JPH09304185A - Method and apparatus for measuring temperature of molten metal - Google Patents

Method and apparatus for measuring temperature of molten metal

Info

Publication number
JPH09304185A
JPH09304185A JP14351796A JP14351796A JPH09304185A JP H09304185 A JPH09304185 A JP H09304185A JP 14351796 A JP14351796 A JP 14351796A JP 14351796 A JP14351796 A JP 14351796A JP H09304185 A JPH09304185 A JP H09304185A
Authority
JP
Japan
Prior art keywords
temperature
optical fiber
molten metal
optic fiber
measured
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14351796A
Other languages
Japanese (ja)
Inventor
Jiyousei Nagamatsu
丈青 永松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokai Carbon Co Ltd
Original Assignee
Tokai Carbon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokai Carbon Co Ltd filed Critical Tokai Carbon Co Ltd
Priority to JP14351796A priority Critical patent/JPH09304185A/en
Publication of JPH09304185A publication Critical patent/JPH09304185A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To enable temperature measurement correctly and continuously without causing an output drop of radiation energy due to devitrification of an optic fiber by securely soaking a not devitrified part of the optic fiber into molten metal. SOLUTION: A metallic sheath optic fiber is used as an optic fiber, wherein a sent length of the optic fiber 1 is measured by a motor with encoder, and a high speed responsible radiation thermometer is used as an infrared sensor 4 for detecting radiation energy transmitted from the optic fiber 1. A temperature of molten steel 7 is measured by a thermocouple, and the optic fiber 1 is sent out into the molten steel 7 while controlling at a constant temperature for measuring the temperature of the molten steel. First, a melting point 1200 deg.C of the molten steel is set as a threshold, sending of the optic fiber 1 is stopped when the measured temperature exceeds the threshold, and the optic fiber is sent out by a predetermined length into the molten steel every time certain amount of time has elapsed for measuring the temperature of the molten steel. As the operation is repetitively done, a change in indicated temperatures gradually decreases, so that a correct temperature can be measured with a measurement error eliminated.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、鋼などの溶融金属
中に光ファイバを浸漬して温度を測定する温度測定方法
および温度測定装置に関する。
TECHNICAL FIELD The present invention relates to a temperature measuring method and a temperature measuring apparatus for immersing an optical fiber in a molten metal such as steel to measure the temperature.

【0002】[0002]

【従来の技術】溶鋼などの高温で溶融している金属溶湯
の温度を正確に測定することは、製造管理上極めて重要
である。従来、溶鋼の温度を測定する方法として黒鉛製
のスリーブ内に熱電対を取り付け、溶鋼中に浸漬して温
度測定する方法が一般的に行われているが、熱電対の感
熱部が溶鋼の高温により損耗するので繰り返し使用する
ことができず、1回の測定毎に熱電対を交換する必要が
ある。したがって、測定回数を増やしたり、連続測定す
ることが困難であり、またコスト高となる欠点がある。
2. Description of the Related Art Accurately measuring the temperature of a molten metal such as molten steel which is molten at a high temperature is extremely important in manufacturing control. Conventionally, as a method of measuring the temperature of molten steel, a method of mounting a thermocouple in a sleeve made of graphite and immersing in the molten steel to measure the temperature is generally performed. It cannot be used repeatedly because it is worn away by the thermocouple, and it is necessary to replace the thermocouple after each measurement. Therefore, it is difficult to increase the number of times of measurement or to perform continuous measurement, and there is a drawback that the cost becomes high.

【0003】これらの欠点を解消するために、特開昭6
2−19727号公報には金属の溶湯に光ファイバ先端
部を連続的に浸漬する挿入手段と、前記光ファイバを通
過した赤外線に基づいて温度を検出する赤外線温度検出
手段とを有する溶融金属の浸漬温度計が開示されてい
る。この浸漬温度計によれば光ファイバ先端部の消耗や
劣化があっても連続的に挿入される光ファイバの新たな
先端部によって溶鋼の放射エネルギーを検出することが
できる。
In order to solve these drawbacks, Japanese Patent Laid-Open Publication No. 6-62
Japanese Laid-Open Patent Publication No. 2-19727 discloses an immersion of molten metal having an insertion means for continuously dipping an optical fiber tip in a molten metal and an infrared temperature detecting means for detecting a temperature based on infrared rays passing through the optical fiber. A thermometer is disclosed. According to this immersion thermometer, the radiant energy of molten steel can be detected by the new tip of the optical fiber continuously inserted even if the tip of the optical fiber is consumed or deteriorated.

【0004】しかしながら、光ファイバを溶鋼中に挿入
する場合、溶鋼の高温により光ファイバの被覆部が溶損
して光ファイバの芯線が露出し強度が低下する難点があ
り、この難点を解決するために、光ファイバを被覆した
保護管の外表面を断熱材で被覆した2重被覆光ファイバ
の先端部を測温部とした消耗型光ファイバ温度測定装置
であって、光ファイバは測定する溶融金属の温度より高
い温度の溶損温度を有し、保護管と断熱材は測定する溶
融金属の温度より低い温度の耐熱温度を有する消耗型光
ファイバ温度測定装置(特開平6−58816 号公報)が提
案されている。この温度測定装置によれば、光ファイバ
の先端部が露出するまでにタイムラグがあるので光ファ
イバの先端部を溶融金属内に一定時間保持することがで
きるとするものである。
However, when the optical fiber is inserted into the molten steel, the coating of the optical fiber is melted by the high temperature of the molten steel, the core of the optical fiber is exposed, and the strength is lowered. A consumable optical fiber temperature measuring device using a tip of a double-coated optical fiber in which an outer surface of a protective tube coated with an optical fiber is covered with a heat insulating material, the optical fiber being a molten metal to be measured. A consumable optical fiber temperature measuring device (Japanese Patent Laid-Open No. 6-58816) is proposed, which has a melting temperature higher than the temperature, and the protective tube and the heat insulating material have heat resistant temperatures lower than the temperature of the molten metal to be measured. Has been done. According to this temperature measuring device, since there is a time lag until the tip of the optical fiber is exposed, the tip of the optical fiber can be held in the molten metal for a certain period of time.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、光ファ
イバは高温に曝されるとガラス結晶が析出して失透が生
じ、光の透過率が低くなって、測定精度が低下する難点
がある。このため上記した特開昭62−19727号公
報の浸漬温度計では光ファイバを所定の速度(例えば30
0mm/時)で溶鋼中に挿入している。この挿入速度につい
て、同公報ではパルスモータの速度を光ファイバが劣化
する速度よりも少し速くすればよいとしているが、実際
には失透が生じる速度や領域は一定ではないので、光フ
ァイバを挿入する速度を失透が起こる速度より速く設定
することは極めて困難である。そして、光ファイバの挿
入速度が失透速度より遅くなった場合には光ファイバの
透過率が低下して、入力した放射エネルギー量に対して
出力される放射エネルギー量が小さくなり、正確な温度
測定ができなくなるという問題点がある。
However, when an optical fiber is exposed to a high temperature, glass crystals are precipitated and devitrification occurs, the light transmittance is lowered, and the measurement accuracy is lowered. Therefore, in the immersion thermometer disclosed in Japanese Patent Laid-Open No. 62-19727, the optical fiber is moved to a predetermined speed (for example, 30
(0 mm / hour) inserted in molten steel. Regarding this insertion speed, in the publication, the speed of the pulse motor may be set to be slightly higher than the speed at which the optical fiber deteriorates. However, since the speed and the area where devitrification occurs are not constant, the optical fiber is inserted. It is extremely difficult to set the speed at which the devitrification occurs faster than the speed at which devitrification occurs. When the insertion speed of the optical fiber becomes slower than the devitrification speed, the transmittance of the optical fiber decreases and the amount of radiant energy output decreases with respect to the amount of radiant energy input, resulting in accurate temperature measurement. There is a problem that it can not be done.

【0006】本発明者は、上記問題点を解消するために
溶融金属中に光ファイバを浸漬して温度測定する手段に
ついて研究を進めた結果、光ファイバに失透が生じて
も、失透していない光ファイバ部分を溶融金属中に確実
に浸漬させることによって精度よく温度測定をすること
ができることを見出した。
The present inventor has conducted research on means for immersing an optical fiber in molten metal to measure the temperature in order to solve the above-mentioned problems, and as a result, devitrification occurs even if devitrification occurs in the optical fiber. It has been found that the temperature can be accurately measured by surely immersing the not-yet-deposited optical fiber portion in the molten metal.

【0007】本発明は上記の知見に基づいて開発された
もので、その目的は溶融金属中に光ファイバを浸漬して
温度測定する際に、失透による測定誤差を低減化して高
精度で、更に連続測定が可能な溶融金属の温度測定方法
および温度測定装置を提供することにある。
The present invention was developed on the basis of the above findings, and its purpose is to reduce the measurement error due to devitrification when immersing an optical fiber in a molten metal and measuring the temperature with high accuracy. Another object of the present invention is to provide a temperature measuring method and a temperature measuring device for molten metal capable of continuous measurement.

【0008】[0008]

【課題を解決するための手段】上記の目的を達成するた
めの本発明による溶融金属の温度測定方法は、光ファイ
バ先端部を溶融金属中に浸漬し、検出した放射エネルギ
ーを赤外線センサに伝送して溶融金属の温度を測定する
方法において、被測定金属の融点に近い温度をしきい値
として設定し、光ファイバを溶融金属中に送出して指示
温度がしきい値を越えた時点で光ファイバの送出を停止
し、その後一定時間(Δt)経過毎に光ファイバを溶融
金属中に一定長さ(ΔL)づつ送出して温度を測定し、
指示温度の変化が認められなくなるまで繰り返すことを
構成上の特徴とする。
A method for measuring the temperature of a molten metal according to the present invention for achieving the above object is to immerse the tip of an optical fiber in the molten metal and transmit the detected radiant energy to an infrared sensor. In the method of measuring the temperature of molten metal by setting the temperature close to the melting point of the metal to be measured as a threshold value, the optical fiber is sent into the molten metal and when the indicated temperature exceeds the threshold value, the optical fiber Is stopped, and thereafter, the optical fiber is sent into the molten metal at a constant length (ΔL) every constant time (Δt), and the temperature is measured.
The structural feature is that the process is repeated until no change in the indicated temperature is recognized.

【0009】また、本発明の温度測定装置は、光ファイ
バ先端部を溶融金属中に浸漬して温度を測定する装置で
あって、溶融金属中へ送出する光ファイバの長さを制御
する光ファイバ送出制御装置2と、光ファイバから伝送
された放射エネルギ−を検出する赤外線センサ4と、受
光エネルギーを温度に変換するとともに変換された温度
の変化量が一定値以下となるまで光ファイバ送出制御装
置2に操作信号を発信する演算処理装置5とからなるこ
とを構成上の特徴とする。
The temperature measuring device of the present invention is a device for measuring the temperature by immersing the tip of an optical fiber in molten metal, and controlling the length of the optical fiber to be fed into the molten metal. A delivery control device 2, an infrared sensor 4 for detecting radiant energy transmitted from an optical fiber, an optical fiber delivery control device for converting received light energy into temperature and until the amount of change in the converted temperature falls below a certain value. 2 is composed of an arithmetic processing unit 5 for transmitting an operation signal.

【0010】[0010]

【発明の実施の形態】光ファイバを溶融金属中に浸漬し
て温度を測定する場合、光ファイバは金属溶湯の高温に
より次第に劣化して不透明となり、例えば図7に示すよ
うに光ファイバの溶融金属中に浸漬している部分が全て
失透したような場合には、測定される温度は失透してい
ないa点に対応する温度T′であり、金属溶湯の温度T
を正確に測定することができない。
BEST MODE FOR CARRYING OUT THE INVENTION When the temperature is measured by immersing an optical fiber in a molten metal, the optical fiber gradually deteriorates and becomes opaque due to the high temperature of the molten metal. For example, as shown in FIG. In the case where all the parts immersed in the glass are devitrified, the measured temperature is the temperature T'corresponding to the point a, which is not devitrified, and the temperature T of the molten metal.
Can not be measured accurately.

【0011】しかしながら、図8に示すように光ファイ
バの失透していない部分までが金属溶湯中に浸漬してい
れば、正確に温度測定をすることが可能となる。本発明
は、光ファイバ先端部から次第に失透が生じても、失透
していない部分を溶融金属中に確実に浸漬することによ
って光ファイバの失透に伴う測定誤差の低減化を図るも
のである。
However, as shown in FIG. 8, if the portion of the optical fiber which is not devitrified is immersed in the molten metal, the temperature can be accurately measured. The present invention intends to reduce the measurement error due to devitrification of the optical fiber by surely immersing the undevitrified portion in the molten metal even if devitrification gradually occurs from the optical fiber tip. is there.

【0012】図1は本発明の溶融金属の温度測定方法の
操作手順を示したフローチャートであり、図2は本発明
の溶融金属の温度測定装置を例示したブロック図であ
る。以下、本発明を図1および図2に基づいて詳細に説
明する。
FIG. 1 is a flow chart showing the operating procedure of the method for measuring the temperature of the molten metal of the present invention, and FIG. 2 is a block diagram illustrating the apparatus for measuring the temperature of the molten metal of the present invention. Hereinafter, the present invention will be described in detail with reference to FIGS. 1 and 2.

【0013】図2において、1は光ファイバ、2は溶融
金属中へ送出または巻戻す光ファイバの長さを制御する
光ファイバ送出制御装置、3は光ファイバ供給ドラム、
4は光ファイバ1から伝送された放射エネルギーを検出
する赤外線センサ、5は受光エネルギーを温度変換する
とともに変換された指示温度の変化量が一定値以下とな
るまで光ファイバ送出制御装置2に操作信号を発信する
演算処理装置である。光ファイバ1はファイバ端検出器
6を介して送出し、溶融金属7の中に浸漬される。な
お、測定終了後は光ファイバ1は光ファイバ送出制御装
置2により光ファイバ供給ドラム3に定位置まで巻戻さ
れる。
In FIG. 2, 1 is an optical fiber, 2 is an optical fiber delivery control device for controlling the length of the optical fiber that is delivered or rewound into the molten metal, 3 is an optical fiber supply drum,
Reference numeral 4 is an infrared sensor for detecting the radiant energy transmitted from the optical fiber 1, and 5 is a temperature conversion of the received light energy, and an operation signal is sent to the optical fiber delivery control device 2 until the converted instruction temperature change amount becomes a predetermined value or less. Is an arithmetic processing unit for transmitting the. The optical fiber 1 is delivered via a fiber end detector 6 and immersed in the molten metal 7. After the measurement, the optical fiber 1 is rewound by the optical fiber delivery controller 2 onto the optical fiber supply drum 3 to a fixed position.

【0014】溶融金属に光ファイバを浸漬する場合、光
ファイバが溶融金属の液面に近づくにつれて指示温度は
急激に上昇を開始し、光ファイバの送出長さと指示温度
との関係は図3に示すように変化する。図3から測定対
象の金属のほぼ融点をしきい値TH として設定し、光フ
ァイバを溶融金属中に長さLだけ浸漬して指示温度がし
きい値TH を越えた時点で光ファイバの送出を停止す
る。その後、一定時間(Δt)経過毎に光ファイバを溶
融金属中に一定長さ(ΔL)づつ送出して行くと、溶融
金属中の光ファイバの失透部分は図4に示すように変化
する。すなわち、図4は光ファイバを溶融金属中へ浸漬
した際に光ファイバの失透部分が変化する態様を示した
もので、状態(d) において未失透部分が溶融金属中に浸
漬されていることが分かる。
When the optical fiber is immersed in the molten metal, the instructed temperature starts to rise rapidly as the optical fiber approaches the liquid surface of the molten metal, and the relationship between the delivery length of the optical fiber and the instructed temperature is shown in FIG. To change. Set nearly the melting point of the metal to be measured from FIG. 3 as the threshold T H, instructs temperature optical fiber immersed by a length L in the molten metal of the optical fiber at the time of exceeding the threshold value T H Stop sending. After that, when the optical fiber is fed into the molten metal by a fixed length (ΔL) every time a fixed time (Δt) elapses, the devitrification portion of the optical fiber in the molten metal changes as shown in FIG. That is, FIG. 4 shows an aspect in which the devitrified portion of the optical fiber changes when the optical fiber is immersed in the molten metal. In the state (d), the undeveloped portion is immersed in the molten metal. I understand.

【0015】このようにして一定時間(Δt)が経過す
る毎に、光ファイバを一定長さ(ΔL)だけ送出して溶
融金属中に浸漬する操作を繰り返し行うと、光ファイバ
の未失透部分が溶融金属中に浸漬されて指示温度の変化
は次第に小さくなる。図5は指示温度の変化と、時間Δ
t毎に送出する光ファイバの長さΔLとの関係を示した
もので、図5から時間における指示温度の変化は極め
て僅かであり、殆ど変化が認められないことが判明す
る。
In this way, every time a fixed time (Δt) elapses, the operation of feeding the optical fiber for a fixed length (ΔL) and immersing it in the molten metal is repeated. Is immersed in the molten metal, and the change in the indicated temperature becomes gradually smaller. FIG. 5 shows the change in the indicated temperature and the time Δ
FIG. 5 shows the relationship with the length ΔL of the optical fiber sent at every t, and it can be seen from FIG. 5 that the change in the indicated temperature over time is extremely small and almost no change is recognized.

【0016】したがって、図5において時間の指示温
度Tlastと、時間Δt経過後の光ファイバを長さΔLだ
け送出した時間における指示温度との差(|指示温度
−Tlast|)の変化の度合を示すしきい値としてΔTを
設定すれば、(|指示温度−Tlast|)の値がΔTより
小さくなった時点の指示温度を溶融金属の温度とみなす
ことができる。すなわち、このような状態における指示
温度は光ファイバの失透による測定誤差が排除されてお
り、溶融金属の正確な温度が測定されていることにな
る。
[0016] Thus, the difference between the time and temperature indicated T last of 5, the indicated temperature at the time was only sent length ΔL of the optical fiber after time Δt has elapsed degree of change of (| | indicated temperature -T last) If ΔT is set as the threshold value indicating, the indicated temperature when the value of (| indicated temperature-T last |) becomes smaller than ΔT can be regarded as the temperature of the molten metal. That is, the indicated temperature in such a state excludes the measurement error due to devitrification of the optical fiber, and the accurate temperature of the molten metal is measured.

【0017】このようにして測定された溶融金属の温度
を記録計にホールドしたのち、溶融金属中に浸漬した光
ファイバは定位置まで巻戻しておくことが好ましい。溶
融金属中に光ファイバを浸漬したままにしておくと、失
透が進み光ファイバの失透部分が拡大するためである。
なお、定位置は光学スイッチなどを用いることにより判
定することができる。そして、適宜な時間間隔を設けて
上記の測定操作を反復すれば連続的な温度測定も可能で
あり、更に溶融金属の液面レベルの変動にも容易に対応
することができる。
After the temperature of the molten metal thus measured is held in the recorder, the optical fiber immersed in the molten metal is preferably rewound to a fixed position. This is because if the optical fiber is left immersed in the molten metal, devitrification progresses and the devitrified portion of the optical fiber expands.
The fixed position can be determined by using an optical switch or the like. Then, if the above measurement operation is repeated at appropriate time intervals, continuous temperature measurement is possible, and furthermore, fluctuations in the liquid level of the molten metal can be easily dealt with.

【0018】[0018]

【実施例】図2に示した測定装置により、溶融金属とし
て誘導加熱炉で溶解している鋼の温度を測定した。光フ
ァイバには金属シース光ファイバを用い、光ファイバの
送出長さはエンコーダ付モーターによって計測し、光フ
ァイバから伝送された放射エネルギーを検出する赤外線
センサには高速応答性の放射温度計を用いた。溶鋼の温
度を熱電対で測定して一定温度に制御しながら光ファイ
バを溶鋼中へ送出して溶鋼の温度を測定した。先ず、溶
鋼の融点に近い温度1200℃をしきい値(TH )とし
て設定し、測定温度がしきい値(TH )を越えた時点で
光ファイバの送出を一旦停止し、その後一定時間(Δt
=2秒)経過毎に、光ファイバを一定長さ(ΔL=10
mm)づつ溶鋼中へ送出して溶鋼温度を測定した。
EXAMPLE The temperature of the molten steel in the induction heating furnace as the molten metal was measured by the measuring apparatus shown in FIG. A metal sheathed optical fiber was used as the optical fiber, the sending length of the optical fiber was measured by a motor with an encoder, and a high-speed radiation thermometer was used as an infrared sensor that detects the radiant energy transmitted from the optical fiber. . The temperature of the molten steel was measured by measuring the temperature of the molten steel with a thermocouple and sending the optical fiber into the molten steel while controlling the temperature to a constant temperature. First, a temperature 1200 ° C. close to the melting point of molten steel is set as a threshold value ( TH ), and when the measured temperature exceeds the threshold value ( TH ), the optical fiber transmission is temporarily stopped, and then a fixed time ( Δt
= 2 seconds), the optical fiber has a fixed length (ΔL = 10
mm) and the molten steel temperature was measured.

【0019】図6に、このようにして測定された溶鋼の
指示温度の変化を、光ファイバを送出した時間経過およ
び送出長さとの関係で示した。図6から測定開始後20
秒、光ファイバの送出長さ100mm以降における指示温
度の変化は認められず、一定であり、またその温度は熱
電対による測定値と一致するものであった。
FIG. 6 shows the changes in the indicated temperature of the molten steel measured in this way, in relation to the elapsed time of sending the optical fiber and the sending length. 20 from the start of measurement from FIG.
No change was observed in the indicated temperature after the delivery length of the optical fiber of 100 mm or more per second was constant, and the temperature was in agreement with the value measured by the thermocouple.

【0020】[0020]

【発明の効果】以上のとおり、本発明の溶融金属の温度
測定方法および装置によれば、光ファイバの未失透部分
を確実に溶融金属中へ浸漬することができるから、光フ
ァイバの失透による放射エネルギーの出力低下を生じる
ことがなく、常に正確な温度測定が可能であり、更に連
続的に温度測定をすることも可能である。また、溶融金
属の液面レベルが変動しても光ファイバの浸漬部を追従
させることができ、溶融金属の温度を長時間にわたり、
安定して測定することができる。
As described above, according to the molten metal temperature measuring method and apparatus of the present invention, the undevitrified portion of the optical fiber can be surely immersed in the molten metal. It is possible to always perform accurate temperature measurement without causing a decrease in the output of radiant energy due to, and it is also possible to perform continuous temperature measurement. Further, even if the liquid level of the molten metal fluctuates, the immersion part of the optical fiber can be made to follow the temperature of the molten metal for a long time,
It can measure stably.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の溶融金属の温度測定方法の操作手順を
示したフローチャートである。
FIG. 1 is a flowchart showing an operating procedure of a method for measuring a temperature of a molten metal according to the present invention.

【図2】本発明の溶融金属の温度測定装置を例示したブ
ロック図である。
FIG. 2 is a block diagram illustrating a molten metal temperature measuring device of the present invention.

【図3】光ファイバの送出長さと指示温度との関係を示
したグラフである。
FIG. 3 is a graph showing a relationship between a delivery length of an optical fiber and an indicated temperature.

【図4】溶融金属中へ浸漬した光ファイバの失透部分の
変化する態様を示した説明図である。
FIG. 4 is an explanatory view showing a mode in which a devitrification portion of an optical fiber immersed in a molten metal changes.

【図5】溶融金属の指示温度の変化する状態を例示した
グラフである。
FIG. 5 is a graph exemplifying a state in which the indicated temperature of molten metal changes.

【図6】実施例において測定された溶鋼の指示温度の変
化を示すグラフである。
FIG. 6 is a graph showing changes in the indicated temperature of molten steel measured in Examples.

【図7】溶融金属中に浸漬した光ファイバの失透を示し
た説明図である。
FIG. 7 is an explanatory diagram showing devitrification of an optical fiber immersed in a molten metal.

【図8】光ファイバの未失透部分まで溶融金属中へ浸漬
した場合の説明図である。
FIG. 8 is an explanatory diagram of the case where the undevitrified portion of the optical fiber is immersed in the molten metal.

【符号の説明】[Explanation of symbols]

1 光ファイバ 2 光ファイバ送出制御装置 3 光ファイバ供給ドラム 4 赤外線センサ 5 演算処理装置 6 ファイバ端検出器 7 溶融金属 1 Optical Fiber 2 Optical Fiber Delivery Control Device 3 Optical Fiber Supply Drum 4 Infrared Sensor 5 Arithmetic Processing Device 6 Fiber End Detector 7 Molten Metal

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 光ファイバ先端部を溶融金属中に浸漬
し、検出した放射エネルギーを赤外線センサに伝送して
溶融金属の温度を測定する方法において、被測定金属の
融点に近い温度をしきい値として設定し、光ファイバを
溶融金属中に送出して指示温度がしきい値を越えた時点
で光ファイバの送出を停止し、その後一定時間(Δt)
経過毎に光ファイバを溶融金属中に一定長さ(ΔL)づ
つ送出して温度を測定し、指示温度の変化が認められな
くなるまで繰り返すことを特徴とする溶融金属の温度測
定方法。
1. A method of measuring the temperature of a molten metal by immersing the tip of an optical fiber in the molten metal and transmitting the detected radiant energy to an infrared sensor to measure the temperature of the molten metal as a threshold value. , The optical fiber is sent into the molten metal, and when the indicated temperature exceeds the threshold value, the optical fiber is stopped from being sent, and then the fixed time (Δt)
A method for measuring the temperature of a molten metal, wherein an optical fiber is sent into the molten metal at a constant length (ΔL) every time the temperature is measured, and the temperature is measured, and this is repeated until no change in the indicated temperature is observed.
【請求項2】 指示温度の変化が認められなくなったの
ち、光ファイバを定位置に巻戻す請求項1記載の溶融金
属の温度測定方法。
2. The method for measuring the temperature of a molten metal according to claim 1, wherein the optical fiber is rewound in a fixed position after the change in the indicated temperature is no longer recognized.
【請求項3】 光ファイバ先端部を溶融金属中に浸漬し
て温度を測定する装置であって、溶融金属中へ送出する
光ファイバの長さを制御する光ファイバ送出制御装置2
と、光ファイバから伝送された放射エネルギ−を検出す
る赤外線センサ4と、受光エネルギーを温度に変換する
とともに変換された温度の変化量が一定値以下となるま
で光ファイバ送出制御装置2に操作信号を発信する演算
処理装置5とからなることを特徴とする溶融金属の温度
測定装置。
3. A device for measuring the temperature by immersing the tip of an optical fiber in a molten metal, the optical fiber feeding control device 2 controlling the length of an optical fiber fed into the molten metal.
An infrared sensor 4 for detecting the radiant energy transmitted from the optical fiber, and an operation signal to the optical fiber delivery controller 2 for converting the received light energy into temperature and until the amount of change in the converted temperature falls below a certain value. A device for measuring the temperature of molten metal, comprising:
JP14351796A 1996-05-14 1996-05-14 Method and apparatus for measuring temperature of molten metal Pending JPH09304185A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14351796A JPH09304185A (en) 1996-05-14 1996-05-14 Method and apparatus for measuring temperature of molten metal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14351796A JPH09304185A (en) 1996-05-14 1996-05-14 Method and apparatus for measuring temperature of molten metal

Publications (1)

Publication Number Publication Date
JPH09304185A true JPH09304185A (en) 1997-11-28

Family

ID=15340587

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14351796A Pending JPH09304185A (en) 1996-05-14 1996-05-14 Method and apparatus for measuring temperature of molten metal

Country Status (1)

Country Link
JP (1) JPH09304185A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6316547B1 (en) 1997-09-11 2001-11-13 The Procter & Gamble Company Masterbatch composition
JP2007309932A (en) * 2006-05-19 2007-11-29 Heraeus Electro-Nite Internatl Nv Method and device for measuring temperature of melting metal bath
EP2940441A1 (en) 2014-04-30 2015-11-04 Heraeus Electro-Nite International N.V. Device for measuring the temperature of a molten metal
US9726545B2 (en) 2013-04-30 2017-08-08 Heraeus Electro-Nite International N.V. Method and apparatus for measuring the temperature of a molten metal
US10024731B2 (en) 2015-01-28 2018-07-17 Heraeus Electro-Nite International N.V. Immersion device for an optical fiber for measuring the temperature of a melt
US10203463B2 (en) 2015-10-14 2019-02-12 Heraeus Electro-Nite International N.V. Cored wire, method and device for the production of the same
US10295411B2 (en) 2015-10-14 2019-05-21 Heraeus Electro-Nite International N.V. Consumable optical fiber for measuring a temperature of a molten steel bath
US10514302B2 (en) 2016-12-22 2019-12-24 Heraeus Electro-Nite International N.V. Method for measuring a temperature of a molten metal bath
EP4009019A1 (en) 2020-12-02 2022-06-08 Heraeus Electro-Nite International N.V. Method and system for determining a temperature value of a molten metal bath

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6316547B1 (en) 1997-09-11 2001-11-13 The Procter & Gamble Company Masterbatch composition
JP2007309932A (en) * 2006-05-19 2007-11-29 Heraeus Electro-Nite Internatl Nv Method and device for measuring temperature of melting metal bath
KR101270881B1 (en) * 2006-05-19 2013-06-05 헤라우스 일렉트로-나이트 인터내셔날 엔. 브이. Method and device for measuring the temperature of a molten metal bath
US9726545B2 (en) 2013-04-30 2017-08-08 Heraeus Electro-Nite International N.V. Method and apparatus for measuring the temperature of a molten metal
EP2940441A1 (en) 2014-04-30 2015-11-04 Heraeus Electro-Nite International N.V. Device for measuring the temperature of a molten metal
US10024731B2 (en) 2015-01-28 2018-07-17 Heraeus Electro-Nite International N.V. Immersion device for an optical fiber for measuring the temperature of a melt
US10203463B2 (en) 2015-10-14 2019-02-12 Heraeus Electro-Nite International N.V. Cored wire, method and device for the production of the same
US10295411B2 (en) 2015-10-14 2019-05-21 Heraeus Electro-Nite International N.V. Consumable optical fiber for measuring a temperature of a molten steel bath
US10359589B2 (en) 2015-10-14 2019-07-23 Heraeus Electro-Nite International N.V. Cored wire, method and device for the production of the same
RU2719353C2 (en) * 2015-10-14 2020-04-17 Хераеус Электро-Ните Интернациональ Н.В. Consumable optical fiber for measuring bath temperature of molten steel
US10514302B2 (en) 2016-12-22 2019-12-24 Heraeus Electro-Nite International N.V. Method for measuring a temperature of a molten metal bath
EP4009019A1 (en) 2020-12-02 2022-06-08 Heraeus Electro-Nite International N.V. Method and system for determining a temperature value of a molten metal bath
WO2022117627A1 (en) 2020-12-02 2022-06-09 Heraeus Electro-Nite International N.V. Method and system for determining a temperature value of a molten metal bath

Similar Documents

Publication Publication Date Title
JP6692789B2 (en) How to measure the temperature of the molten bath
JPH09304185A (en) Method and apparatus for measuring temperature of molten metal
JPS6219727A (en) Immersion thermometer for molten metal
JP3158839B2 (en) Apparatus and method for measuring temperature of molten metal
JP3773374B2 (en) Optical fiber drawing furnace featuring programmable logic controller for optical fiber preform heating and fiber drawing
EP0515171A1 (en) Coated optical fibre
JP4616456B2 (en) Immersion type optical fiber radiation thermometer for measuring molten metal temperature and method for measuring temperature of molten metal
JP2876881B2 (en) Measuring device and level measuring device for molten metal
US20240027272A1 (en) Method and system for determining a temperature value of a molten metal bath
JP2023552728A (en) Method and system for determining a series of temperature values of a molten metal bath
JPH10176954A (en) Apparatus for measuring temperature of molten metal
US7886561B2 (en) Method for drawing glass parent material and drawing machine for use therein
RU2817528C1 (en) Method and system for determining series of temperature values of soldering bath
RU2815186C1 (en) Method and system for determining series of temperature values of solder bath
JPH09126894A (en) Method and instrument for optically measuring temperature of high-temperature melt
JP3116728B2 (en) High temperature liquid temperature measuring device using optical fiber
JP3214234B2 (en) Temperature measuring device for high temperature liquid using optical fiber
US20240003758A1 (en) Method and system for determining a series of temperature values of a molten metal bath
JPH0979909A (en) Method for measuring temperature of hot molten material
JP2822875B2 (en) Molten metal temperature measuring device
JPS6027686A (en) Apparatus for manufacturing single crystal
JPH0473535B2 (en)
RU2069643C1 (en) Method of controlling heat regime of glass making in tank furnace
JPH11160154A (en) Temperature measuring method and device for molten metal and metal pipe-covered optical fiber used for this method and device
JPH08304180A (en) Device for detecting temperature on inner wall surface for deep hole