JPS6219727A - Immersion thermometer for molten metal - Google Patents

Immersion thermometer for molten metal

Info

Publication number
JPS6219727A
JPS6219727A JP60158904A JP15890485A JPS6219727A JP S6219727 A JPS6219727 A JP S6219727A JP 60158904 A JP60158904 A JP 60158904A JP 15890485 A JP15890485 A JP 15890485A JP S6219727 A JPS6219727 A JP S6219727A
Authority
JP
Japan
Prior art keywords
optical fiber
molten metal
tip
infrared
temp
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60158904A
Other languages
Japanese (ja)
Inventor
Hideo Takada
秀夫 高田
Toshihiko Shibata
柴田 敏彦
Kiyoshi Nihei
清 二瓶
Tomio Inoue
富夫 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JAPAN SENSOR CORP KK
Nippon Steel Corp
Original Assignee
JAPAN SENSOR CORP KK
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JAPAN SENSOR CORP KK, Nippon Steel Corp filed Critical JAPAN SENSOR CORP KK
Priority to JP60158904A priority Critical patent/JPS6219727A/en
Publication of JPS6219727A publication Critical patent/JPS6219727A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/02Constructional details
    • G01J5/08Optical arrangements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/0037Radiation pyrometry, e.g. infrared or optical thermometry for sensing the heat emitted by liquids
    • G01J5/004Radiation pyrometry, e.g. infrared or optical thermometry for sensing the heat emitted by liquids by molten metals
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/02Constructional details
    • G01J5/08Optical arrangements
    • G01J5/0818Waveguides
    • G01J5/0821Optical fibres

Abstract

PURPOSE:To enable the detection of the correct temp. of a molten metal by dipping the tip of an optical fiber continuously in a melting metal. CONSTITUTION:An optical fiber 20 is inserted into a melting metal by the prescribed length by gradually descending it. In this case the temp. of the tip part 21 becomes nearly the same temp. with that of the melting metal and an infrared ray energy is radiated inside the tip part 21 thereof. The infrared ray is then radiated from the output end part 23 of the optical fiber 20 via the optical fiber 20 (bobbin part 22). An infrared ray sensor 41 receives the radiated infrared energy then and generates the prescribed electrical signal according to the quantity of the received infrared ray thereof. This electrical signal is then processed by a signal processing circuit 42. The signal corresponding to the temp. of the melting metal 10 is thus outputted to the output terminal 43 of a recorder.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、溶融金属の温度を測定する浸漬温度計に関す
るものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an immersion thermometer for measuring the temperature of molten metal.

[従来の技術] 周知の如く、溶銑、溶鋼などの溶融金属の高温度を測定
する方法、として、黒鉛スリーブまたは耐火モルタルで
囲まれた鋼管またはステンレス管の中にアルミナ焼結管
で絶縁されたPRa電対を入れ、その、%電対の端(測
温接点)は管の外に出し溶融金属に浸漬し温度を測定す
る浸漬式熱電温度計がある(例えば、計量管理協会編「
温度」 (昭和50.9.30)、コロナ社、P174
)。
[Prior Art] As is well known, as a method for measuring the high temperature of molten metals such as hot metal and molten steel, a steel or stainless steel tube surrounded by a graphite sleeve or refractory mortar is insulated with an alumina sintered tube. There is an immersion type thermocouple thermometer that measures the temperature by inserting a PRa couple into the molten metal and placing the end of the % couple (temperature measuring junction) outside the tube.
Temperature” (September 30, 1975), Coronasha, P174
).

[発明が解決しようとする問題点] 前記従来技術においては、溶湯の温度を連続的   ・
に測定をすることができないという問題がある。
[Problems to be solved by the invention] In the above-mentioned prior art, the temperature of the molten metal is continuously controlled.
The problem is that it is not possible to make measurements.

すなわち、溶銑、溶鋼などの温度は通常1500°C以
上であり、その熱電対を浸漬すると短時間のうちに感熱
部分が溶融するので短時間で温度測定を行なわなければ
ならず、感熱部分を石英管などで   ゛保護しても引
き揚げると溶融物が付刃固化するため測定1回毎に先端
部の補修、あるいは取替加工   □を必要としていた
In other words, the temperature of hot metal, molten steel, etc. is usually over 1500°C, and when the thermocouple is immersed, the heat-sensitive part melts in a short time, so temperature measurement must be carried out in a short time, so the heat-sensitive part is quartz. Even if the tip was protected with a tube, the molten material solidified when the tip was pulled up, so the tip had to be repaired or replaced after each measurement.

[問題点を解決するための手段および作用]本発明は、
前述の問題点を有利に解決するためになされたものであ
り、その手段は金属の溶湯に光、アイバ先端部を連続的
に浸漬する挿入手段。
[Means and effects for solving the problems] The present invention has the following features:
In order to advantageously solve the above-mentioned problems, the method is an insertion means that continuously immerses the tip of the eyeglass into molten metal.

と、前記光ファイバを通過した赤外線に基づいて温度を
検出する赤外線温度検出手段とを有する溶融金属の浸漬
温度計である。
and an infrared temperature detection means for detecting temperature based on the infrared rays transmitted through the optical fiber.

すなわち、光ファイバとして石英ファイバの温度に対す
る劣化は約300°Cで開始する。しかし、これを連続
的に溶湯にファイバ先端部を浸漬することによって新た
に浸漬したファイバによって発生した溶湯温度に応じた
赤外線エネルギーはファイバを介して赤外線センサに送
られ正確な温度を検出することが可能となるものである
That is, as an optical fiber, quartz fiber starts to deteriorate at about 300°C. However, by continuously immersing the fiber tip into the molten metal, the infrared energy generated by the newly immersed fiber according to the molten metal temperature is sent to the infrared sensor via the fiber, making it impossible to accurately detect the temperature. It is possible.

[発明の実施例] 図は1本発明の一実施例を示す説明図である。[Embodiments of the invention] The figure is an explanatory diagram showing an embodiment of the present invention.

鉄の溶?!!10の中に、光ファイバ20の先端部21
が挿入されている。そして、光ファイバ20の反対側は
、ボビン部22において、所定回数、巻かれている。光
ファイバ20のうち、ボビン部22と先端部21との間
に存在する部分は1等速回転するプーリ31,32によ
って、所定速度で下降されている。
Melting iron? ! ! 10 includes a tip 21 of an optical fiber 20.
is inserted. The opposite side of the optical fiber 20 is wound a predetermined number of times in a bobbin portion 22. The portion of the optical fiber 20 that exists between the bobbin portion 22 and the tip portion 21 is lowered at a predetermined speed by pulleys 31 and 32 that rotate at a constant speed.

プーリ31.32は、パルスモータ等のモータ30によ
って回転される。光ファイバ20の他端である出力端部
23は、その光ファイバ20を通過した赤外線に基づい
て温度を検出する赤外線温度検出手段40に接続されて
いる。
The pulleys 31, 32 are rotated by a motor 30, such as a pulse motor. The output end 23, which is the other end of the optical fiber 20, is connected to an infrared temperature detection means 40 that detects the temperature based on the infrared rays that have passed through the optical fiber 20.

赤外線温度検出手段40は、赤外線センサ41と信号処
理回路42と記録計出力端子43で構成されている。赤
外線センサ41は、赤外線の量に応じた電気信号を出力
するものであり、信号処理回路42は1図示しない記録
計などを駆動するのに適した信号を出力するものである
The infrared temperature detection means 40 includes an infrared sensor 41, a signal processing circuit 42, and a recorder output terminal 43. The infrared sensor 41 outputs an electric signal corresponding to the amount of infrared rays, and the signal processing circuit 42 outputs a signal suitable for driving a recorder or the like (not shown).

次に、上記実施例の動作について説明する。Next, the operation of the above embodiment will be explained.

光ファイバ20を徐々に下降させて、溶湯10の中に所
定長さだけ挿入する(上記実施例においては、先端部2
1のみが溶i!ioに進入している)、この場合、先端
部21の温度は、溶湯10とほぼ同一の温度になり、そ
の先端部21内で赤外線エネルギーが放射され、この赤
外線は光ファイバ20(ボビン部22)を介して光ファ
イバ20の出力端部23から放射される。この放射され
た赤外線エネルギーを、赤外線センサ41が受け、その
受けた赤外線の量に応じて、所定の電気信号を発生させ
る。この電気信号を、信号処理回路42が所定の処理を
行なう。
The optical fiber 20 is gradually lowered and inserted into the molten metal 10 by a predetermined length (in the above embodiment, the tip portion 2
Only 1 melts! In this case, the temperature of the tip 21 becomes almost the same as that of the molten metal 10, and infrared energy is emitted within the tip 21. ) from the output end 23 of the optical fiber 20. The infrared sensor 41 receives this radiated infrared energy and generates a predetermined electrical signal depending on the amount of infrared rays received. A signal processing circuit 42 performs predetermined processing on this electrical signal.

これによって、記録計出力端子43には、溶湯lOの温
度に応じた信号が出力される。
As a result, a signal corresponding to the temperature of the molten metal IO is output to the recorder output terminal 43.

ところで、モータ30によってプーリ31゜32が徐々
に回転し、光ファイバ20が、所定の速度(たとえば3
00 m m / 1時間)の速度で徐々に下降する。
By the way, the pulleys 31 and 32 are gradually rotated by the motor 30, and the optical fiber 20 is rotated at a predetermined speed (for example, 3
00 mm/1 hour).

したがって、先端部21において光ファイバの劣化があ
っても、新たな先端部21aが溶湯10に進入し、この
先端部21aで発生した赤外線エネルギーは、その新た
な先端部21aを通過し、光ファイバ20を介して赤外
線センサ41に伝わる。したがって、光ファイバ20に
おける赤外線の伝達損失が無い。
Therefore, even if the optical fiber deteriorates at the tip 21, a new tip 21a enters the molten metal 10, the infrared energy generated at this tip 21a passes through the new tip 21a, and the optical fiber It is transmitted to the infrared sensor 41 via 20. Therefore, there is no transmission loss of infrared rays in the optical fiber 20.

つまり、一般に、光ファイバ(石英ファイバ)の劣化(
一時劣化)は、300’Cで開始され。
In other words, in general, optical fiber (quartz fiber) deteriorates (
Temporary deterioration) begins at 300'C.

これは空気中の酸素と水素に基づくものである。This is based on the oxygen and hydrogen in the air.

上記ファイバの劣化は、失透という現象を件なう、この
失透とは、光の透過率が低下し表面の光学特性が劣化す
ることである。
The deterioration of the fiber is caused by a phenomenon called devitrification, which is a decrease in light transmittance and deterioration of the optical properties of the surface.

したがって、光ファイバ20を溶r!に10に連続的に
挿入しなければ、光ファイバ20の劣化による赤外線エ
ネルギーの伝達損失が生じ、赤外線温度検出手段40が
適正な出力を生じない、しかし、上記実施例においては
、光ファイバ20が連続的に溶rQ10に進入するので
、所定時間経過後に失透した先端部21からの赤外線エ
ネルギー伝達量が減ったとしても、新たに溶湯10に進
入し゛た先端部21aで発生した赤外線エネルギーは、
はとんど伝達損失が無い状態で赤外線センサ41に送ら
れる。そして、上記動作を繰り返すので。
Therefore, the optical fiber 20 is melted! If the optical fiber 20 is not inserted continuously into the fiber 10, a transmission loss of infrared energy will occur due to deterioration of the optical fiber 20, and the infrared temperature detection means 40 will not produce an appropriate output.However, in the above embodiment, the optical fiber 20 Since it continuously enters the molten metal rQ10, even if the amount of infrared energy transmitted from the devitrified tip 21 decreases after a predetermined period of time, the infrared energy generated at the tip 21a that has newly entered the molten metal 10 will
is sent to the infrared sensor 41 with almost no transmission loss. And then repeat the above operation.

溶湯10の温度に応じた赤外線を赤外線センサ41が受
けるので、正確な温度検出を行なうことができる。
Since the infrared sensor 41 receives infrared radiation corresponding to the temperature of the molten metal 10, accurate temperature detection can be performed.

また、光ファイバ20は、自己発熱が生じないので、溶
湯lOの温度を正確に赤外線センサ41に伝達する。
Further, since the optical fiber 20 does not generate self-heating, it accurately transmits the temperature of the molten metal IO to the infrared sensor 41.

なお、符号11は、酸化皮膜であり、光ファイパ20を
溶湯10の中に直接入れなければ、WI化。
Note that the reference numeral 11 is an oxide film, and if the optical fiber 20 is not placed directly into the molten metal 10, it will become WI.

皮膜11の温度を測定することになるが、この酸化皮膜
11の温度は、かならずしも溶湯10の内部温度ではな
い、したがって、この方法では、正確な測定をすること
ができない。
Although the temperature of the film 11 will be measured, the temperature of the oxide film 11 is not necessarily the internal temperature of the molten metal 10, so this method cannot accurately measure it.

また、光ファイバ20を溶湯lOに挿入する場合、図に
示す実施例のように鉛直方向に光ファイ/<20を降下
させてもよく、斜めに溶湯lOに入れるようにしてもよ
い、また、パルスモータ30の速度は、光ファイバ20
が劣化する速度よりも少し速くすればよい。
Furthermore, when inserting the optical fiber 20 into the molten metal IO, the optical fiber 20 may be lowered vertically as in the embodiment shown in the figure, or may be inserted diagonally into the molten metal IO. The speed of the pulse motor 30 is determined by the speed of the optical fiber 20.
The speed should be slightly faster than the rate at which it deteriorates.

さらに、出力端部23は、光ファイバ20を降下するこ
とによってボビン部22が回転するので、出力端部23
も回転するが、赤外線センサ41に送る赤外線の量が変
化しないようにすれば、測定値に誤差が生じない、信号
処理回路42は、アナログ処理をするものであってもデ
ジタル処理をするものであってもよい、ただし、デジタ
ル処理する場合には、赤外線センサ41の出力信号をA
/D変換する必要がある。
Further, since the bobbin portion 22 is rotated by lowering the optical fiber 20, the output end portion 23 is
The signal processing circuit 42 rotates, but if the amount of infrared rays sent to the infrared sensor 41 does not change, there will be no error in the measured value.Even if the signal processing circuit 42 performs analog processing, it also performs digital processing. However, in the case of digital processing, the output signal of the infrared sensor 41 may be
/D conversion is required.

[発明の効果] 以上説明した如く、本発明の光ファイバを利用した溶融
金属の浸漬温度計は、従来の熱電対を浸漬させた溶融金
属の温度計に比べ、ファイバの損耗だけで連続して測定
することができ、しかも溶融金属の真の温度を正確に測
定することができる効果を有するものである。
[Effects of the Invention] As explained above, the molten metal immersion thermometer using the optical fiber of the present invention can be used continuously due to fiber wear alone, compared to the conventional molten metal thermometer in which a thermocouple is immersed. It has the effect of being able to accurately measure the true temperature of molten metal.

【図面の簡単な説明】[Brief explanation of drawings]

図は、本発明の一実施例を示す図である。 10・・・鉄の溶湯、 20・・・光ファイバ。 21・・・先端部、 22・・・ボビン部、 23・・・出力端部、 31.32・・・プーリ。 40・・・赤外線温度検出手段。 The figure is a diagram showing an embodiment of the present invention. 10...molten iron, 20...Optical fiber. 21... Tip part, 22...Bobbin part, 23...output end, 31.32...Pulley. 40...Infrared temperature detection means.

Claims (2)

【特許請求の範囲】[Claims] (1)金属の溶湯に光ファイバ先端部を連続的に浸漬す
る挿入手段と、前記光ファイバを通過した赤外線に基づ
いて温度を検出する赤外線温度検出手段とを有すること
を特徴とする溶融金属の浸漬温度計。
(1) A method for producing molten metal characterized by having an insertion means for continuously immersing the tip of an optical fiber in the molten metal, and an infrared temperature detection means for detecting the temperature based on the infrared rays that have passed through the optical fiber. Immersion thermometer.
(2)光ファイバが石英ファイバであることを特徴とす
る特許請求の範囲(1)の溶融金属の浸漬温度計。
(2) The immersion thermometer for molten metal according to claim (1), wherein the optical fiber is a quartz fiber.
JP60158904A 1985-07-18 1985-07-18 Immersion thermometer for molten metal Pending JPS6219727A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60158904A JPS6219727A (en) 1985-07-18 1985-07-18 Immersion thermometer for molten metal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60158904A JPS6219727A (en) 1985-07-18 1985-07-18 Immersion thermometer for molten metal

Publications (1)

Publication Number Publication Date
JPS6219727A true JPS6219727A (en) 1987-01-28

Family

ID=15681897

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60158904A Pending JPS6219727A (en) 1985-07-18 1985-07-18 Immersion thermometer for molten metal

Country Status (1)

Country Link
JP (1) JPS6219727A (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05248960A (en) * 1992-03-02 1993-09-28 Nkk Corp Temperature measuring device and level measuring device for molten metal
EP0646778A1 (en) * 1993-10-05 1995-04-05 Nkk Corporation Apparatus for measuring temperature using optical fiber and method therefor
EP0655613A1 (en) 1993-11-30 1995-05-31 Nkk Corporation Temperature measuring device
EP0685715A1 (en) * 1994-05-30 1995-12-06 Nkk Corporation Method for measuring temperature using optical fiber and apparatus therefor
WO1998014755A1 (en) * 1996-10-02 1998-04-09 Ferrotron Elektronik Gmbh Method to measure slag layer thickness on a molten bath and appropriate device for use of said method
US6004031A (en) * 1993-11-30 1999-12-21 Nkk Corporation Temperature measuring device
JP2005007451A (en) * 2003-06-20 2005-01-13 Jfe Koken Corp Method for measuring temperature of weld zone
JP2014111271A (en) * 2012-12-05 2014-06-19 Japan Steel Works Ltd:The Temperature measurement device for electro-slag-remelting and temperature measurement method for electro-slag-remelting
EP2940441A1 (en) 2014-04-30 2015-11-04 Heraeus Electro-Nite International N.V. Device for measuring the temperature of a molten metal
US9726545B2 (en) 2013-04-30 2017-08-08 Heraeus Electro-Nite International N.V. Method and apparatus for measuring the temperature of a molten metal
EP3339823A1 (en) * 2016-12-22 2018-06-27 Heraeus Electro-Nite International N.V. Method for measuring a temperature of a molten metal bath
US11331720B2 (en) 2019-12-24 2022-05-17 Sintokogio, Ltd. Pouring apparatus

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05248960A (en) * 1992-03-02 1993-09-28 Nkk Corp Temperature measuring device and level measuring device for molten metal
US5585914A (en) * 1993-10-05 1996-12-17 Nkk Corporation Apparatus and method for measuring a temperature of a high temperature liquid contained in a furnace
EP0646778A1 (en) * 1993-10-05 1995-04-05 Nkk Corporation Apparatus for measuring temperature using optical fiber and method therefor
US6227702B1 (en) 1993-11-30 2001-05-08 Nkk Corporation Method and apparatus for measuring a temperature of a molten metal
US6004031A (en) * 1993-11-30 1999-12-21 Nkk Corporation Temperature measuring device
EP0655613A1 (en) 1993-11-30 1995-05-31 Nkk Corporation Temperature measuring device
EP0685715A1 (en) * 1994-05-30 1995-12-06 Nkk Corporation Method for measuring temperature using optical fiber and apparatus therefor
US5730527A (en) * 1994-05-30 1998-03-24 Nkk Corporation Method and apparatus for measuring temperature using an optical fiber
WO1998014755A1 (en) * 1996-10-02 1998-04-09 Ferrotron Elektronik Gmbh Method to measure slag layer thickness on a molten bath and appropriate device for use of said method
JP4603776B2 (en) * 2003-06-20 2010-12-22 Jfeメカニカル株式会社 Weld temperature measurement method
JP2005007451A (en) * 2003-06-20 2005-01-13 Jfe Koken Corp Method for measuring temperature of weld zone
JP2014111271A (en) * 2012-12-05 2014-06-19 Japan Steel Works Ltd:The Temperature measurement device for electro-slag-remelting and temperature measurement method for electro-slag-remelting
US9726545B2 (en) 2013-04-30 2017-08-08 Heraeus Electro-Nite International N.V. Method and apparatus for measuring the temperature of a molten metal
EP2940441A1 (en) 2014-04-30 2015-11-04 Heraeus Electro-Nite International N.V. Device for measuring the temperature of a molten metal
US9863709B2 (en) 2014-04-30 2018-01-09 Heraeus Electro-Nite International N.V. Device for measuring the temperature of a molten metal
US10378824B2 (en) 2014-04-30 2019-08-13 Heraeus Electro-Nite International N.V. Device for measuring the temperature of a molten metal
EP3339823A1 (en) * 2016-12-22 2018-06-27 Heraeus Electro-Nite International N.V. Method for measuring a temperature of a molten metal bath
US10514302B2 (en) 2016-12-22 2019-12-24 Heraeus Electro-Nite International N.V. Method for measuring a temperature of a molten metal bath
US11331720B2 (en) 2019-12-24 2022-05-17 Sintokogio, Ltd. Pouring apparatus

Similar Documents

Publication Publication Date Title
JPS5611329A (en) Measuring method of melted metal temperature in vessel
US6139180A (en) Method and system for testing the accuracy of a thermocouple probe used to measure the temperature of molten steel
JPS6219727A (en) Immersion thermometer for molten metal
US7197199B2 (en) Calibration and measurement of temperatures in melts by optical fibers
JP2795146B2 (en) Double coated optical fiber for temperature measurement
US2802925A (en) Resistance thermometer
US5180228A (en) Radiation thermometer for molten iron and method for measuring the temperature of molten iron
US4995733A (en) Measurement sensor for the detection of temperatures in metal or alloy melts
JP2897496B2 (en) Consumable optical fiber thermometer
JPH09304185A (en) Method and apparatus for measuring temperature of molten metal
SE508842C2 (en) Method and apparatus for measuring the temperature of a melt in a sample vessel and using optical pyrometry
JP2876881B2 (en) Measuring device and level measuring device for molten metal
JP3287246B2 (en) Temperature measuring device for molten metal
JPH0473535B2 (en)
Xumo et al. A new high-temperature platinum resistance thermometer
SU1158875A1 (en) Method of measuring temperature of glass compound in glassmaking furnace
JP2664088B2 (en) Thermal change temperature measurement method
JPH0658816A (en) Consuming type optical fiber temperature measuring apparatus
RU2020435C1 (en) Method for calibration of thermocouples
JP3334528B2 (en) Method and apparatus for measuring temperature of molten metal
JPS59225321A (en) Optical fiber type radiation thermometer
RU2109259C1 (en) Method of gas pressure checking in fuel element of nuclear reactor
Van Nijnatten et al. High‐Temperature IR Radiation Conductivity of Industrial Glasses
Tamba et al. Pressure‐Controlled Water Heat Pipe for Investigation of the Non‐Uniqueness of the ITS‐90 in the Range from 65° C to 157° C
SU1223107A1 (en) Deformation converter for polarization-optical dilatometers