JPH0658816A - Consuming type optical fiber temperature measuring apparatus - Google Patents

Consuming type optical fiber temperature measuring apparatus

Info

Publication number
JPH0658816A
JPH0658816A JP4231509A JP23150992A JPH0658816A JP H0658816 A JPH0658816 A JP H0658816A JP 4231509 A JP4231509 A JP 4231509A JP 23150992 A JP23150992 A JP 23150992A JP H0658816 A JPH0658816 A JP H0658816A
Authority
JP
Japan
Prior art keywords
optical fiber
temperature
double
tip
protective tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4231509A
Other languages
Japanese (ja)
Inventor
Takeo Yamada
健夫 山田
Yasutetsu Yoshie
康哲 吉江
Hiroaki Miyahara
弘明 宮原
Yasushi Kaneda
靖 金田
Masayuki Nakada
正之 中田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NKK Corp, Nippon Kokan Ltd filed Critical NKK Corp
Priority to JP4231509A priority Critical patent/JPH0658816A/en
Publication of JPH0658816A publication Critical patent/JPH0658816A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To measure temperature at a high accuracy by enabling stable insertion into molten metal to lower consumption of an optical fiber. CONSTITUTION:A tip part of a double-sheathed optical fiber 1 covered with a protective tube 12 and a heat insulating material 13 is made to act as temperature measuring section. When the tip part of the double-sheathed optical fiber 1 is inserted into a molten metal or in measurement, the optical fiber 11 is protected with the protective tube 12 and the heat insulating material 13 to reduce consumption of the optical fiber. When the measurement is repeated, light energy obtained at the final end of the optical fiber 11 is corrected from an initial length of the optical fiber, a loss per unit length and a change in the feeding of the optical fiber for each measurement thereby removing changes in transmission loss.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、例えば溶鋼等の高温
の液体金属の温度を計測する消耗形光ファイバ温度測定
装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a consumable optical fiber temperature measuring device for measuring the temperature of high temperature liquid metal such as molten steel.

【0002】[0002]

【従来の技術】例えば連続鋳造プロセスにおいては、品
質の向上や生産の歩留まり向上のために、鋳造時の溶鋼
の温度や溶鋼のレベルを正確に知る必要がある。従来、
タンディッシュやモ−ルド内の溶鋼の温度計測する方法
として、カ−ボンスリ−ブの内部に溶鋼が流入する凝固
室を設け、この凝固室に熱電対を取り付けた消耗型の浸
漬熱電対や、セラミックの保護管で覆った熱電対を使用
した接触式温度計が利用されている。
2. Description of the Related Art In a continuous casting process, for example, it is necessary to accurately know the temperature of molten steel and the level of molten steel during casting in order to improve quality and yield of production. Conventionally,
As a method for measuring the temperature of molten steel in a tundish or mold, a solidification chamber into which molten steel flows is provided inside the carbon sleeve, and a consumable immersion thermocouple with a thermocouple attached to this solidification chamber, Contact thermometers using thermocouples covered with ceramic protective tubes are used.

【0003】上記消耗型の浸漬熱電対は熱電対が直接溶
鋼に触れるため1回の測定で劣化してしまう。このため
先端の測温プロ−ブが着脱自在になっており、この測温
プロ−ブを1回の測定毎に交換している。このように高
価な測温プロ−ブを1回の測定毎に使い捨てにしている
ため、測定回数を増やすことは困難であった。
The consumable immersion thermocouple is deteriorated by one measurement because the thermocouple directly contacts the molten steel. For this reason, the temperature measuring probe at the tip is detachable, and this temperature measuring probe is exchanged for each measurement. As described above, since the expensive temperature measuring probe is disposable after each measurement, it is difficult to increase the number of times of measurement.

【0004】また、熱電対をセラミックの保護管で覆っ
た場合には、熱電対が直接溶鋼に触れないため、測定を
連続的に行なうことができる。しかしながら、この場合
にもヒ−トショックやスラグによる溶損等によりセラミ
ックの保護管の耐久性に限度があり、高価な保護管が50
時間から100時間程度しか持たず、長時間繰り返して使
用することはできなかった。
Further, when the thermocouple is covered with a ceramic protective tube, the thermocouple does not directly contact the molten steel, so that the measurement can be continuously performed. However, even in this case, there is a limit to the durability of the ceramic protection tube due to heat shock, melting damage due to slag, etc.
It lasted only about 100 hours and could not be used repeatedly for a long time.

【0005】このような問題を解消するために、光ファ
イバの先端を連続的に溶融金属中に挿入し、光ファイバ
を通過した赤外線を赤外線センサで検出する溶融金属の
浸漬温度計が、例えば特開昭62−19727号に開示されて
いる。
In order to solve such a problem, for example, a molten metal immersion thermometer in which the tip of an optical fiber is continuously inserted into a molten metal and an infrared ray sensor detects an infrared ray passing through the optical fiber is known. It is disclosed in Kaisho 62-19727.

【0006】[0006]

【発明が解決しようとする課題】上記溶融金属の浸漬温
度計では光ファイバを、例えば300mm/時間の速度で徐
々に下降させながら連続的に溶鋼に挿入しているが、溶
鋼面の近くは高温になっており、通常のビニ−ル被覆光
ファイバを溶鋼面に近付けると被覆が燃えだし、光ファ
イバの芯線だけになってしまい強度が著しく低下する。
一方、溶鋼の表面上にはスラグやパウダの層がある。こ
の層を強度が低下している光ファイバで付き破って挿入
しようすると、光ファイバが簡単に折れてしまい、溶鋼
内に光ファイバを浸漬することは困難である。
In the above molten metal immersion thermometer, the optical fiber is continuously inserted into the molten steel while gradually descending at a speed of 300 mm / hour. When the ordinary vinyl-coated optical fiber is brought close to the molten steel surface, the coating starts to burn and only the core wire of the optical fiber is left, resulting in a marked decrease in strength.
On the other hand, there are layers of slag and powder on the surface of molten steel. If this layer is torn and inserted with an optical fiber having a reduced strength, the optical fiber is easily broken and it is difficult to immerse the optical fiber in the molten steel.

【0007】また、光ファイバの始端から終端に送った
光のエネルギを一般の単色放射温度計で測定する場合、
光ファイバの長さが短くなると、光ファイバの伝送損失
が小さくなり、温度計の指示温度が初期値より上昇し誤
差を生じる。例えばSi光検波器を使用し通信用の石英
で形成されたGIファイバ(50/125μm)を用いて1500
℃の温度を測定した場合、光ファイバの長さが100m異
なると誤差は10〜15℃になってしまう。このため光ファ
イバの熱による消耗量だけ徐々に送りながら溶鋼の温度
を測定していると、温度誤差が次第に大きくなり、所定
の温度精度を得ることは困難である。
Further, when the energy of light sent from the start end to the end of the optical fiber is measured by a general monochromatic radiation thermometer,
When the length of the optical fiber becomes shorter, the transmission loss of the optical fiber becomes smaller, and the temperature indicated by the thermometer rises from the initial value, causing an error. For example, a Si optical detector is used, and a GI fiber (50/125 μm) made of quartz for communication is used for 1500
When the temperature of ° C is measured, the error becomes 10 to 15 ° C when the length of the optical fiber differs by 100 m. Therefore, when the temperature of the molten steel is measured while gradually feeding the amount of heat consumed by the optical fiber, the temperature error gradually increases, and it is difficult to obtain a predetermined temperature accuracy.

【0008】この発明はかかる短所を解決するためにな
されたものであり、溶融金属内に安定して挿入すること
ができるとともに、光ファイバの消耗による温度誤差の
発生を防止して高精度に測定することができる消耗形光
ファイバ温度測定装置を得ることを目的とするものであ
る。
The present invention has been made in order to solve the above disadvantages, and it is possible to stably insert the molten metal into the molten metal, and to prevent the occurrence of temperature error due to the consumption of the optical fiber and to perform the measurement with high accuracy. The purpose of the present invention is to obtain a consumable optical fiber temperature measuring device.

【0009】[0009]

【課題を解決するための手段】この発明に係る消耗形光
ファイバ温度測定装置は、光ファイバを被覆した保護管
の外表面を断熱材で被覆した2重被覆光ファイバの先端
部を測温部とし、光ファイバは測定する溶融金属の温度
より高い温度の溶損温度を有し、保護管と断熱材は測定
する溶融金属の温度より低い温度の耐熱温度を有するこ
とを特徴とする。
SUMMARY OF THE INVENTION A consumable optical fiber temperature measuring device according to the present invention comprises a temperature measuring section at the tip of a double coated optical fiber in which an outer surface of a protective tube coated with the optical fiber is coated with a heat insulating material. The optical fiber has a melting temperature higher than the temperature of the molten metal to be measured, and the protective tube and the heat insulating material have a heat resistant temperature lower than the temperature of the molten metal to be measured.

【0010】上記保護管は断熱材より耐熱温度が高い金
属管であることが好ましい。
The protective tube is preferably a metal tube having a higher heat resistance temperature than the heat insulating material.

【0011】また、上記2重被覆光ファイバを溶融金属
の表面に断続的に送り出すとともに巻戻す光ファイバ搬
送手段と、光ファイバの終端で得た光エネルギをあらか
じめ定められた光ファイバの初期長と単位長さ当りの損
失及び上記光ファイバ搬送手段で検出した測定毎の光フ
ァイバの送り量の変化とから補正する補正手段とを有す
ることを特徴とする。
Further, an optical fiber conveying means for intermittently sending and rewinding the double-coated optical fiber to the surface of the molten metal, and optical energy obtained at the end of the optical fiber with a predetermined initial length of the optical fiber. It is characterized by comprising a correction means for correcting the loss per unit length and the change in the feed amount of the optical fiber for each measurement detected by the optical fiber conveying means.

【0012】[0012]

【作用】この発明においては、保護管と断熱材で被覆し
た2重被覆光ファイバの先端部を測温部として溶融金属
内に挿入する。この溶融金属内に2重被覆光ファイバの
先端部を挿入するときに、光ファイバを保護管で被覆し
ているから、光ファイバ自体に損傷を与えずに挿入する
ことができる。
In this invention, the tip end of the double coated optical fiber coated with the protective tube and the heat insulating material is inserted into the molten metal as a temperature measuring portion. When the tip of the double coated optical fiber is inserted into the molten metal, the optical fiber is covered with the protective tube, so that the optical fiber itself can be inserted without damage.

【0013】また、光ファイバは測定する溶融金属の温
度より高い温度の溶損温度を有し、保護管と断熱材は測
定する溶融金属の温度より低い温度の耐熱温度を有する
から、2重被覆光ファイバを溶融金属に挿入したとき、
2重被覆光ファイバの先端部は、まず外側の断熱材が焼
損して保護管を露出させ、次ぎに保護管が焼損して光フ
ァイバを露出する。この露出した光ファイバから入射し
た光のエネルギから溶融金属の温度を検出する。
Further, since the optical fiber has a melting temperature higher than the temperature of the molten metal to be measured, and the protective tube and the heat insulating material have a heat resistance temperature lower than the temperature of the molten metal to be measured, the double coating is applied. When the optical fiber is inserted into the molten metal,
At the tip of the double-coated optical fiber, the heat insulating material on the outer side is first burned to expose the protective tube, and then the protective tube is burned to expose the optical fiber. The temperature of the molten metal is detected from the energy of light incident from the exposed optical fiber.

【0014】保護管を断熱材より耐熱温度が高い金属管
で形成して、先端部の断熱材が焼損してから保護管が溶
けるまでに遅延時間を与え、光ファイバの先端部を保護
するとともに光ファイバの先端部全体を均一な温度にす
る。
The protective tube is formed of a metal tube having a heat resistance higher than that of the heat insulating material, and a delay time is provided from the burning of the heat insulating material at the tip to the melting of the protective tube to protect the tip of the optical fiber. A uniform temperature is applied to the entire tip of the optical fiber.

【0015】このように2重被覆光ファイバを溶融金属
内に挿入すると光ファイバの先端部が溶損し消耗する。
このため2重被覆光ファイバを連続して溶融金属内に挿
入すると、光ファイバの消耗量が多くなる。そこで2重
被覆光ファイバを光ファイバ搬送手段で送出しと巻戻し
を行ないながら断続的に溶融金属内に挿入する。
When the double-coated optical fiber is inserted into the molten metal in this way, the tip of the optical fiber is melted and consumed.
Therefore, if the double coated optical fiber is continuously inserted into the molten metal, the amount of consumption of the optical fiber increases. Therefore, the double coated optical fiber is intermittently inserted into the molten metal while being sent out and rewound by the optical fiber conveying means.

【0016】この2重被覆光ファイバの先端部が順次消
耗すると、光ファイバの全長が短くなり、光ファイバの
伝送損失が小さくなり、光ファイバの終端部から出る光
のエネルギが大きくなり測定値が上昇して誤差を生じ
る。そこで光ファイバの終端で得た光エネルギを補正手
段であらかじめ定められた光ファイバの初期長と単位長
さ当りの損失及び光ファイバ搬送手段で検出した測定毎
の光ファイバの送り量の変化とから補正して伝送損失の
変化を除去する。
When the tip portion of this double-coated optical fiber is worn out sequentially, the total length of the optical fiber becomes shorter, the transmission loss of the optical fiber becomes smaller, and the energy of the light emitted from the terminal end of the optical fiber becomes larger, resulting in a measured value. It rises and causes an error. Therefore, the optical energy obtained at the end of the optical fiber is determined from the initial length of the optical fiber determined by the correction means and the loss per unit length, and the change in the feed amount of the optical fiber for each measurement detected by the optical fiber conveying means. Correct to eliminate the change in transmission loss.

【0017】[0017]

【実施例】図1はこの発明に一実施例を示す構成図であ
る。図に示すように、例えば溶鋼の温度を計測する温度
測定装置は、供給ドラム2に巻回された2重被覆光ファ
イバ1と光ファイバ搬送手段3と送り制御手段4及び信
号処理部5とを有する。
1 is a block diagram showing an embodiment of the present invention. As shown in the figure, for example, a temperature measuring device for measuring the temperature of molten steel includes a double coated optical fiber 1 wound around a supply drum 2, an optical fiber conveying means 3, a feeding control means 4 and a signal processing section 5. Have.

【0018】2重被覆光ファイバ1は光の伝送路である
とともに測温部として使用するものであり、芯線の光フ
ァイバ11は石英系ガラスのGIファイバからなり、図
2に示すように、UV架橋プラスチックをコ−ティング
した光ファイバ11の外面をステンレス管からなる保護
管12で被覆し、保護管12の外面を例えばポリエチレ
ン等の合成樹脂又はガラス繊維等からなる断熱材13で
被覆して形成されている。
The double coated optical fiber 1 is used as a temperature measuring section as well as a light transmission path, and the optical fiber 11 of the core wire is made of silica glass GI fiber, and as shown in FIG. Formed by coating the outer surface of an optical fiber 11 coated with cross-linked plastic with a protective tube 12 made of a stainless tube, and coating the outer surface of the protective tube 12 with a heat insulating material 13 made of a synthetic resin such as polyethylene or glass fiber. Has been done.

【0019】光ファイバ搬送手段3は供給ドラム2に巻
回された2重被覆光ファイバ1を一定速度で連続的又は
間欠的に送り出しながら2重被覆光ファイバ1の先端部
をパウダ6の上部から溶鋼7内に挿入し、一定時間経過
したときに2重被覆光ファイバ1を巻戻して先端部を溶
鋼7から引出す。送り制御手段4は光ファイバ搬送手段
3の送り量を制御しながら断続的に駆動する。
The optical fiber conveying means 3 feeds the double-coated optical fiber 1 wound around the supply drum 2 continuously or intermittently at a constant speed while feeding the tip of the double-coated optical fiber 1 from the upper part of the powder 6. After being inserted into the molten steel 7, the double-coated optical fiber 1 is rewound and a tip portion is pulled out from the molten steel 7 after a lapse of a certain time. The feeding control means 4 drives intermittently while controlling the feeding amount of the optical fiber feeding means 3.

【0020】信号処理部5は光検波器51と補正手段5
2,記憶手段53,ピ−クホ−ルド回路54,記録手段
55及び表示手段56を有する。光検波器51は入射し
た光のパワ−に比例した電気信号を出力するものであ
り、入力部は2重被覆光ファイバ1の終端部に接続され
ている。記憶手段53には2重被覆光ファイバ1の初期
長L0と単位長さ当りの損失αが格納されている。補正
手段52は光検波器51から測定毎に送られる電気信号
の光ファイバ11の伝送損失の変化による影響を記憶手
段53に格納された2重被覆光ファイバ1の初期長L0
と単位長さ当りの損失α及び送り制御手段4から送られ
る測定毎の2重被覆光ファイバ1の送り量の変化ΔL
n、すなわち2重被覆光ファイバ1の先端部の消耗量と
を使用して補正する。ピ−クホ−ルド回路54は補正手
段52から送られる信号のピ−ク値を検出し一定時間保
持する。
The signal processing section 5 includes an optical detector 51 and a correction means 5.
2. It has a storage means 53, a peak-hold circuit 54, a recording means 55 and a display means 56. The optical detector 51 outputs an electric signal proportional to the power of the incident light, and its input section is connected to the terminal section of the double-coated optical fiber 1. The storage means 53 stores the initial length L 0 of the double-coated optical fiber 1 and the loss α per unit length. The correction means 52 influences the electric loss of the electric signal sent from the optical detector 51 for each measurement due to the change of the transmission loss of the optical fiber 11, and the initial length L 0 of the double coated optical fiber 1 stored in the storage means 53.
And loss per unit length α and change ΔL in the feed amount of the double coated optical fiber 1 sent from the feed control means 4 for each measurement.
n, that is, the amount of wear of the tip portion of the double-coated optical fiber 1 is used for correction. The peak hold circuit 54 detects the peak value of the signal sent from the correction means 52 and holds it for a certain period of time.

【0021】上記のように構成された温度測定装置で溶
鋼7の温度を計測するにあたっては、あらかじめ供給ド
ラム2に巻回した2重被覆光ファイバ1の初期長L0
単位長さ当りの損失αを測定して記憶手段53に記憶さ
せておく。その後、2重被覆光ファイバ1を光ファイバ
搬送手段3で送り出しながら2重被覆光ファイバ1の先
端部をパウダ6の上部から溶鋼7中に挿入する。通常の
光ファイバを溶鋼7中に挿入しようとすると、先端部を
溶鋼7に近づけただけで光ファイバの被覆層が燃え出
し、光ファイバ自体がパウダ6を通るときに折れてしま
うが、2重被覆光ファイバ1は光ファイバ11をステン
レス管からなる保護管12と断熱材13で被覆している
から、2重被覆光ファイバ1の先端部がパウダ6を通る
ときに断熱材13が熱分解するための気化熱を必要と
し、断熱材13がなくなるまでに一定の時間がかかり、
保護管12に損傷を与えずに溶鋼7中に安定して挿入す
ることができる。
In measuring the temperature of the molten steel 7 with the temperature measuring device constructed as described above, the initial length L 0 and the loss per unit length of the double coated optical fiber 1 wound around the supply drum 2 in advance. α is measured and stored in the storage means 53. After that, while feeding the double-coated optical fiber 1 by the optical fiber conveying means 3, the tip end portion of the double-coated optical fiber 1 is inserted into the molten steel 7 from the upper part of the powder 6. When an ordinary optical fiber is inserted into the molten steel 7, the coating layer of the optical fiber burns out even if the tip is brought close to the molten steel 7, and the optical fiber itself breaks when passing through the powder 6. Since the coated optical fiber 1 covers the optical fiber 11 with the protective tube 12 made of a stainless tube and the heat insulating material 13, the heat insulating material 13 is thermally decomposed when the tip of the double coated optical fiber 1 passes through the powder 6. It takes a certain amount of time for the heat insulating material 13 to disappear,
The protective tube 12 can be stably inserted into the molten steel 7 without damaging it.

【0022】このようにして2重被覆光ファイバ1の先
端部を例えば1500℃以上の温度を有する溶鋼7に挿入す
ると、2重被覆光ファイバ1の先端部の温度は急激に上
昇し、先端部の断熱材13の強度が急激に低下して焼損
し始め、保護管12を先端から徐々に露出させる。保護
管12は融点が1400〜1430℃程度のステンレス管で形成
されているから、1500℃以上の温度を有する溶鋼7中に
露出すると溶け始めて、図3の断面図に示すように、光
ファイバ11を先端から徐々に露出する。
When the tip of the double coated optical fiber 1 is inserted into the molten steel 7 having a temperature of 1500 ° C. or higher in this way, the temperature of the tip of the double coated optical fiber 1 rises sharply and The strength of the heat insulating material 13 suddenly decreases and begins to burn out, and the protective tube 12 is gradually exposed from the tip. Since the protective tube 12 is formed of a stainless tube having a melting point of approximately 1400 to 1430 ° C., it begins to melt when exposed in the molten steel 7 having a temperature of 1500 ° C. or higher, and as shown in the cross-sectional view of FIG. Is gradually exposed from the tip.

【0023】露出した光ファイバ11の先端部からは直
ちに溶鋼7の温度に依存した光を入射しする。この光は
2重被覆光ファイバ1を通って信号処理部5に送られ、
電気信号に変換されて温度に換算される。
Light depending on the temperature of the molten steel 7 is immediately incident from the exposed tip of the optical fiber 11. This light is sent to the signal processing unit 5 through the double coated optical fiber 1,
It is converted into an electric signal and converted into temperature.

【0024】このように2重被覆光ファイバ1の先端部
を溶鋼7に挿入したときに、断熱材13と保護管12が
それぞれ溶ける間のタイムラグをおいてから光ファイバ
11を先端から露出するから、光ファイバ11の先端を
溶鋼7の一定深さの位置に保持することができる。ま
た、光ファイバ11は溶鋼7の温度より高い温度1600℃
程度の軟化点を有する石英系ガラスで形成されているか
ら、露出しても一定時間溶融せずにその形状を保持す
る。したがって溶鋼7の内部温度を迅速かつ正確に得る
ことができる。
When the tip of the double coated optical fiber 1 is inserted into the molten steel 7 in this way, the optical fiber 11 is exposed from the tip after a time lag between the heat insulating material 13 and the protective tube 12 melting. The tip of the optical fiber 11 can be held at a position where the molten steel 7 has a constant depth. Moreover, the optical fiber 11 has a temperature higher than the temperature of the molten steel 7 of 1600 ° C.
Since it is made of quartz glass having a softening point of some extent, even if it is exposed, it does not melt for a certain period of time and retains its shape. Therefore, the internal temperature of the molten steel 7 can be obtained quickly and accurately.

【0025】露出した光ファイバ11の先端部を溶鋼7
中に長時間挿入しておくと、光ファイバ11の被覆層が
高温によりガス化し、光ファイバ11を先端から徐々に
溶かして消耗する。そこで溶鋼7の温度を計測した後、
直ちに光ファイバ搬送手段3を逆転して2重被覆光ファ
イバ1の先端部を溶鋼7中から引き上げ、光ファイバ1
1の消耗量を低減する。この引き上げた2重被覆光ファ
イバ1の先端部は、図4に示すように、断熱材13は先
端から焼損してほぼ均一に外径が増加し、保護管12は
先端部が溶融して光ファイバ11の先端を覆っている。
このように2重被覆光ファイバ1の先端部に保護管12
と断熱材13が残存し、かつ保護管12で光ファイバ1
1の先端を覆っているから、次ぎの測定のときにパウダ
6を突き破り易く、溶鋼7に安定して挿入することがで
きる。また、保護管12の光ファイバ11の先端を覆っ
た部分は溶鋼7に挿入したときに直ちに溶け始めて光フ
ァイバ11を露出させ測温状態にする。したがって2重
被覆光ファイバ1の先端部を測定の都度加工することな
しに繰返して使用して溶鋼の温度を計測することができ
る。
The exposed end of the optical fiber 11 is attached to the molten steel 7
When it is inserted into the optical fiber for a long time, the coating layer of the optical fiber 11 is gasified due to the high temperature, and the optical fiber 11 is gradually melted from the tip and consumed. So after measuring the temperature of molten steel 7,
Immediately, the optical fiber conveying means 3 is reversed to pull up the tip of the double coated optical fiber 1 from the molten steel 7,
The consumption of 1 is reduced. As shown in FIG. 4, the heat-insulating material 13 burns from the tip of the double-coated optical fiber 1 that has been pulled up, and the outer diameter of the heat-insulating material 13 increases substantially uniformly. It covers the tip of the fiber 11.
In this way, the protective tube 12 is attached to the tip of the double-coated optical fiber 1.
And the heat insulating material 13 remain, and the protective tube 12 serves as the optical fiber 1.
Since the tip of No. 1 is covered, the powder 6 can be easily pierced at the time of the next measurement and can be stably inserted into the molten steel 7. Further, the portion of the protective tube 12 that covers the tip of the optical fiber 11 begins to melt immediately when it is inserted into the molten steel 7, exposing the optical fiber 11 and bringing it into a temperature measuring state. Therefore, the temperature of the molten steel can be measured by repeatedly using the tip of the double coated optical fiber 1 without processing each time measurement is performed.

【0026】次ぎに実際に溶鋼7の温度を計測したとき
の2重被覆光ファイバ1の先端部の状態を具体例により
説明する。
Next, the state of the tip of the double coated optical fiber 1 when the temperature of the molten steel 7 is actually measured will be described with reference to a specific example.

【0027】2重被覆光ファイバ1は、石英系ガラスの
GIファイバからなり、UV架橋プラスチックをコ−テ
ィングした50/125/250の光ファイバ11の外面をステ
ンレス管からなる保護管12で被覆して外径が1.2mm
の金属管被覆光ファイバとし、この表面にポリエチレン
樹脂からなる断熱材13を被覆しコ-ティング又はガラ
ス繊維等からなる断熱材13で被覆して外径が4mmの
ものを使用した。
The double coated optical fiber 1 is made of silica glass GI fiber, and the outer surface of a 50/125/250 optical fiber 11 coated with UV cross-linking plastic is coated with a protective tube 12 made of stainless steel. Outer diameter is 1.2 mm
A metal tube-coated optical fiber having a diameter of 4 mm was used, the surface of which was coated with a heat insulating material 13 made of polyethylene resin and coated with a heat insulating material 13 made of glass fiber or the like.

【0028】この2重被覆光ファイバ1の先端部を溶鋼
7中に約200mm挿入して2秒間保持することを断続的
に繰返して温度を測定した。この各測定毎に2重被覆光
ファイバ1の先端部の形状を調べた結果、溶鋼7中に約
200mm挿入した先端部は溶鋼7から引き上げたとき
に、図4に示すように、円錐状をした先端部1aが100
mm程度残存し、2秒間の測定で2重被覆光ファイバ1
の先端部は100mm程度溶損するが、先端が溶鋼7中に保
持され、溶鋼7表面のパウダ7の温度ではなく内部温度
を測定していることが確認された。
The temperature of the double coated optical fiber 1 was measured by intermittently repeating insertion of about 200 mm into the molten steel 7 and holding for 2 seconds. As a result of investigating the shape of the tip of the double coated optical fiber 1 for each measurement,
When the tip portion inserted 200 mm is pulled up from the molten steel 7, as shown in FIG.
mm remains and double coated optical fiber 1 for 2 seconds
It was confirmed that the tip portion of No. 1 melted about 100 mm, but the tip was held in the molten steel 7, and the internal temperature was measured instead of the temperature of the powder 7 on the surface of the molten steel 7.

【0029】測定した温度は、図5に示すように1回目
の測定とn回目の測定でピ−ク値は1℃程度の差であ
り、複数回の測定値は連続測温計で測定した溶鋼7の実
際の温度に±1℃程度で追従していた。なお、図5にお
いて測定値がピ−ク値から急激に下がるが、これは露出
した光ファイバ11の先端が溶損して新しい部分が露出
するときの温度変化を示すものと考えられる。
As shown in FIG. 5, the measured temperature has a peak value difference of about 1 ° C. between the first measurement and the nth measurement, and a plurality of measurement values are measured by a continuous thermometer. The actual temperature of the molten steel 7 was followed by about ± 1 ° C. In FIG. 5, the measured value sharply drops from the peak value, which is considered to indicate the temperature change when the exposed tip of the optical fiber 11 is melted and a new portion is exposed.

【0030】また、2重被覆光ファイバ1の先端部を溶
鋼7中に約200mm挿入して1秒間保持することを断続
的に繰返して温度を測定した結果を図6に示す。2重被
覆光ファイバ1の先端部を溶鋼7中に1秒間浸漬するこ
とを繰返した場合、連続測温計で測定した溶鋼7の実際
の温度変化に対して正確に追従しており、かつ1回の測
定で消耗する2重被覆光ファイバ1の先端部の長さは10
〜20mm程度であった。したがって短時間で正確に温度を
測定することができるとともに、2重被覆光ファイバ1
の溶損量を非常に小さくすることができた。
FIG. 6 shows the result of temperature measurement by intermittently repeating inserting the tip of the double coated optical fiber 1 into the molten steel 7 for about 200 mm and holding it for 1 second. When the tip end of the double coated optical fiber 1 is repeatedly immersed in the molten steel 7 for 1 second, it accurately follows the actual temperature change of the molten steel 7 measured by the continuous thermometer, and The length of the tip of the double coated optical fiber 1 which is consumed by one measurement is 10
It was about 20 mm. Therefore, the temperature can be accurately measured in a short time, and the double coated optical fiber 1
It was possible to reduce the amount of erosion loss.

【0031】上記のように2重被覆光ファイバ1を繰り
返して溶鋼7に挿入して温度を測定していると、測定し
ているたびに2重被覆光ファイバ1の先端部が溶損して
2重被覆光ファイバ1の全長が短くなる。このように2
重被覆光ファイバ1の全長が短くなると光ファイバ11
の伝送損失が小さくなり、光ファイバ11の終端部から
出る光のエネルギが大きくなり測定値に誤差がでる。そ
こで光ファイバ11の終端からの光エネルギ信号処理部
5の光検波器51に送り、光検波器51で入射した光エ
ネルギをそのパワ−に比例した電流信号Inに変換し補
正手段52に送る。補正手段52は送られた電流信号I
nを、記憶手段53に記憶している光ファイバ11の初
期長L0と単位長さ当りの損失α及び送り制御手段4か
ら送られる測定毎の光ファイバの送り量の変化ΔLnと
から補正して伝送損失の変化を除去した補正値Incをピ
−クホ−ルド回路54に送る。ピ−クホ−ルド回路54
は送られた補正値Incのピ−ク値をあらかじめ定められ
た一定時間保持し、表示手段56に送り温度表示すると
ともに記録手段55に記録する。
As described above, when the double coated optical fiber 1 is repeatedly inserted into the molten steel 7 to measure the temperature, the tip portion of the double coated optical fiber 1 is melted and damaged at every measurement. The total length of the heavy-coated optical fiber 1 becomes short. 2 like this
When the total length of the heavy-coated optical fiber 1 becomes short, the optical fiber 11
Transmission loss decreases, the energy of light emitted from the terminal end of the optical fiber 11 increases, and an error occurs in the measured value. Then, the light energy from the end of the optical fiber 11 is sent to the photodetector 51 of the optical energy signal processing unit 5, and the light energy incident on the photodetector 51 is converted into a current signal In proportional to the power and sent to the correction means 52. The correction means 52 sends the sent current signal I
n is corrected from the initial length L 0 of the optical fiber 11 stored in the storage means 53, the loss α per unit length, and the change ΔLn in the feed amount of the optical fiber for each measurement sent from the feed control means 4. The correction value Inc from which the change in the transmission loss has been removed is sent to the peak-hold circuit 54. Peak-hold circuit 54
Holds the peak value of the sent correction value Inc for a predetermined period of time, displays the sending temperature on the display means 56 and records it on the recording means 55.

【0032】このように補正手段52で光ファイバ11
の伝送損失の変化を補正するようにしたから、2重被覆
光ファイバ1の先端部が消耗しても測定温度に誤差が生
じることを防ぐことができ、長時間にわたり安定して溶
鋼7の温度を測定することができる。また、補正した測
定値Incのピ−ク値を、図7に示すように、一定時間例
えば1秒程度保持することにより、測定温度を表示手段
56や記録手段55に確実に表示して記録することがで
きる。さらに、測定値Incのピ−ク値を検出して保持す
ることにより、2重被覆光ファイバ1の先端部を溶鋼7
に浸漬している時間を短縮することができ、2重被覆光
ファイバ1の消耗量を低減することができ、1本の2重
被覆光ファイバ1を使用して長時間の測定を行なうこと
ができる。
In this way, the optical fiber 11 is corrected by the correction means 52.
Since the change in the transmission loss is corrected, it is possible to prevent an error in the measurement temperature even if the tip of the double-coated optical fiber 1 is consumed, and to stabilize the temperature of the molten steel 7 for a long time. Can be measured. Further, as shown in FIG. 7, the peak value of the corrected measured value Inc is held for a certain period of time, for example, about 1 second, so that the measured temperature is surely displayed and recorded on the display means 56 and the recording means 55. be able to. Further, by detecting and holding the peak value of the measured value Inc, the tip end of the double-coated optical fiber 1 is melted into the molten steel 7
The immersion time can be shortened, the consumption of the double coated optical fiber 1 can be reduced, and long time measurement can be performed using one double coated optical fiber 1. it can.

【0033】なお、上記実施例は1500℃以上と高温の溶
鋼7の温度を測定するために、石英系ガラスを使用した
光ファイバ11と、ステンレス管の保護管12を使用し
た場合について説明したが、軟化点が1000℃程度の多成
分ガラスの光ファイバ11をカ−ボン等の保護管12で
被覆し、その外面に合成樹脂の断熱材13を被覆するこ
とにより1000℃程度の温度も測定することができる。
In the above embodiment, the optical fiber 11 made of quartz glass and the protective tube 12 made of stainless steel are used to measure the temperature of the molten steel 7 which is as high as 1500 ° C. or more. A multi-component glass optical fiber 11 having a softening point of about 1000 ° C. is covered with a protective tube 12 such as carbon, and a heat insulating material 13 of synthetic resin is coated on the outer surface thereof to measure a temperature of about 1000 ° C. be able to.

【0034】[0034]

【発明の効果】この発明は以上説明したように、光ファ
イバの先端部を測温部として溶融金属内に挿入するとき
に、光ファイバを保護管で被覆しているから、光ファイ
バ自体に損傷を与えずに安定して挿入することができ
る。
As described above, according to the present invention, since the optical fiber is covered with the protective tube when the tip of the optical fiber is inserted into the molten metal as a temperature measuring portion, the optical fiber itself is damaged. It can be inserted stably without giving.

【0035】また、光ファイバは測定する溶融金属の温
度より高い温度の溶損温度を有し、保護管と断熱材は測
定する溶融金属の温度より低い温度の耐熱温度を有し、
2重被覆光ファイバを溶融金属に挿入したときから、光
ファイバの先端部が露出するまでにタイムラグを有する
から、光ファイバの先端部を溶融金属内に一定時間確実
に保持することができ、溶融金属の内部温度を迅速かつ
正確に得ることができる。
Further, the optical fiber has a melting temperature higher than the temperature of the molten metal to be measured, and the protective tube and the heat insulating material have a heat resistance temperature lower than the temperature of the molten metal to be measured,
Since there is a time lag from when the double-coated optical fiber is inserted into the molten metal to when the tip of the optical fiber is exposed, the tip of the optical fiber can be reliably held in the molten metal for a certain period of time. The internal temperature of the metal can be obtained quickly and accurately.

【0036】また、保護管を断熱材より耐熱温度が高い
金属管で形成することにより、先端部の断熱材が焼損し
てから保護管が焼損するまでに遅延時間を与え、光ファ
イバの先端部を保護するとともに光ファイバの先端部全
体を均一な温度にすることができる。
Further, by forming the protective tube from a metal tube having a higher heat resistance temperature than the heat insulating material, a delay time is given from the burnout of the heat insulating material at the tip end to the burnout of the protective tube, and the tip portion of the optical fiber is provided. Can be protected and the entire tip of the optical fiber can be kept at a uniform temperature.

【0037】また、2重被覆光ファイバを溶融金属内に
挿入したときに、光ファイバを保護管と断熱材で保護し
ているから、先端部の溶損量が少なく、2重被覆光ファ
イバを溶融金属内に断続的に挿入してても、2重被覆光
ファイバの先端部の消耗量を低減することができ、1本
の2重被覆光ファイバを使用して長時間の測定を行なう
ことができる。
Further, when the double coated optical fiber is inserted into the molten metal, the optical fiber is protected by the protective tube and the heat insulating material. Even if it is inserted into the molten metal intermittently, the amount of wear of the tip of the double coated optical fiber can be reduced, and long time measurement can be performed using one double coated optical fiber. You can

【0038】さらに、2重被覆光ファイバの先端部の消
耗量による伝送損失の変化を補正することにより、2重
被覆光ファイバの先端部が消耗しても測定温度に誤差が
生じることを防ぐことができ、長時間にわたり安定して
溶融金属の温度を測定することができる。
Further, by correcting the change in the transmission loss due to the amount of wear of the tip of the double-coated optical fiber, it is possible to prevent an error in the measurement temperature even if the tip of the double-coated optical fiber is worn. The temperature of the molten metal can be measured stably over a long period of time.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明の実施例を示す構成図である。FIG. 1 is a configuration diagram showing an embodiment of the present invention.

【図2】2重被覆光ファイバを示す断面図である。FIG. 2 is a sectional view showing a double-coated optical fiber.

【図3】測定状態の2重被覆光ファイバを示す断面図で
ある。
FIG. 3 is a cross-sectional view showing a double-coated optical fiber in a measurement state.

【図4】2重被覆光ファイバの焼損状態を示す断面図で
ある。
FIG. 4 is a cross-sectional view showing a burned state of a double-coated optical fiber.

【図5】測定した温度を示す波形図である。FIG. 5 is a waveform diagram showing measured temperatures.

【図6】測定した温度を示す波形図である。FIG. 6 is a waveform diagram showing measured temperatures.

【図7】ピ−クホ−ルドをした測定温度を示す波形図で
ある。
FIG. 7 is a waveform diagram showing a measured temperature with a peak hold.

【符号の説明】[Explanation of symbols]

1 2重被覆光ファイバ 2 供給ドラム 3 光ファイバ搬送手段 4 送り制御手段 5 信号処理部 11 光ファイバ 12 保護管 13 断熱材 51 光検波器 52 補正手段 53 記憶手段 54 ピ−クホ−ルド回路 55 記録手段 56 表示手段 DESCRIPTION OF SYMBOLS 1 Double-coated optical fiber 2 Supply drum 3 Optical fiber conveyance means 4 Feed control means 5 Signal processing part 11 Optical fiber 12 Protective tube 13 Thermal insulation material 51 Optical detector 52 Correction means 53 Storage means 54 Peak-hold circuit 55 Recording Means 56 Display means

───────────────────────────────────────────────────── フロントページの続き (72)発明者 金田 靖 東京都千代田区丸の内一丁目1番2号 日 本鋼管株式会社内 (72)発明者 中田 正之 東京都千代田区丸の内一丁目1番2号 日 本鋼管株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Yasushi Kaneda 1-2-1, Marunouchi, Chiyoda-ku, Tokyo Nihon Kokan Co., Ltd. (72) Masayuki Nakata 1-2-1 Marunouchi, Chiyoda-ku, Tokyo Main Steel Pipe Co., Ltd.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 光ファイバを被覆した保護管の外表面を
断熱材で被覆した2重被覆光ファイバの先端部を測温部
とした消耗形光ファイバ温度測定装置であって、光ファ
イバは測定する溶融金属の温度より高い温度の溶損温度
を有し、保護管と断熱材は測定する溶融金属の温度より
低い温度の耐熱温度を有することを特徴とする消耗形光
ファイバ温度測定装置。
1. A consumable optical fiber temperature measuring device, wherein a tip of a double coated optical fiber having an outer surface of a protective tube coated with the optical fiber coated with a heat insulating material is used as a temperature measuring unit, wherein the optical fiber is measured. An expendable optical fiber temperature measuring device, characterized in that it has a melting temperature higher than the temperature of the molten metal to be measured, and that the protective tube and the heat insulating material have a heat resistant temperature lower than the temperature of the molten metal to be measured.
【請求項2】 保護管が断熱材より耐熱温度が高い金属
管である請求項1記載の消耗形光ファイバ温度測定装
置。
2. The consumable optical fiber temperature measuring device according to claim 1, wherein the protective tube is a metal tube having a higher heat resistance temperature than the heat insulating material.
【請求項3】 上記2重被覆光ファイバを溶融金属の表
面に断続的に送り出すとともに巻戻す光ファイバ搬送手
段と、光ファイバの終端で得た光エネルギをあらかじめ
定められた光ファイバの初期長と単位長さ当りの損失及
び上記光ファイバ搬送手段で検出した測定毎の光ファイ
バの送り量の変化とから補正する補正手段とを有する請
求項1又は2記載の消耗形光ファイバ温度測定装置。
3. An optical fiber conveying means for intermittently sending and rewinding the double coated optical fiber to the surface of the molten metal, and optical energy obtained at the end of the optical fiber with a predetermined initial length of the optical fiber. The consumable optical fiber temperature measuring device according to claim 1 or 2, further comprising: a correction unit that corrects the loss per unit length and the change in the feed amount of the optical fiber for each measurement detected by the optical fiber conveying unit.
JP4231509A 1992-08-07 1992-08-07 Consuming type optical fiber temperature measuring apparatus Pending JPH0658816A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4231509A JPH0658816A (en) 1992-08-07 1992-08-07 Consuming type optical fiber temperature measuring apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4231509A JPH0658816A (en) 1992-08-07 1992-08-07 Consuming type optical fiber temperature measuring apparatus

Publications (1)

Publication Number Publication Date
JPH0658816A true JPH0658816A (en) 1994-03-04

Family

ID=16924608

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4231509A Pending JPH0658816A (en) 1992-08-07 1992-08-07 Consuming type optical fiber temperature measuring apparatus

Country Status (1)

Country Link
JP (1) JPH0658816A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5733043A (en) * 1993-11-30 1998-03-31 Nkk Corporation Temperature measuring device
US6004031A (en) * 1993-11-30 1999-12-21 Nkk Corporation Temperature measuring device
US20140321504A1 (en) * 2013-04-30 2014-10-30 Heraeus Electro-Nite International N.V. Method and apparatus for measuring the temperature of a molten metal
EP2940441A1 (en) 2014-04-30 2015-11-04 Heraeus Electro-Nite International N.V. Device for measuring the temperature of a molten metal
AU2015261656A1 (en) * 2015-01-28 2016-08-11 Heraeus Electro-Nite International N.V. Immersion device for an optical fiber for measuring the temperature of a melt

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5733043A (en) * 1993-11-30 1998-03-31 Nkk Corporation Temperature measuring device
EP0655613B1 (en) * 1993-11-30 1999-03-17 Nkk Corporation Temperature measuring device
US6004031A (en) * 1993-11-30 1999-12-21 Nkk Corporation Temperature measuring device
US6227702B1 (en) 1993-11-30 2001-05-08 Nkk Corporation Method and apparatus for measuring a temperature of a molten metal
US20140321504A1 (en) * 2013-04-30 2014-10-30 Heraeus Electro-Nite International N.V. Method and apparatus for measuring the temperature of a molten metal
US9726545B2 (en) 2013-04-30 2017-08-08 Heraeus Electro-Nite International N.V. Method and apparatus for measuring the temperature of a molten metal
EP2940441A1 (en) 2014-04-30 2015-11-04 Heraeus Electro-Nite International N.V. Device for measuring the temperature of a molten metal
AU2015261656A1 (en) * 2015-01-28 2016-08-11 Heraeus Electro-Nite International N.V. Immersion device for an optical fiber for measuring the temperature of a melt
AU2015261656B2 (en) * 2015-01-28 2016-08-18 Heraeus Electro-Nite International N.V. Immersion device for an optical fiber for measuring the temperature of a melt
US10024731B2 (en) 2015-01-28 2018-07-17 Heraeus Electro-Nite International N.V. Immersion device for an optical fiber for measuring the temperature of a melt

Similar Documents

Publication Publication Date Title
US5733043A (en) Temperature measuring device
US6227702B1 (en) Method and apparatus for measuring a temperature of a molten metal
JPS5611329A (en) Measuring method of melted metal temperature in vessel
KR102267529B1 (en) Method for measuring a temperature of a molten metal bath
US4843234A (en) Consumable electrode length monitor based on optical time domain reflectometry
JP3158839B2 (en) Apparatus and method for measuring temperature of molten metal
JPH0658816A (en) Consuming type optical fiber temperature measuring apparatus
JP2876881B2 (en) Measuring device and level measuring device for molten metal
JPS6219727A (en) Immersion thermometer for molten metal
JP4616456B2 (en) Immersion type optical fiber radiation thermometer for measuring molten metal temperature and method for measuring temperature of molten metal
US4893895A (en) An improved encased high temperature optical fiber
JP3147101B2 (en) Method and apparatus for measuring temperature of molten metal
JPH09304185A (en) Method and apparatus for measuring temperature of molten metal
JP3287246B2 (en) Temperature measuring device for molten metal
JP3773374B2 (en) Optical fiber drawing furnace featuring programmable logic controller for optical fiber preform heating and fiber drawing
SE508842C2 (en) Method and apparatus for measuring the temperature of a melt in a sample vessel and using optical pyrometry
JPH05142049A (en) Consumable type optical fiber thermometer
US20240027272A1 (en) Method and system for determining a temperature value of a molten metal bath
JP3351120B2 (en) Measuring method of hot metal temperature at taphole with optical fiber thermometer
JPH0567893B2 (en)
JP3191780B2 (en) Method and apparatus for measuring temperature of molten metal, optical fiber coated with metal tube, continuous casting machine, mold and tundish
JPH06221927A (en) Optical fiber thermometer
JPH09126894A (en) Method and instrument for optically measuring temperature of high-temperature melt
WO2020022935A1 (en) Device for measuring the temperature of molten materials
JPS6191529A (en) Temperature measuring apparatus for molten metal