of Thermal Expansion The low expansion powder composition for adhesive obtained in the third step was press-molded at 200 kg/cm 2 , a 20 x 2.0 x 35 mm compact was placed in a platinum crucible, and the firing temperature was as shown in Table 2. As shown in the firing time column, a 5 mmφ x 20 mm cylinder was cut out from the glass obtained by firing under the firing conditions, and the average value was measured using a coefficient of thermal expansion measuring device in the range of room temperature to 1000°C. (3) Adhesive bending strength On the 6 mm x 6 mm surface of a 6 mm x 6 mm x 12.5 mm silicon nitride fired body and a silicon carbide fired body manufactured using the same process as that used in the flow button test,
A slurry made by adding a vehicle containing isoamyl acetate and nitrocellulose or water (all examples are water additions) to the low expansion powder composition for adhesive obtained in the third step is applied to a thickness of 0.1 mm or less. The silicon nitride fired bodies and the silicon carbide fired bodies were then bonded together and fired under the firing conditions shown in the firing temperature and firing time columns of Table 2. A load was applied to the central part (ie, the bonded part) of the 6 mm x 6 mm x 25 mm bonded body thus obtained at a crosshead speed of 0.5 mm/min, and a bending strength test was conducted over a 20 mm span. All samples exhibited peeling from the adhesive portion. The adhesive bending strength was calculated using the following formula. R=3Wl/2bd 2 R: Adhesive bending strength (Kg/cm 2 ) W: Load (Kg) l: 〃 Span (cm) b: Sample width (cm) d: 〃 Thickness (cm) What has been explained above As can be seen, the low expansion powder composition for adhesives of the present invention exhibits excellent performance.

Claims (1)

【特許請求の範囲】 1 重量%表示で本質的に、 SiO2 30〜65% Al2O3 0.5〜25 B2O3 0.1〜25 PbO 0.5〜45 CaO 0〜20 TiO2 0〜18 ZnO 0.1〜30 MgO 0〜10 BaO 0〜10 SrO 0〜10 Na2O 0〜10 Li2O 0〜10 K2O 0〜10 Sb2O3 0〜3 As2O3 0〜3 SnO2 0〜5 F 0〜3 の組成を有するガラス粉末10〜55重量%と、低膨
脹性フイラー粉末として、コーデイエライト、β
―スポジユメン、チタン酸アルミニウム、ジルコ
ンの少くとも1種45〜90重量%とからなる非酸化
物系セラミクスの接着用低膨脹性粉末組成物。 2 重量%表示で本質的に、 SiO2 35〜60% Al2O3 1〜20 B2O3 0.5〜20 PbO 1〜40 CaO 0〜18 TiO2 1〜15 ZnO 0.5〜25 MgO 0〜8 BaO 0〜8 SrO 0〜8 Na2O 0〜8 Li2O 0〜8 K2O 0〜8 Sb2O3 0〜2 As2O3 0〜2 SnO2 0〜4 F 0〜2 の組成を有するガラス粉末15〜50重量を有する特
許請求の範囲第1項記載の非酸化物系セラミクス
の接着用低膨脹性粉末組成物。
[Claims] 1 Essentially in weight%: SiO 2 30-65% Al 2 O 3 0.5-25 B 2 O 3 0.1-25 PbO 0.5-45 CaO 0-20 TiO 2 0-18 ZnO 0.1 〜30 MgO 0〜10 BaO 0〜10 SrO 0〜10 Na 2 O 0〜10 Li 2 O 0〜10 K 2 O 0〜10 Sb 2 O 3 0〜3 As 2 O 3 0〜3 SnO 2 0〜 10-55% by weight of glass powder with a composition of 5 F 0-3 and cordierite, β as a low expansion filler powder.
- A low-expansion powder composition for bonding non-oxide ceramics, comprising 45 to 90% by weight of at least one of spodumene, aluminum titanate, and zircon. 2 Essentially in weight%: SiO 2 35-60% Al 2 O 3 1-20 B 2 O 3 0.5-20 PbO 1-40 CaO 0-18 TiO 2 1-15 ZnO 0.5-25 MgO 0-8 BaO 0-8 SrO 0-8 Na 2 O 0-8 Li 2 O 0-8 K 2 O 0-8 Sb 2 O 3 0-2 As 2 O 3 0-2 SnO 2 0-4 F 0-2 A low-expansion powder composition for bonding non-oxide ceramics according to claim 1, having a glass powder composition having a weight of 15 to 50%.
JP227579A 1979-01-16 1979-01-16 Low expansion powder composition for bonding use Granted JPS5594975A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP227579A JPS5594975A (en) 1979-01-16 1979-01-16 Low expansion powder composition for bonding use

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP227579A JPS5594975A (en) 1979-01-16 1979-01-16 Low expansion powder composition for bonding use

Publications (2)

Publication Number Publication Date
JPS5594975A JPS5594975A (en) 1980-07-18
JPS6220143B2 true JPS6220143B2 (en) 1987-05-06

Family

ID=11524806

Family Applications (1)

Application Number Title Priority Date Filing Date
JP227579A Granted JPS5594975A (en) 1979-01-16 1979-01-16 Low expansion powder composition for bonding use

Country Status (1)

Country Link
JP (1) JPS5594975A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9793011B2 (en) 2012-11-21 2017-10-17 Hitachi, Ltd. Structure, electronic element module, heat exchanger, fuel rod, and fuel assembly

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5988851A (en) * 1982-11-12 1984-05-22 Ibiden Co Ltd Silicon carbide substrate for electronic circuit and manufacture thereof
JP2507418B2 (en) * 1986-05-02 1996-06-12 旭硝子株式会社 Circuit board composition
JPS62275074A (en) * 1986-05-21 1987-11-30 工業技術院長 Adhesive for non-oxide ceramics, adhesive sheet for same andadhesion for same
JPS62275075A (en) * 1986-05-22 1987-11-30 工業技術院長 Method of adhering non-oxide ceramics
JP2800176B2 (en) * 1987-08-18 1998-09-21 旭硝子株式会社 Glass ceramic composition
JPH01226749A (en) * 1988-03-08 1989-09-11 Ngk Insulators Ltd Glass composition for joining ceramic
JP5978105B2 (en) * 2012-11-08 2016-08-24 株式会社東芝 Silicon carbide ceramic joined body and method for producing silicon carbide ceramic joined body
CN107006896B (en) * 2017-05-05 2019-04-09 湖北中烟工业有限责任公司 A kind of compound ceramic atomizer and preparation method thereof
CN112851389B (en) * 2021-04-14 2022-03-15 哈尔滨工业大学 Method for connecting SiC ceramic material by using calcium oxide/aluminum oxide/silicon dioxide/lithium oxide glass solder
CN113666766B (en) * 2021-09-14 2022-11-22 长春工业大学 Method for connecting zirconia ceramics by glass solder infiltration

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4924208A (en) * 1972-06-30 1974-03-04
JPS5256867A (en) * 1975-10-31 1977-05-10 Jenaer Glaswerk Schott & Gen Glass for hermetic coating and stabilization of surface
JPS5317608A (en) * 1976-08-02 1978-02-17 Hitachi Ltd Passivation glass for semiconductor apparatus
JPS5945616A (en) * 1982-09-08 1984-03-14 Fuji Xerox Co Ltd Vertical magnetic recording and reproducing head

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4924208A (en) * 1972-06-30 1974-03-04
JPS5256867A (en) * 1975-10-31 1977-05-10 Jenaer Glaswerk Schott & Gen Glass for hermetic coating and stabilization of surface
JPS5317608A (en) * 1976-08-02 1978-02-17 Hitachi Ltd Passivation glass for semiconductor apparatus
JPS5945616A (en) * 1982-09-08 1984-03-14 Fuji Xerox Co Ltd Vertical magnetic recording and reproducing head

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9793011B2 (en) 2012-11-21 2017-10-17 Hitachi, Ltd. Structure, electronic element module, heat exchanger, fuel rod, and fuel assembly

Also Published As

Publication number Publication date
JPS5594975A (en) 1980-07-18

Similar Documents

Publication Publication Date Title
US4405722A (en) Sealing glass compositions
CN101066839B (en) No-lead glass powder for electrode coating and its preparation process
JPH04231349A (en) Sealing material, glass used therefor and mill additve
JP2003095697A (en) Sealing composition
JPS6220143B2 (en)
JPS63162545A (en) Translucent crystalline glass
JP2003192378A (en) Lead-free low-melting glass for sealing
CN1944300B (en) Low expansion coefficient micro crystal glass and its heat processing method
US5534470A (en) Lithium aluminoborate glass-ceramics
US5256603A (en) Glass bonded ceramic composites
JPS6253454B2 (en)
JPH04288389A (en) Sealing material and mil additive for use therefor
US5112777A (en) Glass-ceramic-bonded ceramic composites
JP2521124B2 (en) Glass-ceramics for electronic packing, thermally crystallizable glass used therefor, and substrates using the same glass-ceramics
JP2759763B2 (en) Cordierite-based crystallized glass and method for producing the same
JPS6379771A (en) Adhesive for oxide base ceramics and adhesion therefor
JPS59137341A (en) Crystallized glass body
SU1565344A3 (en) Method of obtaining soldering borolead glass
JPS6143298B2 (en)
GB2172282A (en) Toughened glass-ceramics
JPS638060B2 (en)
JP2602187B2 (en) Low expansion heat resistant crystallized glass bonding material and bonding method thereof
JPS59131542A (en) Sealing composition
JPS58161943A (en) Glass composition for sealing
JPH11292616A (en) Composite glass ceramic and its production