JPS6220012B2 - - Google Patents

Info

Publication number
JPS6220012B2
JPS6220012B2 JP54088041A JP8804179A JPS6220012B2 JP S6220012 B2 JPS6220012 B2 JP S6220012B2 JP 54088041 A JP54088041 A JP 54088041A JP 8804179 A JP8804179 A JP 8804179A JP S6220012 B2 JPS6220012 B2 JP S6220012B2
Authority
JP
Japan
Prior art keywords
temperature
container
mold
parison
heated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP54088041A
Other languages
Japanese (ja)
Other versions
JPS5613142A (en
Inventor
Katsuya Oono
Tadashi Takahashi
Naohiko Suga
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Petrochemical Industries Ltd
Original Assignee
Mitsui Petrochemical Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Petrochemical Industries Ltd filed Critical Mitsui Petrochemical Industries Ltd
Priority to JP8804179A priority Critical patent/JPS5613142A/en
Publication of JPS5613142A publication Critical patent/JPS5613142A/en
Publication of JPS6220012B2 publication Critical patent/JPS6220012B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C49/00Blow-moulding, i.e. blowing a preform or parison to a desired shape within a mould; Apparatus therefor
    • B29C49/42Component parts, details or accessories; Auxiliary operations
    • B29C49/64Heating or cooling preforms, parisons or blown articles
    • B29C49/66Cooling by refrigerant introduced into the blown article
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C49/00Blow-moulding, i.e. blowing a preform or parison to a desired shape within a mould; Apparatus therefor
    • B29C49/42Component parts, details or accessories; Auxiliary operations
    • B29C49/46Component parts, details or accessories; Auxiliary operations characterised by using particular environment or blow fluids other than air
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C49/00Blow-moulding, i.e. blowing a preform or parison to a desired shape within a mould; Apparatus therefor
    • B29C49/42Component parts, details or accessories; Auxiliary operations
    • B29C49/64Heating or cooling preforms, parisons or blown articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C49/00Blow-moulding, i.e. blowing a preform or parison to a desired shape within a mould; Apparatus therefor
    • B29C49/42Component parts, details or accessories; Auxiliary operations
    • B29C49/64Heating or cooling preforms, parisons or blown articles
    • B29C49/6409Thermal conditioning of preforms
    • B29C49/6463Thermal conditioning of preforms by contact heating or cooling, e.g. mandrels or cores specially adapted for heating or cooling preforms
    • B29C49/6464Heating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C35/00Heating, cooling or curing, e.g. crosslinking or vulcanising; Apparatus therefor
    • B29C35/16Cooling
    • B29C2035/1658Cooling using gas
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C49/00Blow-moulding, i.e. blowing a preform or parison to a desired shape within a mould; Apparatus therefor
    • B29C49/42Component parts, details or accessories; Auxiliary operations
    • B29C49/46Component parts, details or accessories; Auxiliary operations characterised by using particular environment or blow fluids other than air
    • B29C2049/4602Blowing fluids
    • B29C2049/4638Blowing fluids being a hot gas, i.e. gas with a temperature higher than ambient temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C49/00Blow-moulding, i.e. blowing a preform or parison to a desired shape within a mould; Apparatus therefor
    • B29C49/42Component parts, details or accessories; Auxiliary operations
    • B29C49/46Component parts, details or accessories; Auxiliary operations characterised by using particular environment or blow fluids other than air
    • B29C2049/4673Environments
    • B29C2049/4698Pressure difference, e.g. over pressure in room
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2067/00Use of polyesters or derivatives thereof, as moulding material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2995/00Properties of moulding materials, reinforcements, fillers, preformed parts or moulds
    • B29K2995/0012Properties of moulding materials, reinforcements, fillers, preformed parts or moulds having particular thermal properties
    • B29K2995/0016Non-flammable or resistant to heat

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は熱可塑性ポリエステルからなる二軸延
伸ブロー容器の成形方法に関するものである。 従来、熱可塑性ポリエステル容器の成形方法と
しては、いわゆる射出配向ブロー成形法ないし二
軸延伸ブロー成形法が行なわれている。 この成形法は、どのように実施されるかを、第
1〜5図に沿つて示せば、次のとおりである。 まず、ポリエステル樹脂1を射出成形機2より
雄金型3、リツプ金型4及び雌金型5とからなる
金型6に射出して有底パリソン7を得る(第1
図)。 次に、リツプ金型4に有底パリソン7のネジ部
8を保持したまま、前記パリソンを加熱ポツト9
に移し、有底パリソン7の内外面を、加熱コア1
0と加熱ポツト9のヒータ11,12で加熱する
(第2図)。 加熱されたパリソン7を延伸ブロー金型13に
移し、延伸ロツド14により軸方向に延伸する
(第3図)。 次いで、有底パリソン7内に加圧空気15を吹
きこんで横方向に延伸し、ブロー成形を行なう
(第4図)。延伸ブロー金型13を延伸された有底
パリソン7、すなわち成形物7′から取り外すと
ともに、リツプ金型4を分割して成形物7′から
取り外す(第5図)。 上記方法によつて得られたポリエステル成形
物、すなわち容器は、機械的強度および水、酸
素、におい等に対するバリヤー性、内容物の保護
性、および美観等がすぐれた高品質の容器であ
る。 ところが、上記容器は高温は勿論、常温に放置
していても延伸、配向された壁面が収縮を起こし
内容積が変化するという問題がある。内容積が変
化すると、前記容器に内容物を注入する際、前記
容器へ充填される内容物の液面高さが変化し、と
くに液面高さで工程を管理する場合、例えば液面
の高さを計量して前記容器内の内容物の定量を行
なう方法においては好ましくない影響を受ける。 また、ある種の内容物によつては70〜80℃の高
温による熱充填、熱殺菌、熱滅菌等が必要な場合
もあるが、70℃以上の温度で熱充填等を行なうと
内容積が収縮により変化し、あるいは見苦しい変
形が生じ使用できない等用途面で重大な制約を受
けており、高温耐熱容器の開発が望まれている。 この対策としては特開昭53−74570号に示され
る如き、吹込金型温度をポリエチレンテレフタレ
ートのガラス転移温度未満、該ガラス転移温度よ
りも10℃低い温度以上に保ちながら、吹込成形を
行なう方法が提案されている。しかしこの方法に
より得られるポリエステル容器は通常の延伸ブロ
ー方式により得られる容器よりも耐熱収縮性があ
る程度改善されてはいるものの、該容器を70℃以
上で熱充填する場合には内容積が収縮により変化
したり、あるいは変形を起す欠点を持つており、
耐熱容器として必ずしも実用的ではない。 本発明者等は、かかる欠点のない二軸配向した
ポリエチレンテレフタレート容器であつて、ポリ
エチレンテレフタレートが本来持つている機械的
強度、気体遮断性、耐薬品性および美観等を保持
した容器を提供する事を目的として鋭意検討した
結果、吹込金型温度と吹込気体温度を持定の範囲
に制御することにより上記目的が達成できること
を見出し本発明に到達した。 すなわち本発明は熱可塑性ポリエステルからな
る二軸延伸ブロー容器を成形するに際し、吹込金
型温度を下記式()を満足する温度範囲に保持
して加熱された有底パリソンを軸方向に延伸する
と共に、前記パリソンに下記式()を満足する
温度範囲に加熱された加圧気体を吹込んで横方向
に膨脹、延伸することを特徴とする熱可塑性ポリ
エステル容器の成形方法を提供するものである。 (Tg−15)<MT<Tg ………() 140<(AT+MT)<190 …() ただし式中のTgは熱可塑性ポリエステルのガ
ラス転移温度(℃)、MTは吹込金型温度(℃)
およびATは加熱加圧気体温度(℃)を示す。 さらに好ましくは、横方向に延伸した後、常温
ないしはそれより低温の気体を延伸された成形容
器に吹込んで、急冷する方法を併用すると本発明
の上記目的は一層効果的に達成される。 具体的に、図面にしたがつて本発明法を詳述す
る。第6図は、前記第3図および第4図に示した
延伸操作とブロー成形操作を具体的に実施する場
合の、一装置の拡大図であり、リツプ金型4に有
底パリソン7が取付けられ、延伸ブロー金型13
上にそれらが載置され、かつ有底パリソン7の内
側に延伸ロツド14が存在する点において、従来
の装置と変わるところがない。 また、前記金型13の底部に偏心防止ロツド1
5(これは鎖線で表示されている)が取付けられ
延伸ロツド14の下端部が半球面状の先端部1
4′となつていて、ロツド14は空気路16を介
して中空体17の中を貫通している。そして、ロ
ツド14は、油圧装置18によつて上下動可能と
なつていて、第6図においては、それが上動した
ときの状態が実線で、そして下動したときの状態
が、鎖線でそれぞれ示されている。 前記空気路16には、加圧空気タンク19から
の空気導入管20が連通している。前記管20の
途中には、弁21が取付けられている。 以上の要索も従来の装置には必要なものである
が、本発明法に使用される装置にあつては、前記
タンク19の外に加熱空気タンク22が設けら
れ、前記管20に連通している。勿論、加熱空気
タンク22は加圧空気タンク19から空気の導入
管23を経て空気を導いて、それを加熱して導入
管20、または前記空気路16に導くことが可能
であれさえすれば、いかなる手段が採用されても
よい。したがつて、例えば、前記導入管20の途
中を、二つに分岐後、合流するごとき管構造と、
一つの管に例えばヒータを挿入し、加熱された空
気流と加熱されない空気流を形成し得る構造のも
のを使用してもよい。 以上の構造の装置を使つての本発明法は、次の
操作によつて実施される。 前記第2図に示した手順まで操作した後、延伸
ブロー成形過程へ有底パリソン7とリツプ金型4
を移動させる(第6図実線図)。 次に、油圧装置18を作動させて、ロツド14
を下動させる(第6図鎖線図)。すると有底パリ
ソン7の延伸がなされる。前記延伸と同時に、ま
たは次いで加熱タンク22から加熱された空気を
空気路16に圧送する。しかし、すでにロツド先
端部14′が下降しはじめている、または下降し
ているから、それと中空体17との間から加熱さ
れた空気が有底パリソン7の内部7″に圧入さ
れ、その圧力に抗じきれない有底パリソン7は、
金型13の内面13′にまで膨張する。したがつ
て、延伸ブロー成形が起こり成形物7′(第6図
においては一点鎖線で示されている)が得られ
る。 本発明においては、上記操作のとき延伸ブロー
金型13の温度MTを熱可塑性ポリエステルのガ
ラス転移温度(Tg)〜(該ガラス転移温度−15
℃)の範囲に保ち、かつ加熱空気すなわち加熱加
圧気体温度ATとして該延伸ブロー金型温度MT
との和が140〜190℃、好ましくは150〜180℃の温
度範囲を採用することが重要である。 延伸ブロー金型の温度MTがガラス転移温度以
上では成形容器が十分冷却されないため変形しや
すく、かつ透明度が低下し、さらには結晶化によ
る白化現象が発生するので好ましくない。 また該金型温度MTが(ガラス転移温度−15
℃)よりも低い温度では、本発明の目的とする耐
熱収縮性の優れた容器が得られないので好ましく
ない。 さらにまた、前記加熱加圧気体温度ATと前記
延伸ブロー金型温度MTとの和が140℃以下で
は、本発明の目的とする成形容器の収縮性を改善
できず、また190℃をこえると、延伸効果が下落
して成形容器の強度低下を起こしやすく、かつ結
晶化による白化現象が発生するので好ましくな
い。 かくして、延伸ブロー成形したら、次に成形物
7′内の加熱空気を、そこから脱気する。脱気方
法は冷却空気を吹きこんで、それをもつて成形物
7′の中の気体を置換してもよいし、真空源に成
形物7′の中とを通過しても積極的に脱気しても
よい。そのような装置は第6図に示されていない
が、公知の装置が使用される。 加熱空気が成形物7′の中からなくなつたら冷
却空気を加圧空気吹込タンク19から成形物7′
の中に圧入して成形物7′を常温程度にまで冷却
する。この冷却によつて成形物7′の白濁の発生
を防止し得るのである。 本発明の成形物すなわち容器を形成する好まし
い熱可塑性ポリエステルであるエチレンテレフタ
レートを主たるくり返し単位とするポリエステル
とは、これを構成するくり返し単位の80モル%以
上がエチレンテレフタレートからなるものあり、
出発原料としては、テレフタル酸またはそのアル
キレンエステル誘導体およびエチレングリコール
のほかに共重合成分としてイソフタル酸、p−
(β−オキシエトキシ)安息香酸、ナフタレン
2・6−ジカルボン酸、ジフエノキシエタン−
4・4′−ジカルボン酸、5−ナトリウムスルホイ
ソフタル酸、アジピン酸、セバシン酸またはこれ
らのアルキルエステル誘導体などのジカルボン酸
成分、プロピレングリコール、1・4−ブタンジ
オール、ネオペンチルグリコール、1・6−ヘキ
シレングリコール、シクロヘキサンジメノール、
ビスフエノールAのエチレンオキサイド付加物な
どのグリコール成分を含有しても良い。これらの
熱可塑性ポリエステルは直接エステル化を経て重
縮合を行なう方法、あるいはエステル交換反応を
経て重縮合を行なう方法のどちらの方法でも得る
ことができ、さらに必要に応じて重合度を大きく
するために上記溶融重合法で得られた熱可塑性ポ
リエステルを180〜250℃の温度で減圧あるいは不
活性ガス中で固相重合を行なつても良い。 また、本発明における熱可塑性ポリエステルは
必要に応じて着色剤、紫外線吸収剤、帯電防止
剤、熱安定剤等の添加剤を適宜な割合で含有する
ことができる。 本発明の熱可塑性ポリエステルの平均重合度は
成形性および容器の耐衝撃性などを勘案して、o
−クロルフエノール溶液の25℃における極限粘度
が0.54〜1.40好ましくは0.60以上、1.20以下であ
るものが良い。 本発明法による熱可塑性ポリエステル容器は透
明性と耐熱収縮性を兼ね備えており、従来のポリ
エチレンテレフタレート容器が耐用できなかつ
た、70℃以上における熱充填、熱殺菌などの加熱
処理に耐用できるものである。 以下に実施例を示し、本発明の効果をさらに説
明する。 実施例および比較例に挙げる主な特性値の評
価、測定方法は次の通りである。 (1) ガラス転移温度(Tg) パーキンエルマー社製示差熱量計(DSC−
1型)により、10℃/minの昇温速度で測定し
た。 (2) 熱充填収縮率 成形直後の容器の単体重量(W)および、約
25℃の水を容器口部スレスレまで入れた容器の
全重要(W1)をそれぞれメトラー型天秤で測定
後、該容器内に70℃〜80℃の熱水を容器口部ス
レスレまで注入する。30分経過後、容器内の熱
水を捨て、再度、前記と同様に水を入れ容器全
重量(W2)を測定し、次式にしたがい容器の容
積収縮率を求めた。(25℃の水の比容積を1と
する) 容積収縮率=W−W/W−W×100% (3) 引張降伏応力、引張破断応力 容器の胴部よりJIS K6301に規定されたダン
ベル3号試験片を打ち抜き、東洋測器(株)製引張
試験機“テンシロン”500型を用い、歪速度50
%/分で降伏時および破断時の張力を測定し
て、原試料の単位断面積当りの応力に換算し
た。 実施例1〜4、比較例1〜4 25℃のo−クロルフエノール溶液で測定した極
限粘度0.72、Tg75℃のポリエチレンテレフタレ
ートのペレツトを熱風乾燥機を用いて水分率が
0.01%以下になるまで乾燥した後、東芝機械(株)製
射出成形機IS−50型ならびに試験管形状のキヤビ
テイを有する水冷金型を用いて外径25mm、長さ95
mm、壁厚3mmの透明な有底パリソンを成形した。 成形条件は吐出樹脂温度290℃±5℃、射出圧
力30Kg/cm2(ゲージ圧)、金型温度30℃、射出/
冷却のタイムサイクルは8秒/10秒である。この
有底パリソンを熱風循環式オーブンおよび赤外線
ヒータを用いて95℃に加熱した後、口部(ネジ
部)の直径25mm、胴部の直径64mm、高さ180mmの
小型ビール瓶形状のキヤビテイを有し、表1に示
す各種温度に保たれている吹込金型内に移して開
口端部を保持し、延伸ロツドで縦延伸を行ない、
次いで直ちに90℃の加熱空気を導入して、吹込圧
力7Kg/cm2で径方向に膨脹させて円周方向にも延
伸し、胴部肉厚0.3〜0.4mm、内容積400c.c.の小型
ビール瓶型容器を作つた。 ここで、吹込成形装置は日鋼カウテツクスV8
型吹込成形機の一部を改造したものを用いた。ま
た吹込時間は10秒間とした。得られた容器の透明
性(目視)、外観状態、熱充填収縮率を測定した
結果を表1に、引張強度を測定した結果を表2に
示す。
The present invention relates to a method for molding a biaxially stretched blow container made of thermoplastic polyester. Conventionally, the so-called injection oriented blow molding method or biaxial stretch blow molding method has been used as a molding method for thermoplastic polyester containers. The manner in which this molding method is carried out is as follows, as shown in FIGS. 1 to 5. First, a polyester resin 1 is injected from an injection molding machine 2 into a mold 6 consisting of a male mold 3, a lip mold 4, and a female mold 5 to obtain a bottomed parison 7 (first
figure). Next, while holding the threaded part 8 of the bottomed parison 7 in the lip mold 4, the parison is placed in the heating pot 9.
, and place the inner and outer surfaces of the bottomed parison 7 on the heating core 1.
0 and the heaters 11 and 12 of the heating pot 9 (Fig. 2). The heated parison 7 is transferred to a stretching blow mold 13 and stretched in the axial direction by a stretching rod 14 (FIG. 3). Next, pressurized air 15 is blown into the bottomed parison 7 to stretch it in the lateral direction, thereby performing blow molding (FIG. 4). The stretch blow mold 13 is removed from the stretched bottomed parison 7, that is, the molded product 7', and the lip mold 4 is divided and removed from the molded product 7' (FIG. 5). The polyester molded article, ie, the container, obtained by the above method is a high-quality container with excellent mechanical strength, barrier properties against water, oxygen, odors, etc., protection of contents, and aesthetic appearance. However, even when the container is left at room temperature as well as at high temperatures, there is a problem in that the stretched and oriented wall surface shrinks and the internal volume changes. When the internal volume changes, the liquid level of the contents filled into the container changes when the contents are injected into the container. Especially when controlling the process based on the liquid level, for example, the liquid level height changes. This has an undesirable effect on the method of quantifying the contents of the container by weighing the amount. Also, depending on the type of content, heat filling, heat sterilization, heat sterilization, etc. at high temperatures of 70 to 80 degrees Celsius may be necessary, but if heat filling is performed at a temperature of 70 degrees Celsius or higher, the internal volume will increase. There are serious restrictions in terms of use, such as changes due to shrinkage or unsightly deformation, making it unusable, and the development of high-temperature heat-resistant containers is desired. As a countermeasure to this problem, there is a method of carrying out blow molding while maintaining the blow mold temperature at a temperature lower than the glass transition temperature of polyethylene terephthalate and at least 10°C lower than the glass transition temperature, as shown in Japanese Patent Application Laid-Open No. 53-74570. Proposed. However, although the polyester containers obtained by this method have improved heat shrinkage resistance to some extent than containers obtained by the normal stretch-blowing method, when the containers are filled with heat at 70°C or higher, the inner volume decreases due to shrinkage. It has the disadvantage of changing or deforming,
It is not necessarily practical as a heat-resistant container. The present inventors have an object to provide a biaxially oriented polyethylene terephthalate container that is free from such drawbacks and retains the mechanical strength, gas barrier properties, chemical resistance, aesthetic appearance, etc. inherent to polyethylene terephthalate. As a result of intensive studies aimed at this purpose, it was discovered that the above object can be achieved by controlling the temperature of the blowing mold and the temperature of the blown gas within a certain range, and the present invention was achieved. That is, when molding a biaxially stretched blow container made of thermoplastic polyester, the present invention maintains the temperature of the blow mold within a temperature range that satisfies the following formula () and stretches the heated bottomed parison in the axial direction. , provides a method for molding a thermoplastic polyester container, characterized in that the parison is expanded and stretched in the transverse direction by blowing pressurized gas heated to a temperature range satisfying the following formula () into the parison. (Tg−15)<MT<Tg......() 140<(AT+MT)<190...() In the formula, Tg is the glass transition temperature of thermoplastic polyester (℃), and MT is the blowing mold temperature (℃)
and AT indicates the heated and pressurized gas temperature (°C). More preferably, after stretching in the transverse direction, a method of quenching the stretched molded container by blowing gas at room temperature or lower temperature therein is used in combination to more effectively achieve the above object of the present invention. Specifically, the method of the present invention will be explained in detail with reference to the drawings. FIG. 6 is an enlarged view of one apparatus for specifically carrying out the stretching operation and blow molding operation shown in FIGS. 3 and 4, in which the bottomed parison 7 is attached to the lip mold 4. Stretch blow mold 13
There is no difference from the conventional apparatus in that these are placed on top and the drawing rod 14 is present inside the bottomed parison 7. In addition, an eccentricity prevention rod 1 is attached to the bottom of the mold 13.
5 (this is indicated by a chain line) is attached, and the lower end of the stretching rod 14 has a hemispherical tip 1
4', and the rod 14 passes through the hollow body 17 via an air passage 16. The rod 14 can be moved up and down by a hydraulic device 18, and in FIG. 6, the state when it moves up is shown by a solid line, and the state when it moves down is shown by a chain line. It is shown. An air introduction pipe 20 from a pressurized air tank 19 communicates with the air passage 16 . A valve 21 is installed in the middle of the pipe 20. The above summary is also necessary for the conventional device, but in the device used in the method of the present invention, a heated air tank 22 is provided outside the tank 19 and communicates with the pipe 20. ing. Of course, as long as the heated air tank 22 is capable of introducing air from the pressurized air tank 19 through the air introduction pipe 23, heating it and introducing it into the introduction pipe 20 or the air passage 16, Any means may be adopted. Therefore, for example, a pipe structure in which the introduction pipe 20 is branched into two parts and then merged,
For example, a structure in which a heater can be inserted into one tube to form a heated air flow and an unheated air flow may be used. The method of the present invention using the apparatus having the above structure is carried out by the following operations. After performing the operations up to the steps shown in FIG. 2, the bottomed parison 7 and the lip mold 4 are moved to the stretch blow molding process.
(solid line diagram in Figure 6). Next, the hydraulic system 18 is operated to release the rod 14.
(Figure 6, chain line diagram). Then, the bottomed parison 7 is stretched. Simultaneously with the stretching, or subsequently, heated air is pumped into the air passage 16 from the heating tank 22. However, since the rod tip 14' has already started or is descending, heated air is forced into the interior 7'' of the bottomed parison 7 from between it and the hollow body 17, and resists the pressure. The bottomed parison 7 is
It expands to the inner surface 13' of the mold 13. Stretch blow molding therefore takes place and a molded article 7' (indicated by a dashed line in FIG. 6) is obtained. In the present invention, the temperature MT of the stretch blow mold 13 during the above operation is set between the glass transition temperature (Tg) of the thermoplastic polyester and (the glass transition temperature -15
℃), and the stretching blow mold temperature MT as heated air i.e. heated pressurized gas temperature AT
It is important to adopt a temperature range in which the sum of If the temperature MT of the stretch blow mold is higher than the glass transition temperature, the molded container will not be sufficiently cooled and will be easily deformed, the transparency will decrease, and furthermore, a whitening phenomenon will occur due to crystallization, which is undesirable. In addition, the mold temperature MT is (glass transition temperature - 15
℃) is not preferable because a container with excellent heat shrinkage resistance, which is the object of the present invention, cannot be obtained. Furthermore, if the sum of the heated and pressurized gas temperature AT and the stretch blow mold temperature MT is below 140°C, the shrinkability of the molded container, which is the object of the present invention, cannot be improved, and if it exceeds 190°C, This is undesirable because the stretching effect is lowered and the strength of the molded container is likely to decrease, and a whitening phenomenon due to crystallization occurs. Thus, after stretch blow molding, the heated air within the molded article 7' is then evacuated therefrom. The degassing method may be to blow cooled air and use it to replace the gas in the molded product 7', or to actively degas it by passing the gas inside the molded product 7' to a vacuum source. It's okay to worry about it. Although such equipment is not shown in FIG. 6, known equipment may be used. When the heated air is exhausted from the molded product 7', cooling air is supplied from the pressurized air blowing tank 19 to the molded product 7'.
The molded article 7' is cooled to about room temperature. This cooling can prevent the molded product 7' from becoming cloudy. A polyester having ethylene terephthalate as a main repeating unit, which is a preferable thermoplastic polyester for forming the molded article or container of the present invention, is one in which 80 mol% or more of the repeating units constituting the polyester is composed of ethylene terephthalate.
As starting materials, in addition to terephthalic acid or its alkylene ester derivative and ethylene glycol, isophthalic acid and p-
(β-oxyethoxy)benzoic acid, naphthalene 2,6-dicarboxylic acid, diphenoxyethane-
Dicarboxylic acid components such as 4,4'-dicarboxylic acid, 5-sodium sulfoisophthalic acid, adipic acid, sebacic acid or their alkyl ester derivatives, propylene glycol, 1,4-butanediol, neopentyl glycol, 1,6- hexylene glycol, cyclohexane dimenol,
It may also contain a glycol component such as an ethylene oxide adduct of bisphenol A. These thermoplastic polyesters can be obtained by either direct esterification followed by polycondensation or transesterification followed by polycondensation. The thermoplastic polyester obtained by the above melt polymerization method may be subjected to solid phase polymerization at a temperature of 180 to 250°C under reduced pressure or in an inert gas. Furthermore, the thermoplastic polyester in the present invention may contain additives such as colorants, ultraviolet absorbers, antistatic agents, and heat stabilizers in appropriate proportions, if necessary. The average degree of polymerization of the thermoplastic polyester of the present invention is determined by taking into consideration moldability, impact resistance of the container, etc.
- The intrinsic viscosity of the chlorophenol solution at 25° C. is preferably 0.54 to 1.40, preferably 0.60 or more and 1.20 or less. The thermoplastic polyester container produced by the method of the present invention has both transparency and heat shrinkage resistance, and can withstand heat treatments such as heat filling and heat sterilization at temperatures above 70°C, which conventional polyethylene terephthalate containers cannot withstand. . Examples are shown below to further explain the effects of the present invention. The evaluation and measurement methods for the main characteristic values listed in Examples and Comparative Examples are as follows. (1) Glass transition temperature (Tg) PerkinElmer differential calorimeter (DSC-
1) at a heating rate of 10°C/min. (2) Heat filling shrinkage rate The unit weight (W) of the container immediately after molding and the approx.
After measuring the total weight (W 1 ) of a container filled with water at 25° C. up to the mouth of the container using a Mettler balance, hot water at 70° C. to 80° C. is poured into the container up to the mouth of the container. After 30 minutes had elapsed, the hot water in the container was discarded, water was added again in the same manner as above, the total weight (W 2 ) of the container was measured, and the volumetric shrinkage rate of the container was determined according to the following formula. (The specific volume of water at 25°C is 1) Volume shrinkage rate = W 1 - W 2 / W 1 - W x 100% (3) Tensile yield stress, tensile rupture stress Specified by JIS K6301 from the body of the container. A dumbbell No. 3 test piece was punched out, and a strain rate of 50
The tension at yield and at break was measured in %/min and converted into stress per unit cross-sectional area of the original sample. Examples 1 to 4, Comparative Examples 1 to 4 Polyethylene terephthalate pellets with an intrinsic viscosity of 0.72 measured in an o-chlorophenol solution at 25°C and a Tg of 75°C were dried using a hot air dryer to reduce the moisture content.
After drying to 0.01% or less, it was molded using an injection molding machine IS-50 manufactured by Toshiba Machine Co., Ltd. and a water-cooled mold with a test tube-shaped cavity, with an outer diameter of 25 mm and a length of 95 mm.
A transparent bottomed parison with a wall thickness of 3 mm and a wall thickness of 3 mm was molded. The molding conditions are: discharge resin temperature 290℃±5℃, injection pressure 30Kg/cm 2 (gauge pressure), mold temperature 30℃, injection/
The cooling time cycle is 8 seconds/10 seconds. After heating this bottomed parison to 95°C using a hot air circulation oven and an infrared heater, it has a cavity shaped like a small beer bottle with a mouth (threaded part) diameter of 25 mm, a body diameter of 64 mm, and a height of 180 mm. , transferred into a blowing mold maintained at various temperatures shown in Table 1, holding the open end, longitudinally stretched with a stretching rod,
Next, heated air at 90°C is immediately introduced to expand it in the radial direction at a blowing pressure of 7 kg/cm 2 and also to stretch it in the circumferential direction. I made a beer bottle type container. Here, the blow molding equipment is Nikko Cautex V8
A partially modified mold blow molding machine was used. The blowing time was 10 seconds. Table 1 shows the results of measuring the transparency (visual observation), external appearance, and heat-filling shrinkage rate of the obtained container, and Table 2 shows the results of measuring the tensile strength.

【表】【table】

【表】 表1から明らかなように、金型温度をガラス転
移温度以下、ガラス転移温度より15℃低い温度以
上の範囲にすれば、容器の透明性および外観を損
なわずに、70℃の熱水充填においても容積収縮率
は1.0%以下となり、高温充填容器として、十分
耐えられることがわかる。 また表2に示すごとく本発明の容器は引張強度
も著しく向上しており、炭酸、ビール等の飲料容
器として極めて有用である。 実施例5〜12、比較例5〜10 実施例1と同様の原料および成形条件で有底パ
リソンを成形し、この有底パリソンを95℃に加熱
した後、表3に示す各種温度に保たれている吹込
金型内に移して開口端部を保持し、縦延伸を行な
い、次いで直ちに表3示す各種温度の加熱空気を
導入して、円周方向にも延伸し、実施例1と同様
のポリエステル容器を作つた。 ここで吹込成形装置、円周方向の吹込圧力、吹
込金型等は実施例1と同様である。 得られた容器の透明性(目視)、外観状態、熱
充填収縮率を測定した結果を表3に示す。
[Table] As is clear from Table 1, if the mold temperature is set to below the glass transition temperature and at least 15°C lower than the glass transition temperature, it is possible to heat up to 70°C without impairing the transparency and appearance of the container. Even when filled with water, the volumetric shrinkage rate was less than 1.0%, indicating that the container can withstand high-temperature filling. Furthermore, as shown in Table 2, the containers of the present invention have significantly improved tensile strength and are extremely useful as containers for beverages such as carbonated drinks and beer. Examples 5 to 12, Comparative Examples 5 to 10 A bottomed parison was molded using the same raw materials and molding conditions as in Example 1, and the bottomed parison was heated to 95°C and then maintained at various temperatures shown in Table 3. The opening end was held in a blowing mold and stretched longitudinally. Then, heated air at various temperatures shown in Table 3 was immediately introduced to stretch the mold in the circumferential direction as well, as in Example 1. I made a polyester container. Here, the blow molding device, circumferential blow pressure, blow mold, etc. are the same as in Example 1. Table 3 shows the results of measuring the transparency (visual observation), appearance condition, and heat-filling shrinkage rate of the obtained container.

【表】 表3から明なからように、加熱空気の温度と延
伸ブロー金型温度の和を140℃〜190℃の温度範囲
にすれば、容器の透明性、および外観をほとんど
損なわずに、70℃の熱水充填における容積収縮率
が1.0%以下である優れた耐熱容器が得られる。 実施例 13〜15 実施例1と同様の原料および成形条件で有底パ
リソンを成形し、この有底パリソンを95℃に加熱
した後、75℃の温度に保たれている吹込金型に移
して開口端部を保持し、縦延伸を行ない、直ちに
115℃の温度の加熱空気を導入してブロー延伸
(1次ブロー)を5秒間行なつた後、次いで直ち
に表4に示す各種温度に変更してブロー(2次ブ
ロー)を5秒間行ない冷却した。 ここで、吹込成形装置、横方向の吹込圧力(延
伸後の冷却吹込圧力を含む)、等は実施例1と同
様である。得られた容器の透明性(目視)外観状
態、熱充填収縮率を測定した結果を表4に示す。 表4から明らかなように延伸終了後常温または
常温以下の冷風をブローすることにより、金型温
度および1次ブローエヤーの温度が高温であつて
も、変形のない優れた耐熱溶器が得られる。
[Table] As is clear from Table 3, if the sum of the heated air temperature and the stretch blow mold temperature is in the range of 140°C to 190°C, the transparency and appearance of the container will be maintained almost unchanged. An excellent heat-resistant container with a volume shrinkage of 1.0% or less when filled with hot water at 70°C can be obtained. Examples 13 to 15 A bottomed parison was molded using the same raw materials and molding conditions as in Example 1, and after heating this bottomed parison to 95°C, it was transferred to a blowing mold maintained at a temperature of 75°C. Hold the open end, perform longitudinal stretching, and immediately
After introducing heated air at a temperature of 115°C and performing blow stretching (primary blow) for 5 seconds, the temperature was immediately changed to various temperatures shown in Table 4 and blowing (secondary blow) was performed for 5 seconds to cool it. . Here, the blow molding device, the lateral blowing pressure (including the cooling blowing pressure after stretching), etc. are the same as in Example 1. Table 4 shows the results of measuring the transparency (visual) appearance and heat-filling shrinkage rate of the obtained containers. As is clear from Table 4, by blowing cold air at room temperature or below room temperature after stretching, an excellent heat-resistant welder that does not deform can be obtained even when the mold temperature and the temperature of the primary blowing air are high.

【表】【table】 【図面の簡単な説明】[Brief explanation of the drawing]

第1〜5図は、二軸延伸ブロー成形法の操作手
順を説明するための図面である。第6図は本発明
法を説明するための第3〜4図に相当する図面で
ある。 7……有底パリソン、13……延伸ブロー金
型、14……延伸ロツド、16……空気流、18
……油圧装置、19……加圧空気タンク、22…
…加熱空気タンク。
1 to 5 are drawings for explaining the operating procedure of the biaxial stretch blow molding method. FIG. 6 is a drawing corresponding to FIGS. 3 and 4 for explaining the method of the present invention. 7... Bottomed parison, 13... Stretching blow mold, 14... Stretching rod, 16... Air flow, 18
... Hydraulic system, 19 ... Pressurized air tank, 22 ...
…heated air tank.

Claims (1)

【特許請求の範囲】 1 熱可塑性ポリエステルからなる二軸延伸ブロ
ー容器を成形するに際し、吹込金型温度を下記式
()を満足する温度範囲に保持して加熱された
有底パリソンを軸方向に延伸すると共に、前記パ
リソンに下記式()を満足する温度範囲に加熱
された加圧気体を吹込んで横方向に膨脹、延伸す
ることを特徴とする熱可塑性ポリエステル容器の
成形方法。 (Tg−15)<MT<Tg ………() 140<(AT+MT)<190 …() ただし式中のTgは熱可塑性ポリエステルのガ
ラス転移温度(℃)、MTは吹込金型温度(℃)
およびATは加熱加圧気体温度(℃)を示す。
[Claims] 1. When molding a biaxially stretched blow container made of thermoplastic polyester, a heated bottomed parison is axially heated by maintaining the temperature of the blow mold within a temperature range that satisfies the following formula (). A method for forming a thermoplastic polyester container, which comprises stretching the parison and blowing into the parison a pressurized gas heated to a temperature range satisfying the following formula (2) to expand and stretch the parison in the transverse direction. (Tg−15)<MT<Tg......() 140<(AT+MT)<190...() In the formula, Tg is the glass transition temperature of thermoplastic polyester (℃), and MT is the blowing mold temperature (℃)
and AT indicates the heated and pressurized gas temperature (°C).
JP8804179A 1979-07-13 1979-07-13 Molding method for thermoplastic polyester container Granted JPS5613142A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8804179A JPS5613142A (en) 1979-07-13 1979-07-13 Molding method for thermoplastic polyester container

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8804179A JPS5613142A (en) 1979-07-13 1979-07-13 Molding method for thermoplastic polyester container

Publications (2)

Publication Number Publication Date
JPS5613142A JPS5613142A (en) 1981-02-09
JPS6220012B2 true JPS6220012B2 (en) 1987-05-02

Family

ID=13931734

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8804179A Granted JPS5613142A (en) 1979-07-13 1979-07-13 Molding method for thermoplastic polyester container

Country Status (1)

Country Link
JP (1) JPS5613142A (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5190675B2 (en) * 2008-03-28 2013-04-24 大日本印刷株式会社 Heating bottle manufacturing method, bottle product manufacturing method, and heating bottle
JP5136157B2 (en) * 2008-03-28 2013-02-06 大日本印刷株式会社 Hot-filling bottle manufacturing method, bottle product manufacturing method, and hot-filling bottle
WO2011040337A1 (en) * 2009-09-30 2011-04-07 株式会社Adeka Polyester resin composition, polyester fiber, polyester resin molded article, and process for production of nucleating agent for polyester resin
JP5781744B2 (en) * 2010-06-30 2015-09-24 株式会社Adeka Plastic bottle manufacturing method
DE102010022131A1 (en) * 2010-05-20 2011-11-24 Krones Ag Sterilizable blow mold
JP5765657B2 (en) * 2012-01-31 2015-08-19 株式会社吉野工業所 Blow molding equipment
EP2810763B1 (en) * 2012-01-31 2018-03-07 Discma AG Blow molding device

Also Published As

Publication number Publication date
JPS5613142A (en) 1981-02-09

Similar Documents

Publication Publication Date Title
JPH0351568B2 (en)
US5858300A (en) Self-sustaining container
WO1988001563A1 (en) Production of polyester hollow molded article
JP5533515B2 (en) Polyester expanded foam container
JPS584611B2 (en) plastic containers
JPS6220012B2 (en)
JPS6356104B2 (en)
JP2998559B2 (en) One-piece heat-resistant polyester bottle and its manufacturing method
JPS5856335B2 (en) Method for manufacturing polyester containers
JP3716510B2 (en) Stretch blow bottle
JP2005001164A (en) Method for manufacturing bottle made of polyester resin
JPH0112657B2 (en)
JPS6357312B2 (en)
JP3743306B2 (en) Polyethylene terephthalate for polyester container and production method of polyester container
JPS59103832A (en) Polyester vessel
EP3476756B1 (en) Polyester stretch blow-molded container and manufacturing method therefor
JPS6319330B2 (en)
JPS5935333B2 (en) Method for manufacturing polyester containers
JPH028026A (en) Heat resistant hollow vessel
JPH02269637A (en) Heat resistant plastic bottle
JPS6240177B2 (en)
JPH09216275A (en) Biaxial stretching blow molding method
JP3674984B2 (en) Polyester container and method for producing the same
JP2687876B2 (en) Polyester bottle and manufacturing method thereof
WO2000023252A1 (en) Injection stretch blow molding method