JPH01226749A - Glass composition for joining ceramic - Google Patents

Glass composition for joining ceramic

Info

Publication number
JPH01226749A
JPH01226749A JP5250888A JP5250888A JPH01226749A JP H01226749 A JPH01226749 A JP H01226749A JP 5250888 A JP5250888 A JP 5250888A JP 5250888 A JP5250888 A JP 5250888A JP H01226749 A JPH01226749 A JP H01226749A
Authority
JP
Japan
Prior art keywords
glass
thermal expansion
glass composition
compsn
ceramics
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5250888A
Other languages
Japanese (ja)
Inventor
Hiromichi Kobayashi
廣道 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Insulators Ltd
Original Assignee
NGK Insulators Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Insulators Ltd filed Critical NGK Insulators Ltd
Priority to JP5250888A priority Critical patent/JPH01226749A/en
Publication of JPH01226749A publication Critical patent/JPH01226749A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B37/00Joining burned ceramic articles with other burned ceramic articles or other articles by heating
    • C04B37/003Joining burned ceramic articles with other burned ceramic articles or other articles by heating by means of an interlayer consisting of a combination of materials selected from glass, or ceramic material with metals, metal oxides or metal salts
    • C04B37/005Joining burned ceramic articles with other burned ceramic articles or other articles by heating by means of an interlayer consisting of a combination of materials selected from glass, or ceramic material with metals, metal oxides or metal salts consisting of glass or ceramic material
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C8/00Enamels; Glazes; Fusion seal compositions being frit compositions having non-frit additions
    • C03C8/24Fusion seal compositions being frit compositions having non-frit additions, i.e. for use as seals between dissimilar materials, e.g. glass and metal; Glass solders
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/02Aspects relating to interlayers, e.g. used to join ceramic articles with other articles by heating
    • C04B2237/10Glass interlayers, e.g. frit or flux
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/30Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
    • C04B2237/32Ceramic

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Structural Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Glass Compositions (AREA)

Abstract

PURPOSE:To improve the mechanical strength, corrosion and heat resistances of a glass compsn. as a joining material by specifying the amts. of SiO2, B2O3, Na2O and Al2O3 in the compsn. and regulating the coefft. of thermal expansion of the compsn. according to the purpose for which the compsn. is used. CONSTITUTION:A glass compsn. for joining ceramics is composed essentially of, by weight, 50-70% SiO2, 9-30% B2O3, 8-13% Na2O and 10-15% Al2O3. The coefft. of thermal expansion of the glass compsn. is regulated to 60-80X10<-7>/ deg.C according to the coefft. of thermal expansion of ceramics to be joined by increasing or decreasing the amt. of Na2O within the range of 8-13%. The glass compsn. is satisfactorily applicable to use requiring corrosion resistance and air-tightness at high temp.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明はセラミック部材間の接合、特に酸化物セラミッ
クス相互間の接合、特にはそれらの封着に最適なガラス
組成物に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a glass composition that is most suitable for bonding ceramic members, particularly bonding oxide ceramics, and especially sealing them.

(従来の技術) 従来、セラミック部材とセラミ・ンク部材を接合または
封着するためには、種々の組成のガラスが使用されてい
る。このうち、例えば酸化物セラミックス同志の間の封
着に好適に使用されるガラス組成物として、特公昭57
−52714号公報において、SiO□41〜51重量
%、th(h 53〜59重量%、Nazo 6〜11
重量%からなるガラス組成物が開示されている。
(Prior Art) Conventionally, glasses of various compositions have been used for joining or sealing ceramic members and ceramic ink members. Among these, for example, as a glass composition suitably used for sealing between oxide ceramics,
-52714 publication, SiO□41-51% by weight, th(h 53-59% by weight, Nazo 6-11
% by weight is disclosed.

(発明が解決しようとする課題) セラミック部材間の接合または封着に用いるガラスに要
求される特性としては、セラミックスに近似した熱膨脹
係数のほか、接合体の用途に応じて密閉性、耐食性、電
気絶縁性、機械的強度、耐熱性が良好である必要があり
、また適当な接合温度を持っている必要がある。
(Problems to be Solved by the Invention) Properties required of glass used for joining or sealing ceramic members include a coefficient of thermal expansion similar to that of ceramics, as well as sealing properties, corrosion resistance, and electrical resistance depending on the use of the joined body. It needs to have good insulation, mechanical strength, and heat resistance, and it also needs to have an appropriate bonding temperature.

しかしながら、前述したガラス組成物をはじめとして、
従来から公知のガラス組成物においては、機械的強度、
耐食性および耐熱性の点で未だ満足する特性を得られな
い問題があった。そのため、高温に長時間さらされる部
材の接合または封着に従来から公知のガラス組成物を使
用した場合、接合部または封着部から破壊してしまうお
それがあった。
However, including the glass composition mentioned above,
In conventionally known glass compositions, mechanical strength,
There has been a problem that satisfactory properties have not yet been obtained in terms of corrosion resistance and heat resistance. Therefore, when a conventionally known glass composition is used for joining or sealing members that are exposed to high temperatures for a long time, there is a risk that the glass composition will break at the joint or sealing part.

本発明の目的は前述した課題を解消して、接合材料とし
て使用した場合他の特性はもとより機械的強度、耐食性
および耐熱性も良好な新規なガラス組成物を提供しよう
とするものである。
The object of the present invention is to solve the above-mentioned problems and provide a new glass composition that has good mechanical strength, corrosion resistance, and heat resistance as well as other properties when used as a bonding material.

(課題を解決するための手段) 本発明のセラミック接合ガラス組成物は、少なくとも5
0〜70重量%の5iOz、9〜30重量%の8208
.8〜13重量%のNa2O,10〜15重量%のA 
l 203 とから成り、60〜80X10−7/’C
の熱膨脹係数を有することを特徴とするものである。
(Means for Solving the Problems) The ceramic bonded glass composition of the present invention has at least 5
0-70 wt% 5iOz, 9-30 wt% 8208
.. 8-13% by weight Na2O, 10-15% by weight A
l 203 and 60~80X10-7/'C
It is characterized by having a coefficient of thermal expansion of .

(作 用) 前述した構成において、所定範囲の少なくとも5i02
+ B2O33NazO,A l z03よりなるガラ
ス組成物は後述するように機械的強度、耐食性および耐
熱性等が高(、また熱膨脹係数が60〜80X10−’
/°Cであり、例えばアルミナの熱膨脹係数70〜80
×10−’/’Cに近い。このように接合すべきセラミ
ックスと近似した熱膨脹係数を有しているので熱応力が
小さくなり、密閉性が良好となる。また熱衝撃の繰り返
しで接合体が破壊する恐れもない。
(Function) In the above-described configuration, at least 5i02 in the predetermined range
+ B2O33NazO, Alz03 glass composition has high mechanical strength, corrosion resistance, heat resistance, etc. (and has a thermal expansion coefficient of 60 to 80X10-' as described later).
/°C, for example, the coefficient of thermal expansion of alumina is 70 to 80
Close to ×10-'/'C. Since it has a coefficient of thermal expansion similar to that of the ceramics to be bonded, thermal stress is reduced and sealing performance is improved. Furthermore, there is no fear that the joined body will be destroyed by repeated thermal shocks.

後述する実験結果からもわかるように、所定の各種特性
、特に、機械的強度、耐食性および耐熱性の点で満足す
る特性を得ることができる。なお、上述の熱膨脹係数は
40°Cから400°Cまでの値である。
As can be seen from the experimental results described below, it is possible to obtain satisfactory properties in terms of various predetermined properties, particularly mechanical strength, corrosion resistance, and heat resistance. In addition, the above-mentioned coefficient of thermal expansion is a value from 40°C to 400°C.

ここで、SiO2含有量が減少すると耐熱性を示す軟化
変形温度が低くなる。逆に5i02含有量が増加すると
溶融温度が高くなりガラス化しにくいため、接合温度が
高くなり、かつ接合状態も悪く、さらに耐食性も悪くな
る。したがってSiO□含有量として50〜70重量%
が好ましく、さらに好ましくは55〜68重量%、さら
にまた好ましくは55〜65重景%が良好である。
Here, as the SiO2 content decreases, the softening deformation temperature, which indicates heat resistance, decreases. Conversely, when the 5i02 content increases, the melting temperature increases and vitrification becomes difficult, resulting in a high bonding temperature, poor bonding condition, and poor corrosion resistance. Therefore, the SiO□ content is 50 to 70% by weight.
is preferable, more preferably 55 to 68% by weight, still more preferably 55 to 65% by weight.

なお、組成物中にMgOなどのアルカリ土類金属酸化物
を1〜5重量%含有させるとセラミックスとの濡れ性が
向上するので好ましく、ZrO2などのrVa族金属酸
化物またはY2Oユなどの希土類金属酸化物を1〜5重
量%含有させると耐食性が向上するので好ましい。
It is preferable to include 1 to 5% by weight of an alkaline earth metal oxide such as MgO in the composition because it improves wettability with ceramics. It is preferable to contain the oxide in an amount of 1 to 5% by weight because corrosion resistance is improved.

B2O3含有量が減少すると接合状態および耐食性が悪
(なるとともに、増加すると軟化変形温度が低くなるた
め、9〜30重四%が好ましく、さらに好ましくは10
〜25重量%、さらにまた好ましくは10〜20重量%
が良好である。
If the B2O3 content decreases, the bonding condition and corrosion resistance will deteriorate (and if it increases, the softening deformation temperature will decrease, so 9 to 30% by weight is preferable, more preferably 10%
~25% by weight, even more preferably 10-20% by weight
is good.

NazO含有量が減少するとガラス組成物の熱膨脹係数
が小さくなってセラミックスとの熱膨脹差が大きくなり
、ガラス接合時に残留応力が発生してガラスにクランク
が入り、接合状態が悪くなる。
When the NazO content decreases, the coefficient of thermal expansion of the glass composition decreases, increasing the difference in thermal expansion with ceramics, and residual stress is generated during glass bonding, resulting in cranking of the glass and poor bonding condition.

逆にNa、0含有量が増加するとガラスの粘性が低くな
り、セラミックスに対する濡れ性は良好になるが、軟化
変形温度が低くなる。さらにガラス組成物の熱膨脹係数
も大きくなるため、セラミックスとの熱膨脹差が大きく
なり、ガラス接合時に残留応力が発生し、ガラスにクラ
ックが入る。従ってNa2O含有量として8〜13重量
%が好ましく、さらに好ましくは9〜12重量%、さら
にまた好ましくは10〜12重量%が良好である。
Conversely, when the Na, 0 content increases, the viscosity of the glass decreases and the wettability to ceramics improves, but the softening deformation temperature decreases. Furthermore, since the coefficient of thermal expansion of the glass composition also increases, the difference in thermal expansion with respect to ceramics increases, and residual stress occurs during glass bonding, causing cracks in the glass. Therefore, the Na2O content is preferably 8 to 13% by weight, more preferably 9 to 12% by weight, and still more preferably 10 to 12% by weight.

この範囲内でNa、O量を増減させることにより、接合
すべきセラミックスの熱膨脹係数に応じてガラスの熱膨
脹係数を調整することができる。
By increasing or decreasing the amounts of Na and O within this range, the coefficient of thermal expansion of the glass can be adjusted in accordance with the coefficient of thermal expansion of the ceramics to be joined.

A2□03含有量が減少すると耐食性が悪くなる。As the A2□03 content decreases, corrosion resistance deteriorates.

逆にA 12203含有量が増加すると四点曲げ強度が
増大し、かつ耐食性が向上する。したがってAffiz
(h含有量は10〜15重量%が好ましい。本発明のセ
ラミック接合ガラス組成物を用いて接合可能なセラミッ
クスとしては、特に限定するものではないが、アルミナ
、ジルコニア相互間及びそれらの組合せ等酸化物セラミ
ックスに特に好適であり、アルミナは本発明のガラス組
成物に熱膨脹係数が近いので特に好適である。
Conversely, when the A 12203 content increases, the four-point bending strength increases and the corrosion resistance improves. Therefore Afiz
(H content is preferably 10 to 15% by weight. Ceramics that can be bonded using the ceramic bonding glass composition of the present invention include, but are not limited to, oxidized materials such as alumina, zirconia, and combinations thereof. Alumina is particularly suitable because it has a coefficient of thermal expansion close to that of the glass composition of the present invention.

(実施例) 第1図は本発明のセラミック接合ガラス組成物の製造工
程を示すフローチャートである。まず、5i02. B
2O2,NazO* Afz(h+ MgO+ Y2O
3,Zr0zの所定量を秤量した後、通常の方法で混合
する。なお、これ等の酸化物は、それぞれ所定の組成と
なるよう炭酸塩などの化合物として用いても良い。
(Example) FIG. 1 is a flowchart showing the manufacturing process of the ceramic bonded glass composition of the present invention. First, 5i02. B
2O2, NazO* Afz(h+ MgO+ Y2O
3. After weighing a predetermined amount of Zr0z, it is mixed in the usual manner. Note that these oxides may be used in the form of compounds such as carbonates so as to each have a predetermined composition.

次に、混合物を空気雰囲気下のカンタル類で溶融物を得
た後、溶融物を水中に投入して冷却しフリットを作製す
る。その後、得られたフリットに対して通常の方法によ
り粉砕を実施して、16メツシユ(1mm)以下の粉砕
物を得る。得られた粉砕物をさらに空気雰囲気下のカン
タル類で溶融し、溶融物を同様に水中に投入して冷却し
フリットを作製する。最後に、得られたフリットを粉砕
して、100メツシユ(149μm)以下の粉砕物とし
て本発明のセラミック接合ガラス組成物を得ている。
Next, the mixture is melted using canthal in an air atmosphere, and then the melt is poured into water and cooled to produce a frit. Thereafter, the obtained frit is pulverized by a conventional method to obtain a pulverized product having a size of 16 meshes (1 mm) or less. The obtained pulverized product is further melted with kanthal in an air atmosphere, and the melt is similarly poured into water and cooled to produce a frit. Finally, the obtained frit is pulverized to obtain the ceramic bonded glass composition of the present invention as a pulverized product having a size of 100 meshes (149 μm) or less.

前述した製造工程において溶融を2回行なうのは、未溶
融物を無くしガラス組成を均一にするためである。また
、溶融時にはガスが発生するため、原料混合物を一度に
投入すると吹きこぼれるので、原料混合物を徐々に投入
すると好ましい。
The reason why melting is performed twice in the manufacturing process described above is to eliminate unmelted materials and make the glass composition uniform. Further, since gas is generated during melting, if the raw material mixture is added all at once, it will boil over, so it is preferable to gradually add the raw material mixture.

以下、実際の例について説明する。An actual example will be explained below.

裏庭■ 第1表に示す各種組成の本発明範囲内および本発明範囲
外のガラス組成物を上述した製造工程に従って作製し、
第1表に示す各種特性を測定して比較した。
Backyard ■ Glass compositions within the scope of the present invention and outside the scope of the present invention having various compositions shown in Table 1 were produced according to the manufacturing process described above,
Various properties shown in Table 1 were measured and compared.

第1表において、熱膨脹係数は原料調合物を白金るつぼ
に入れ所定温度で溶融し、直径5IIII11以下のガ
ラス棒を作製して所定温度でアニーリング後、押棒示差
式熱膨脹計を使用して降伏点まで測定した。軟化変形温
度、セラミックスとの濡れ性、接合状態は、ガラス粉末
を直径2IIIIM、高さ3■に成形し、12mm角の
高純度アルミナ板に載せ、10°C/   ’minの
昇温速度で1200°Cまで昇温した状態で、高温加熱
顕微鏡により観察した。な岩、軟化変形温度の定義は、
ジエイ・コンタ著セラミック・モノグラフ−ハンドブッ
ク・オブ・セラミックス1.1.4の19ページの第1
9図に示されるソフトニング・ポイントとした。軟化変
形温度が高いと接合体の高温強度が高くなるので好まし
く、また、接合体をさらに他の金属部材などと接合する
場合には、軟化変形温度が金属部材との接合温度以上で
あることが必要である。本発明のセラミック接合ガラス
組成物の軟化変形温度は第1表に示す如く約700°C
から約900″Cの範囲である。セラミックスとの濡れ
性は、1200°Cにおける濡れ角度が60°以下のも
のを0160°〜100’のものをΔ、100°以上の
ものを×として表示した。
In Table 1, the coefficient of thermal expansion is determined by placing the raw material mixture in a platinum crucible and melting it at a predetermined temperature, making a glass rod with a diameter of 5III11 or less, annealing it at a predetermined temperature, and then measuring it to the yield point using a push rod differential thermal dilatometer. It was measured. The softening deformation temperature, wettability with ceramics, and bonding state were determined by molding glass powder into a diameter of 2IIIM and height of 3mm, placing it on a 12mm square high-purity alumina plate, and heating it at a heating rate of 10°C/'min to 1200°C. Observation was made using a high-temperature heating microscope while the temperature was raised to °C. The definition of the softening deformation temperature for rocks is
Ceramic Monograph by J. Konta - Handbook of Ceramics 1.1.4, page 19, 1st
The softening point was set as shown in Figure 9. A high softening deformation temperature is preferable because the high temperature strength of the joined body increases, and when the joined body is further joined to another metal member, the softening deformation temperature is preferably higher than the joining temperature with the metal member. is necessary. The softening deformation temperature of the ceramic bonded glass composition of the present invention is approximately 700°C as shown in Table 1.
The wettability with ceramics is expressed as Δ if the wetting angle is 60° or less at 1200°C and 0160° to 100°, and × if it is 100° or more. .

さらに、体積抵抗率は、直径5Il111以下のガラス
棒をアニーリング後、印加電圧直流5vで四端子法で測
定した。四点曲げ強度は直径5a+m以下のガラス棒を
作製後、アニーリング無の状態で外側スパン3抛m1内
側スパン10mm、クロスヘツドスピード0.5 mm
/minで測定した。Heリーク量は、直径201II
I+、厚さ21111の高純度アルミナペレットと外径
10III11、内径9n+m、高さ3011111の
高純度アルミナチューブとを、各種第1表に示す組成の
ガラスで接合し、ヘリウムリークディテクターを用いて
測定した。その結果、I X 10−”5td−cc/
 sec−cm”以下のものをO1越えたものを×とし
て表示した。
Furthermore, the volume resistivity was measured by the four-terminal method with an applied voltage of 5 V DC after annealing a glass rod having a diameter of 5 Il 111 or less. The four-point bending strength is determined by making a glass rod with a diameter of 5 a + m or less, without annealing, with an outer span of 3 mm, an inner span of 10 mm, and a crosshead speed of 0.5 mm.
/min. The amount of He leakage is 201II in diameter.
I+, a high purity alumina pellet with a thickness of 21111 and a high purity alumina tube with an outer diameter of 10III11, an inner diameter of 9n+m, and a height of 3011111 were bonded with various glasses having the composition shown in Table 1, and measurements were made using a helium leak detector. . As a result, I X 10-”5td-cc/
sec-cm” or less and those exceeding O1 were indicated as ×.

本発明のセラミック接合ガラス組成物を用いてセラミッ
クスを接合または封着するに当っての接合温度は、10
00”Cから1500℃程度まで適用可能である。接合
温度が1ooo℃以下ではガラスとセラミックスとの濡
れ性が悪く、良好な接合強度や密閉性が得られない。一
方1500℃以上ではガラスの溶は流れが激しすぎてや
はり良好な密閉性が得られない。この温度範囲では、は
とんどのセラミックスは安定であるので良好な接合体を
得ることができる。実際の接合温度は接合すべきセラミ
ックスの種類及び接合体の用途により決定すれば良い。
The bonding temperature for bonding or sealing ceramics using the ceramic bonding glass composition of the present invention is 10
Applicable from 00"C to about 1500℃. If the bonding temperature is below 100℃, the wettability between glass and ceramics will be poor, and good bonding strength and sealing performance will not be obtained. On the other hand, if the bonding temperature is 1500℃ or higher, the glass will melt. The flow is too strong and a good seal cannot be obtained.In this temperature range, most ceramics are stable, so a good bond can be obtained.The actual bonding temperature should be It may be determined depending on the type of ceramics and the use of the joined body.

耐食性の評価試験は酸素分圧1ppII、露点−70°
Cの雰囲気を有するグローブボックス内で行った。
The corrosion resistance evaluation test was conducted at an oxygen partial pressure of 1 ppII and a dew point of -70°.
The test was carried out in a glove box with an atmosphere of C.

Heリーク試験に使用した試料を金属Naが入ったステ
ンレススチール製容器中につるし、ヒータで350°C
まで加熱して1週間処理した後、封着ガラスの変質状態
の観察および再度Heリーク試験を実施して耐食性を評
価した。その結果、変質およびリークがあったものを×
、なかったものをOとして表示した。結果を第1表に示
す。
The sample used for the He leak test was suspended in a stainless steel container containing metallic Na, and heated to 350°C with a heater.
After heating for one week, the sealing glass was observed for deterioration and a He leak test was conducted again to evaluate corrosion resistance. As a result, those with deterioration and leakage were
, Those that were not present are indicated as O. The results are shown in Table 1.

第1表の結果から、本発明範囲内の試料Nα1〜22は
範囲外の比較例試料NcL1〜8と比べて、密閉性、耐
食性、電気!!縁性が良好なだけでなく、機械的強度お
よび耐熱性を示す軟化変形温度の点でも良好なことがわ
かる。
From the results in Table 1, samples Nα1 to Nα22 within the range of the present invention have better sealing performance, corrosion resistance, and electrical resistance than comparative samples NcL1 to NcL8, which fall outside the range. ! It can be seen that not only the edge properties are good, but also the softening deformation temperature, which indicates mechanical strength and heat resistance, is good.

また接合温度もセラミックの接合に好ましい範囲である
The bonding temperature is also within a preferable range for bonding ceramics.

さらに、A j! gos/ B2O3の比は、本発明
範囲内の試料No、1〜22のうち0.7以上のものが
機械的強度などが特に良好であるとともに、MgO,Z
rO□。
Furthermore, A j! The ratio of gos/B2O3 is 0.7 or more among samples No. 1 to 22 within the scope of the present invention, which have particularly good mechanical strength etc., and MgO, Z
rO□.

YtOsを添加した場合でも各種特性に悪影響を与える
ことはなく、濡れ性や耐食性に好ましい影響を与えるこ
とがわかる。
It can be seen that even when YtOs is added, there is no adverse effect on various properties, and it has a favorable effect on wettability and corrosion resistance.

(発明の効果) 以上詳細に説明したところから明らかなように、本発明
のセラミック接合ガラス組成物によれば、緒特性特に機
械的強度、耐食性および耐熱性が良好なセラミック部材
間の接合を達成することができる。
(Effects of the Invention) As is clear from the above detailed explanation, the ceramic bonding glass composition of the present invention achieves bonding between ceramic members with good mechanical properties, particularly mechanical strength, corrosion resistance, and heat resistance. can do.

そのため、本発明のセラミック接合ガラス組成物によれ
ば、高温でしかも耐食性と密閉性をも要求される封着用
途にも良好に適用することができる。
Therefore, the ceramic bonded glass composition of the present invention can be favorably applied to sealing applications that require corrosion resistance and sealing performance at high temperatures.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明のセラミック封着ガラス組成物の製造工
程を示すフローチャートである。 特許出願人  日本碍子株式会社
FIG. 1 is a flowchart showing the manufacturing process of the ceramic sealing glass composition of the present invention. Patent applicant Nippon Insulator Co., Ltd.

Claims (1)

【特許請求の範囲】[Claims] 1、少なくとも、50〜70重量%のSiO_2、9〜
30重量%のB_2O_3、8〜13重量%のNa_2
O、10〜15重量%のAl_2O_3とから成り、6
0〜80×10^−^7/℃の熱膨脹係数を有すること
を特徴とするセラミック接合ガラス組成物。
1. At least 50-70% by weight of SiO_2, 9-
30% by weight B_2O_3, 8-13% by weight Na_2
O, 10-15% by weight of Al_2O_3, 6
A ceramic bonded glass composition characterized in that it has a coefficient of thermal expansion of 0 to 80 x 10^-^7/°C.
JP5250888A 1988-03-08 1988-03-08 Glass composition for joining ceramic Pending JPH01226749A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5250888A JPH01226749A (en) 1988-03-08 1988-03-08 Glass composition for joining ceramic

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5250888A JPH01226749A (en) 1988-03-08 1988-03-08 Glass composition for joining ceramic

Publications (1)

Publication Number Publication Date
JPH01226749A true JPH01226749A (en) 1989-09-11

Family

ID=12916672

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5250888A Pending JPH01226749A (en) 1988-03-08 1988-03-08 Glass composition for joining ceramic

Country Status (1)

Country Link
JP (1) JPH01226749A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0459674A2 (en) * 1990-05-18 1991-12-04 Ngk Insulators, Ltd. Glass joint body and method of manufacturing the same
WO2011125316A1 (en) * 2010-04-01 2011-10-13 日本板硝子株式会社 Glass filler
JP2015205818A (en) * 2009-08-21 2015-11-19 コーニング インコーポレイテッド Zircon compatible glasses for down draw
JP2019142770A (en) * 2012-05-31 2019-08-29 コーニング インコーポレイテッド Zircon compatible, ion exchangeable glass with high damage resistance

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5594975A (en) * 1979-01-16 1980-07-18 Asahi Glass Co Ltd Low expansion powder composition for bonding use

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5594975A (en) * 1979-01-16 1980-07-18 Asahi Glass Co Ltd Low expansion powder composition for bonding use

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0459674A2 (en) * 1990-05-18 1991-12-04 Ngk Insulators, Ltd. Glass joint body and method of manufacturing the same
EP0729923A2 (en) * 1990-05-18 1996-09-04 Ngk Insulators, Ltd. Glass joint body and method of manufacturing the same
EP0729923A3 (en) * 1990-05-18 1996-09-11 Ngk Insulators Ltd
JP2015205818A (en) * 2009-08-21 2015-11-19 コーニング インコーポレイテッド Zircon compatible glasses for down draw
US9556058B2 (en) 2009-08-21 2017-01-31 Corning Incorporated Zircon compatible glasses for down draw
WO2011125316A1 (en) * 2010-04-01 2011-10-13 日本板硝子株式会社 Glass filler
JP2019142770A (en) * 2012-05-31 2019-08-29 コーニング インコーポレイテッド Zircon compatible, ion exchangeable glass with high damage resistance
JP2021151951A (en) * 2012-05-31 2021-09-30 コーニング インコーポレイテッド Zircon compatible, ion exchangeable glass with high damage resistance
US11447415B2 (en) 2012-05-31 2022-09-20 Corning Incorporated Zircon compatible, ion exchangeable glass with high damage resistance
US11767253B2 (en) 2012-05-31 2023-09-26 Corning Incorporated Zircon compatible, ion exchangeable glass with high damage resistance

Similar Documents

Publication Publication Date Title
US6124224A (en) High temperature sealing glass
EP0480188A2 (en) Sealing materials and glasses
TWI403487B (en) High-electric resistivity, high-zirconia fused cast refractories
JP2003095697A (en) Sealing composition
JP2004250276A (en) Lead-free low melting point glass for sealing
US3414465A (en) Sealed glass article of manufacture
TWI586623B (en) Lead free glass and sealing material
US3088835A (en) Thermally devitrifiable sealing glasses
JPS6236978B2 (en)
US4293325A (en) Method of forming hermetic seals
Hall The influence of chemical composition on the physical properties of glazes
EP0029275B1 (en) Bodies composed of at least two parts, sealing glass and method for bonding parts
JP4093342B2 (en) Press frit
US3331731A (en) Method of and article formed by sealing alumina ceramic to a metal with a sealant glass
JPH01226749A (en) Glass composition for joining ceramic
JPH09188544A (en) Glass composition
US3888686A (en) Sealing glass compositions containing calcined zirconia vanadia silica stain
EP3728149B1 (en) Sealing compositions
US3498876A (en) Low expansion copper-zinc-aluminosilicate glass compositions,composite article and mirror
CA1165336A (en) Non-crystallizing sealing glass composition
JPH10236844A (en) Sealing composition
JPH08157233A (en) Melting sealing material and melting seal consisting of it and preparation of anode ray tube envelope by using it
CN115572072A (en) Sealing glass powder and preparation method thereof
JPH10139477A (en) Highly expandable glass composition
US11945749B2 (en) High temperature sealant and methods thereof