JPH0567893B2 - - Google Patents

Info

Publication number
JPH0567893B2
JPH0567893B2 JP63096198A JP9619888A JPH0567893B2 JP H0567893 B2 JPH0567893 B2 JP H0567893B2 JP 63096198 A JP63096198 A JP 63096198A JP 9619888 A JP9619888 A JP 9619888A JP H0567893 B2 JPH0567893 B2 JP H0567893B2
Authority
JP
Japan
Prior art keywords
temperature
tip
tube
gas
outer tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP63096198A
Other languages
Japanese (ja)
Other versions
JPH01267426A (en
Inventor
Etsuo Morimoto
Tomoyoshi Koyama
Kazuyo Ibuki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP63096198A priority Critical patent/JPH01267426A/en
Publication of JPH01267426A publication Critical patent/JPH01267426A/en
Publication of JPH0567893B2 publication Critical patent/JPH0567893B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/02Constructional details
    • G01J5/08Optical arrangements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/0037Radiation pyrometry, e.g. infrared or optical thermometry for sensing the heat emitted by liquids
    • G01J5/004Radiation pyrometry, e.g. infrared or optical thermometry for sensing the heat emitted by liquids by molten metals
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/02Constructional details
    • G01J5/04Casings
    • G01J5/041Mountings in enclosures or in a particular environment
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/02Constructional details
    • G01J5/08Optical arrangements
    • G01J5/0818Waveguides
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/02Constructional details
    • G01J5/08Optical arrangements
    • G01J5/0875Windows; Arrangements for fastening thereof
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/02Constructional details
    • G01J5/08Optical arrangements
    • G01J5/0887Integrating cavities mimicking black bodies, wherein the heat propagation between the black body and the measuring element does not occur within a solid; Use of bodies placed inside the fluid stream for measurement of the temperature of gases; Use of the reemission from a surface, e.g. reflective surface; Emissivity enhancement by multiple reflections

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、溶融金属、たとえばタンデイツシユ
内の溶鋼の測温装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an apparatus for measuring the temperature of molten metal, such as molten steel in a tundish.

〔従来の技術と発明が解決しようとする課題〕[Problems to be solved by conventional technology and invention]

連続鋳造設備のタンデイツシユ内における溶鋼
温度は、鋳造中、種々の外乱により変動する。一
般に取鍋より一定量の溶鋼をタンデイツシユへ注
入し、タンデイツシユより数基のモールドへと分
配注入され、急冷凝固が完了する連続鋳造プロセ
スにおいて、タンデイツシユは中間プラントに位
置する。そもそもタンデイツシユの主な役割は、
溶鋼の一時的な保持としての役割、介在物を
浮上分離させる役割、複数モールドへの分配の
役割を受けもつ。いずれにおいても温度条件が支
配的なプロセスであり、効率的な操業を確保する
ためには、もとよりタンデイツシユ内溶鋼温度を
把握することが重要である。タンデイツシユ内の
溶鋼温度は鋳造初期に炉壁レンガまたは溶鋼表面
からの抜熱が大きく、さらに連続プロセスの中間
に位置するゆえ、取鍋からの注入溶鋼量とモール
ドへの吐出溶鋼量のアンバランスにより、溶鋼容
量変動が激しく、温度変動が大きくなる。また、
鋳造末期へと、加熱、冷却等の手を加えない場
合、徐々に温度降下するが、使用タンデイツシユ
の鋳造回数や、鋳造前の予熱バラツキにより、そ
の温度下降速度が異なる。タンデイツシユ内溶鋼
温度が低下すると、介在物浮上効果が減少すると
ともに、鋳造ノズル詰りが発生するため、タンデ
イツシユ内溶鋼温度を正確に把握することはきわ
めて重要である。
The temperature of molten steel in the tundish of continuous casting equipment fluctuates due to various disturbances during casting. Generally, in a continuous casting process, a certain amount of molten steel is injected from a ladle into a tundish, and distributed from the tundish into several molds to complete rapid solidification, and the tundish is located in an intermediate plant. In the first place, the main role of tandaitsuyu is to
It plays the role of temporarily holding molten steel, floating and separating inclusions, and distributing it to multiple molds. In either case, temperature conditions are the dominant process, and in order to ensure efficient operation, it is important to understand the molten steel temperature in the tundish. The temperature of the molten steel in the tandate is affected by the large amount of heat removed from the furnace wall bricks or the surface of the molten steel in the early stages of casting, and since it is located in the middle of a continuous process, there is an imbalance between the amount of molten steel injected from the ladle and the amount of molten steel discharged into the mold. , the molten steel capacity fluctuates sharply, and the temperature fluctuates widely. Also,
Towards the end of casting, if no heating, cooling, etc. are applied, the temperature will gradually drop, but the rate of temperature drop will vary depending on the number of castings of the tundish used and variations in preheating before casting. When the molten steel temperature in the tundish decreases, the effect of floating inclusions decreases and clogging of the casting nozzle occurs, so it is extremely important to accurately grasp the molten steel temperature in the tundish.

以上のような問題を解決するために最近では、
特開昭61−249655号公報に開示されているタンデ
イツシユ内溶鋼加熱装置の採用が試みられてい
る。これは、溶鋼温度を測定した結果を誘導加熱
装置の電力制御部へフイードバツクし、鋳造初期
から末期の間、温度低下を補償するというもので
ある。
In order to solve the above problems, recently,
Attempts have been made to employ a device for heating molten steel in a tundish, which is disclosed in Japanese Unexamined Patent Publication No. 61-249655. This system feeds back the results of measuring the molten steel temperature to the power control section of the induction heating device to compensate for the temperature drop from the initial stage to the final stage of casting.

ところで、この種の溶鋼温度測定方法として現
在最も広く使用されているのは、消耗型浸漬熱電
対を使用するものである。しかし、これは、不連
続な測温であるため、約3分間隔以下のピツチで
は計測不可能となり、その結果、鋳造初期にみら
れる数十秒周期で約±10℃変動する溶鋼温度の制
御には到底使用できない。また、消耗型浸漬熱電
対のランニングコストに鑑みればその都度の測温
は到底実現不可能である。そこで、ランニングコ
スト低減を考慮した方法として、市販品として、
溶融金属に対し耐熱性の高い保護管(ジルコニア
系セラミツクスやアルミカーボン質等)の内側
に、白金−白金ロジウム熱電対を挿入したプロー
ブがある。しかし、これは熱電対のコストが若干
高く、かつ約10時間程の寿命は確保されていると
いえども、熱電対は、保護管自身より発生する
COガスにより、浸炭等の影響を受け、経時再現
性が劣化し、最悪断線する事態を招くことがある
などの問題が残されている。
By the way, the currently most widely used method for measuring the temperature of molten steel of this type uses a consumable immersion thermocouple. However, since this is a discontinuous temperature measurement, it is impossible to measure the temperature at intervals of about 3 minutes or less, and as a result, it is difficult to control the temperature of molten steel, which fluctuates by about ±10 degrees Celsius every few tens of seconds, as seen in the early stages of casting. It cannot be used at all. Furthermore, in view of the running costs of consumable immersion thermocouples, it is completely impossible to measure temperature each time. Therefore, as a method to reduce running costs, as a commercially available product,
There is a probe in which a platinum-platinum-rhodium thermocouple is inserted inside a protective tube (made of zirconia ceramics, aluminum carbon, etc.) that is highly heat resistant to molten metal. However, this is due to the slightly higher cost of the thermocouple, and although the lifespan of about 10 hours is guaranteed, the thermocouple generates heat from the protective tube itself.
Problems remain, including carburization and other effects caused by CO gas, which deteriorates reproducibility over time and, in the worst case, can lead to wire breakage.

こうした測温現状下にあつては、最も有望視さ
れているものは、光学式測温方法である。この例
としては、特開昭56−60323号、同60−105929号
各公報記載の技術を挙げることができ、耐熱性の
導伝管を溶鋼内に挿入し、不活性ガスを供給する
ことにより、導伝管先端部が開孔されているゆ
え、溶鋼面が露出し、その表面から得られる放射
エネルギーを放射温度計によりサンプリングし、
温度検出する方法である。この方法であれば、保
護管の形状がシンプルかつ必要最小限の損耗ダメ
ージしか受けない。さらに、センサ自身のランニ
ングコストが測温センサ中、最も有利なものであ
るため、今後、光学式測温方法が鉄鋼業界では主
流になると考えれる。
Under the current state of temperature measurement, the most promising method is the optical temperature measurement method. Examples of this include the techniques described in Japanese Patent Application Laid-open Nos. 56-60323 and 60-105929, in which a heat-resistant conduction pipe is inserted into molten steel and an inert gas is supplied. Since the tip of the conduit is perforated, the molten steel surface is exposed, and the radiant energy obtained from that surface is sampled with a radiation thermometer.
This is a method of detecting temperature. With this method, the protective tube has a simple shape and suffers only the necessary minimum wear and tear damage. Furthermore, since the running cost of the sensor itself is the most advantageous among temperature sensors, it is thought that optical temperature measurement methods will become mainstream in the steel industry in the future.

しかし、周知の通り、不活性ガスを吹き込む
と、導伝管の開孔に臨む溶鋼表面は急冷される。
実際、溶鋼表面にArガスを吹き付けた場合、約
7℃〜10℃の温度低下が発生するとの知見も報告
されている。この場合、不活性ガスの流量調整如
何では、真値とのベースダウンの補正は困難と想
定される。さらに、溶鋼表面形状の変動も発生す
るため、当然ながらみかけの放射率の変動があ
り、測定再現性が低下することも予想される。
However, as is well known, when an inert gas is blown into the molten steel, the surface of the molten steel facing the opening of the conduction pipe is rapidly cooled.
In fact, it has been reported that when Ar gas is sprayed onto the surface of molten steel, the temperature decreases by approximately 7°C to 10°C. In this case, it is assumed that it is difficult to correct the base down from the true value depending on how the flow rate of the inert gas is adjusted. Furthermore, since variations in the surface shape of the molten steel also occur, there is naturally a variation in the apparent emissivity, which is expected to reduce measurement reproducibility.

タンデイツシユでの溶鋼温度の最適管理には、
溶鋼凝固温度との差がきわめて少ないことが要求
されており、これ前工程の温度ベースを低下させ
ることによる省エネルギー効果のためである。過
去には、前記温度差(ΔTという)が、ΔT=30
〜40℃であつたが、最近はΔT=10〜20℃を目標
に操業改善およびプラント改善が実施されてい
る。したがつて前記ΔTの目標を達成でき、かつ
低ランニングコストであり、消耗型浸漬熱電対の
現状再現性(σ=2℃)に対して損色なく再現性
がσ=5℃以下の連続的光学式測温方法の開発が
要請されている。
For optimal control of molten steel temperature in tandem production,
It is required that the difference from the solidification temperature of molten steel be extremely small, and this is to save energy by lowering the temperature base of the previous process. In the past, the temperature difference (referred to as ΔT) was ΔT=30
The temperature was ~40℃, but recently, operational improvements and plant improvements have been implemented with the goal of achieving ΔT=10~20℃. Therefore, the target of ΔT can be achieved, the running cost is low, and the reproducibility is continuously σ = 5℃ or less without color loss compared to the current reproducibility of consumable immersion thermocouples (σ = 2℃). There is a need to develop an optical temperature measurement method.

そこで、本発明の主たる目的は、ランニングコ
ストが低く、しかも測温に際して応答性および再
現性が高く、さらに連続測温が可能な測温装置を
提供することにある。
SUMMARY OF THE INVENTION Accordingly, the main object of the present invention is to provide a temperature measuring device that has low running costs, has high responsiveness and reproducibility in temperature measurement, and is capable of continuous temperature measurement.

〔課題を解決するための手段〕[Means to solve the problem]

上記課題を解決するための本発明は、先端が閉
鎖された外側管と、この外側管内に間隙をもつて
挿入されかつ先端が外側管の先端内面と離間した
内側管とを有し、前記外側管の先端部が溶融金属
内に浸漬される浸漬管と; 前記内側管の基部側に配され、前記外側管の先
端部を内側管内を通して睨みその先端部内側の放
射エネルギーを測温する光学式測温計と; 前記溶融金属表面より上方の位置からパージ用
ガスを、前記間隙に連通する空間において溶融金
属表面より上方の位置に形成された開口から大気
中に吹き出し、前記間隙内のガスを誘引して大気
中へ強制的に排出するガスパージ手段と; を備えたことを特徴とするものである。
The present invention for solving the above problems includes an outer tube whose distal end is closed and an inner tube inserted into the outer tube with a gap and whose distal end is spaced apart from the inner surface of the distal end of the outer tube. an immersion tube in which the tip of the tube is immersed in molten metal; an optical type that is disposed on the base side of the inner tube and measures the temperature of the radiant energy inside the tip by looking at the tip of the outer tube through the inner tube; and a thermometer; blowing a purge gas from a position above the surface of the molten metal into the atmosphere from an opening formed at a position above the surface of the molten metal in a space communicating with the gap, and purging the gas in the gap. It is characterized by comprising: a gas purge means that induces gas and forcibly discharges it into the atmosphere; and;

〔作用〕[Effect]

本発明では、消耗型浸漬熱電対とは異なり、連
続的に測温するものであるから、溶融金属の経時
的温度変化を把えることができ、これに基いて溶
融金属の温度制御する際における有効な手段とな
る。
Unlike a consumable immersion thermocouple, the present invention measures temperature continuously, so it is possible to grasp the temperature change of the molten metal over time, and based on this, when controlling the temperature of the molten metal. It is an effective method.

また、本発明では、従来の先端開放の中空管に
不活性ガスを噴射しつつ、溶融金属の放射率を測
定するものと異つて、先端が閉鎖された浸漬管の
先端が溶融金属の熱によつて光学的放射するのを
光学的測温計で検出するものであるから、不活性
ガスを溶融金属に投射させることによる溶融金属
の温度低下、およびその表面の形状に伴うみかけ
放射率の変動がなく、もつて測定再現性精度が高
い測温を行うことができる。
In addition, in the present invention, unlike the conventional method in which the emissivity of molten metal is measured while injecting inert gas into a hollow tube with an open tip, the tip of the immersion tube with a closed tip measures the heat of the molten metal. Since the optical thermometer detects the optical radiation emitted by Temperature measurement can be performed with no fluctuation and high measurement reproducibility accuracy.

さらに、消耗型浸漬熱電対による1回限りのも
のとは異なり、連続かつ繰り返し使用が可能であ
るからランニングコストが著しく低減する。
Furthermore, unlike the one-time use of consumable immersion thermocouples, it can be used continuously and repeatedly, significantly reducing running costs.

一方、特開昭62−217129号および実開昭50−
87979号公報には、溶融金属内への浸漬管の先端
を輻射高温計により睨んで、測温することが記載
されているが、その浸漬管は単管構造であるとと
もに、本発明のパージ手段を有しない。
On the other hand, JP-A No. 62-217129 and Utility Model Application No. 50-
Publication No. 87979 describes that the temperature is measured by gazing at the tip of a tube immersed into molten metal using a radiation pyrometer. does not have.

しかるに、本発明によれば、外側管内に間隙を
もつて挿入し、かつ先端が外側管の先端内面と離
間した内側管を設け、さらに前記間隙内のガスを
外側管外へ強制的に排出するガスパージ手段を配
設した。後述のように、外側管としてたとえばA
2O3−C系のものを用いたとき主にCOガスを発
生し、放射温度計に採用される波長帯域において
その波長分を吸収して、測定精度の低下をもたら
す。
However, according to the present invention, an inner tube is provided that is inserted into the outer tube with a gap and whose tip is spaced from the inner surface of the tip of the outer tube, and further, the gas in the gap is forcibly discharged to the outside of the outer tube. Gas purge means were provided. As described later, for example, A
When a 2 O 3 -C type material is used, it mainly generates CO gas, which absorbs the wavelength in the wavelength band used in the radiation thermometer, resulting in a decrease in measurement accuracy.

これに対して、本発明に従つて、ガスパージ手
段を設けて、内側管内および内側管と外側管との
間隙のたとえばCOガスを外部に強制的に排除す
ることにより、前述の測定精度の低下を防止して
高精度の測温を行うことができる。
In contrast, according to the present invention, by providing a gas purge means and forcibly expelling, for example, CO gas in the inner tube and the gap between the inner tube and the outer tube to the outside, the above-mentioned decrease in measurement accuracy can be prevented. It is possible to perform highly accurate temperature measurement.

〔発明の具体的構成〕[Specific structure of the invention]

以下本発明をさらに詳説する。 The present invention will be explained in more detail below.

第1図は第1の実施態様を示したもので、たと
えばタンデイツシユ内の溶鋼Mの温度を測定する
ために、その蓋の測温孔にマンホール蓋1が設け
られ、これに次述測温装置が固定されている。
FIG. 1 shows a first embodiment. For example, in order to measure the temperature of molten steel M in a tundish, a manhole cover 1 is provided in the temperature measurement hole of the lid, and a temperature measurement device described below is attached to the manhole cover 1. is fixed.

すなわち、マンホール蓋1には、フランジ付の
筒状支持金物2がボルト固定され、そのフランジ
にパージユニツト3、空冷ジヤケツト4および保
護キヤツプ5が順に固定されている。空冷ジヤケ
ツト4内には放射温度計6が設けられ、その信号
は導路7により外部の信号処理装置(図示せず)
へ与えられるようになつている。放射温度計6の
前面にはシーリングウインド8が配されている。
That is, a flanged cylindrical support metal fitting 2 is bolted to the manhole cover 1, and a purge unit 3, an air cooling jacket 4, and a protective cap 5 are sequentially fixed to the flange. A radiation thermometer 6 is provided inside the air-cooled jacket 4, and its signal is transmitted via a guide path 7 to an external signal processing device (not shown).
It is beginning to be given to A ceiling window 8 is arranged in front of the radiation thermometer 6.

他方、支持金物2には、浸漬管、すなわち外側
管9および内側管10がそれぞれ同心状に間隙S
をもつて取付けられている。外側管9は、2重合
わせ構造になつており、その外側に耐スラグ用保
護管9A1、耐熱性保護管9A2、および耐熱性先
端保護管9Bを有し、内側にステンレス等の保護
管骨材9C付の溶鋼保護管9Dを有し、これらの
管9A〜9Dは、たとえばA2O3−Cの材質と
され、金属製ソケツト11を介して支持金物2に
2O3等からなるセラミツクボルト12により
取付けられている。
On the other hand, on the support hardware 2, the immersion tubes, that is, the outer tube 9 and the inner tube 10 are arranged concentrically with a gap S.
It is installed with The outer tube 9 has a double layer structure, and has a slag-resistant protection tube 9A 1 , a heat-resistant protection tube 9A 2 , and a heat-resistant tip protection tube 9B on the outside, and a protection tube made of stainless steel or the like on the inside. It has a molten steel protection tube 9D with an aggregate 9C, and these tubes 9A to 9D are made of a material of, for example, A 2 O 3 -C, and are supplied with A 2 O 3 or the like to the supporting hardware 2 via a metal socket 11. It is attached by ceramic bolts 12.

また、外側管9の先端は、A2O3−C等かな
る塞体13により密閉され、その上にハイアルミ
ナ等からなるターゲツト14が設けられている。
The tip of the outer tube 9 is sealed with a closure 13 made of A 2 O 3 -C or the like, and a target 14 made of high alumina or the like is provided thereon.

他方、内側管10は、たとえばアルミナやステ
ンレス等からなり、支持金物2の内面にたとえば
溶接により固定されている。
On the other hand, the inner tube 10 is made of, for example, alumina or stainless steel, and is fixed to the inner surface of the support metal fitting 2, for example, by welding.

さらに、前記パージユニツト3には、Ar等の
不活性ガスを吹き込む導管15が設けられ、その
先端は、内側管10を貫いて支持金物2の開口2
a内に間隙をもつて配設されている。これによつ
て、導管15からArガスを吹き込みその先端か
ら吐出させると、外側管9と内側管10との間隙
Sの中の後述するガスが、誘引され、エゼクター
効果により開口2aと導管15の先端との間を通
つて排出される。16は雰囲気温度が約200℃程
度となるため放射温度計6を冷却するためのガ
ス、たとえばArガスの吹込管である。
Further, the purge unit 3 is provided with a conduit 15 for blowing an inert gas such as Ar, the tip of which passes through the inner tube 10 and extends through the opening 2 of the support metal fitting 2.
They are arranged with a gap in a. As a result, when Ar gas is blown from the conduit 15 and discharged from its tip, gas, which will be described later, in the gap S between the outer tube 9 and the inner tube 10 is attracted, and the ejector effect causes the opening 2a and the conduit 15 to flow. It is discharged through between the tip and the tip. Reference numeral 16 denotes a gas blowing pipe for cooling the radiation thermometer 6, such as Ar gas, since the ambient temperature is about 200°C.

かかる装置において、その先端部を溶鋼M中に
浸漬すると、やがて溶鋼Mの熱によつてターゲツ
ト14の温度が溶鋼Mの温度と熱平衡状態に至
る。この状態で、放射温度計によりターゲツト1
4を睨み、そこからの熱を把え、温度信号として
取り出す。これによつて、その時点での溶鋼温度
を検出する。そして、この温度検出を、先端部を
溶鋼M中にある時間浸漬しながら連続的な測温を
行う。
When the tip of such a device is immersed in molten steel M, the temperature of the target 14 eventually reaches a state of thermal equilibrium with the temperature of molten steel M due to the heat of the molten steel M. In this state, the radiation thermometer detects target 1.
4, grasp the heat from there, and extract it as a temperature signal. Thereby, the molten steel temperature at that point in time is detected. Then, the temperature is continuously measured while the tip is immersed in the molten steel M for a certain period of time.

ところで、外側管9の材質としては、上記の例
のほか、Mo−ZrO2系のものなどをも使用できる
が、耐溶損性および耐ヒートシヨツク性の点で、
2O3−C系のものが最適である。しかるに、
この系では、溶鋼の熱によつて、主にCOガスを
発生する。このCOガスは、放射温度計に採用さ
れる波長帯域(500nm〜1500nm)においてその
波長を吸収する作用がある。そこで、これによる
精度低下を防止するために、そのCOガスを導管
15を介してのArガスを吹出しによつてパージ
するようにしてある。
By the way, as the material for the outer tube 9, in addition to the above-mentioned examples, Mo- ZrO2- based materials can also be used, but in terms of erosion resistance and heat shock resistance,
A 2 O 3 -C type is most suitable. However,
In this system, CO gas is mainly generated by the heat of molten steel. This CO gas has the effect of absorbing wavelengths in the wavelength band (500 nm to 1500 nm) used in radiation thermometers. Therefore, in order to prevent the accuracy from decreasing due to this, the CO gas is purged by blowing out Ar gas through the conduit 15.

上記例において、内側管の材質としては、その
他SiO2やZrO2等の緻密組織のものを用いること
ができる。この内側管は、前述のCOガスの放射
温度測定ゾーンへの侵入を防止する。
In the above example, as the material of the inner tube, other materials with a dense structure such as SiO 2 or ZrO 2 can be used. This inner tube prevents the aforementioned CO gas from entering the radiation temperature measurement zone.

ターゲツトの放射率は予め黒体炉等により容易
に測定できるが、再現性が良くかつ1.0に近いも
のが望まれる。ターゲツトの形状は平板状でなく
とも、第3図a,bに示すように、中央が凸や凹
となつたものでもよい。また、ターゲツトとし
て、塞体13そのものを用いることが可能である
が、その塞体13がCOガスを発生したり、その
材質の放射率が予め明確でない場合には、第1図
例のように、別途ターゲツト14を設けるのが好
ましい。
The emissivity of the target can be easily measured in advance using a blackbody furnace or the like, but it is desirable to have good reproducibility and a value close to 1.0. The shape of the target need not be flat, but may be convex or concave at the center, as shown in FIGS. 3a and 3b. Furthermore, it is possible to use the plug 13 itself as a target, but if the plug 13 generates CO gas or the emissivity of its material is not clear in advance, it is possible to use a target as shown in the example in Figure 1. , it is preferable to provide a separate target 14.

なお、第1図において、内側管10先端に小孔
10aを形成してあるのは、吹込管16から吹き
込まれるガス(Arガス等)が小孔10aを通し
て直接間隙Sに抜けターゲツト14が冷却される
のを防止するためである。
In FIG. 1, the small hole 10a is formed at the tip of the inner tube 10 so that gas (Ar gas, etc.) blown from the blowing tube 16 passes directly into the gap S through the small hole 10a, and the target 14 is cooled. This is to prevent it from happening.

また、光学式測温計としては、単色温度計、多
波長温度計等を用いることができ、さらに内側管
内に光フアイバーを挿入し、ターゲツトと測温計
とを光学的に連結するようにしてもよい。
Furthermore, as an optical thermometer, a monochromatic thermometer, a multi-wavelength thermometer, etc. can be used, and an optical fiber is inserted into the inner tube to optically connect the target and the thermometer. Good too.

第1図例では、内側管は先端が開放している
が、第2図例のように、たとえばMo−ZrO2系等
からなる内側管10′が閉鎖しており、かつその
先端が外側管9に密着し、内側管10′の内部に
ターゲツト13を設けたものでもよい。この場
合、両管9,10′間には、熱伝導性を高めるた
めにグラフアイト等からなる伝熱材17を設ける
のが望ましい。この場合もCOガスのパージを行
う。
In the example in Figure 1, the inner tube has an open tip, but as in the example in Figure 2, the inner tube 10' made of, for example, Mo-ZrO 2 is closed, and its tip is connected to the outer tube. The target 13 may be provided in close contact with the inner tube 9 and inside the inner tube 10'. In this case, it is desirable to provide a heat transfer material 17 made of graphite or the like between the tubes 9 and 10' to improve thermal conductivity. In this case as well, purge the CO gas.

浸漬管の溶鋼M中への浸漬深さLは、その外径
をDとしたとき、L≧2Dが好ましい。より好ま
しくは、2D≦L≦3Dである。これは、第3図の
ように、所望の測定精度を確保するためである。
また、この条件は、内外管の肉厚や材質に殆んど
関係なく言えることである。
The immersion depth L of the immersion tube into the molten steel M is preferably L≧2D, where D is the outer diameter of the immersion tube. More preferably, 2D≦L≦3D. This is to ensure desired measurement accuracy as shown in FIG.
Furthermore, this condition is true regardless of the wall thickness or material of the inner and outer tubes.

他方、上記の外側管のみは、ある時間使用した
ならば、損耗があるので交換される。外側管がA
2O3−C系のセラミツクであるときは、交換コ
スト的に十分見合うけれども、Mo−ZrO2系の場
合にはコスト高を招く。しかし、このコストの点
を無視すれば、Mo−ZrO2系のものをも用いるこ
とができるし、かつその場合、COガスの発生が
ないから、2重管にしてCOガスのパージを行う
必要はなく、単管状態で使用できる。
On the other hand, only the outer tube described above is subject to wear and tear and is replaced after a certain period of use. The outer tube is A
When using 2 O 3 --C ceramics, the replacement cost is sufficient, but when using Mo--ZrO 2 ceramics, the cost increases. However, if you ignore this cost point, you can also use Mo-ZrO 2 type materials, and in that case, no CO gas will be generated, so you will need to use double pipes to purge the CO gas. It can be used as a single tube.

なお、本発明は、タンデイツシユ内のほか、高
炉樋、トーピード、取鍋、転炉、注銑鍋やモール
ド内等においても適用できる。
The present invention can be applied not only inside a tundish but also inside a blast furnace gutter, torpedo, ladle, converter, iron pouring ladle, mold, etc.

〔実施例〕〔Example〕

次に実施例を示す。 Next, examples will be shown.

(実施例 1) 第1図の測温装置により、タンデイツシユ内の
溶鋼の測温を1カ月にわたつて行つた。外側管は
2O3−C系、内側管はMo−ZrO2系のセラミ
ツクとした。
(Example 1) Using the temperature measuring device shown in FIG. 1, the temperature of molten steel in a tundish was measured over a period of one month. The outer tube was made of A 2 O 3 -C ceramic, and the inner tube was made of Mo-ZrO 2 ceramic.

その結果、測温装置の測定精度は、σ=4℃を
みた。そして、測定精度がσ=2℃と高い消耗型
浸漬熱電対との対比を試みたところ、第5図のよ
うに、高い相関をみた。
As a result, the measurement accuracy of the temperature measuring device was found to be σ=4°C. When we attempted to compare the results with a consumable immersion thermocouple, which has a high measurement accuracy of σ = 2°C, we found a high correlation as shown in Figure 5.

また、外側管の材質をMo−ZrO2系に代えて、
連結鋳造時における連続測温を試みたところ、第
6図のように、今まで把え難かつた鋳込初期およ
び末期の急激な温度変動をも把握できた。しか
も、寿命は約30時間と長時間であることも判つ
た。
In addition, the material of the outer tube was changed to Mo-ZrO 2 type,
When we attempted continuous temperature measurement during continuous casting, we were able to detect rapid temperature fluctuations at the beginning and end of casting, which had been difficult to detect until now, as shown in Figure 6. Moreover, it was found that the lifespan was long, approximately 30 hours.

(実施例 2) 第2図例の浸漬管を用い、モールド内の溶鋼の
測温を行つた。この場合、内外管ともMo−ZrO2
系のセラミツクとし、内部に光フアイバーを設け
て狭視野の多波長温度計と光学的に連結した。そ
の結果、約10時間の連続測温が可能であつた。
(Example 2) The temperature of molten steel in a mold was measured using the immersion tube shown in the example shown in FIG. In this case, both the inner and outer tubes are Mo−ZrO 2
The device was made of ceramic, and an optical fiber was installed inside to optically connect it to a narrow-field multi-wavelength thermometer. As a result, continuous temperature measurement for about 10 hours was possible.

〔発明の効果〕〔Effect of the invention〕

以上の通り、本発明によれば、測定精度として
実用的に十分に高いものとなり、ランニングコス
トの低減を図りつつ連続測温が可能となる。
As described above, according to the present invention, the measurement accuracy is sufficiently high for practical use, and continuous temperature measurement is possible while reducing running costs.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は第1測温装置例の縦断面図、第2図は
他の例の縦断面図、第3図はa,bはターゲツト
の例示図、第4図はL/D比と測定精度との相関
図、第5図は測定精度を示すグラフ、第6図は連
続測温結果のグラフである。 1……マンホール蓋、6……放射温度計、9…
…外側管、10,10′……内側管、13……塞
体、14……ターゲツト、15……導管、S……
間隙。
Fig. 1 is a vertical cross-sectional view of the first temperature measuring device example, Fig. 2 is a longitudinal cross-sectional view of another example, Fig. 3 is an illustration of targets a and b, and Fig. 4 is L/D ratio and measurement. A correlation diagram with accuracy, FIG. 5 is a graph showing measurement accuracy, and FIG. 6 is a graph of continuous temperature measurement results. 1... Manhole cover, 6... Radiation thermometer, 9...
...outer tube, 10,10'...inner tube, 13...obstruction, 14...target, 15...conduit, S...
gap.

Claims (1)

【特許請求の範囲】 1 先端が閉鎖された外側管と、この外側管内に
間隙をもつて挿入されかつ先端が外側管の先端内
面と離間した内側管とを有し、前記外側管の先端
部が溶融金属内に浸漬される浸漬管と; 前記内側管の基部側に配され、前記外側管の先
端部を内側管内を通して睨みその先端部内側の放
射エネルギーを測温する光学式測温計と; 前記溶融金属表面より上方の位置からパージ用
ガスを、前記間隙に連通する空間において溶融金
属表面より上方の位置に形成された開口から大気
中に吹き出し、前記間隙内のガスを誘引して大気
中へ強制的に排出するガスパージ手段と; を備えたことを特徴とする溶融金属の測温装置。
[Scope of Claims] 1. An outer tube with a closed tip, and an inner tube inserted into the outer tube with a gap and whose tip is spaced apart from the inner surface of the tip of the outer tube, the tip of the outer tube being separated from the inner surface of the tip of the outer tube. an immersion tube which is immersed in molten metal; an optical thermometer that is disposed on the base side of the inner tube and measures the temperature of the radiant energy inside the tip of the outer tube by looking through the inner tube; ; Purge gas is blown into the atmosphere from a position above the surface of the molten metal through an opening formed at a position above the surface of the molten metal in a space communicating with the gap, thereby attracting the gas in the gap and releasing it into the atmosphere. A temperature measuring device for molten metal, comprising: gas purge means for forcibly discharging the metal into the molten metal.
JP63096198A 1988-04-19 1988-04-19 Method and apparatus for temperature measurement of molten metal Granted JPH01267426A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63096198A JPH01267426A (en) 1988-04-19 1988-04-19 Method and apparatus for temperature measurement of molten metal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63096198A JPH01267426A (en) 1988-04-19 1988-04-19 Method and apparatus for temperature measurement of molten metal

Publications (2)

Publication Number Publication Date
JPH01267426A JPH01267426A (en) 1989-10-25
JPH0567893B2 true JPH0567893B2 (en) 1993-09-27

Family

ID=14158591

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63096198A Granted JPH01267426A (en) 1988-04-19 1988-04-19 Method and apparatus for temperature measurement of molten metal

Country Status (1)

Country Link
JP (1) JPH01267426A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008545975A (en) * 2005-06-09 2008-12-18 ウジナス・シデルルジカス・デ・ミナス・ジェライス・ソシエダッド・アノニマ・ウジミナス Apparatus for continuous temperature measurement of molten steel in tundish using optical fiber and infrared pyrometer

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0647009Y2 (en) * 1989-03-02 1994-11-30 大阪瓦斯株式会社 Three-layer structure immersion pipe for non-ferrous molten metal
JPH03103729A (en) * 1989-09-18 1991-04-30 Nkk Corp Radiation thermometer for molten iron
JPH075043A (en) * 1992-12-07 1995-01-10 Seiichi Okuhara Photodetecting section of optical temperature measuring apparatus
DE19925685A1 (en) * 1999-06-04 2000-12-07 Zimmermann & Jansen Gmbh Arrangement for determining a physical quantity and / or for chemical analysis
DE10345299B3 (en) * 2003-09-30 2005-07-21 Giese, Erhard, Dr. High accuracy, combined pressure- and temperature sensor used in injection mold for plastic, comprises infra red transmission system and sensor, with piezoelectric axial pressure sensor
JP4770616B2 (en) * 2006-07-13 2011-09-14 住友金属工業株式会社 Method for continuous casting of molten metal and immersion lance for continuous casting
KR100868222B1 (en) * 2007-08-22 2008-11-11 기아자동차주식회사 Heater tube exchanging apparatus
JP6745771B2 (en) * 2017-08-30 2020-08-26 日鉄日新製鋼株式会社 Continuous temperature measuring probe for molten metal and continuous temperature measuring device

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62217129A (en) * 1986-03-19 1987-09-24 Miyamoto Kogyosho:Kk Temperature measuring instrument for molten nonferrous metal

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5087979U (en) * 1973-12-10 1975-07-25

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62217129A (en) * 1986-03-19 1987-09-24 Miyamoto Kogyosho:Kk Temperature measuring instrument for molten nonferrous metal

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008545975A (en) * 2005-06-09 2008-12-18 ウジナス・シデルルジカス・デ・ミナス・ジェライス・ソシエダッド・アノニマ・ウジミナス Apparatus for continuous temperature measurement of molten steel in tundish using optical fiber and infrared pyrometer

Also Published As

Publication number Publication date
JPH01267426A (en) 1989-10-25

Similar Documents

Publication Publication Date Title
US7690841B2 (en) Device for continuous temperature measurement of molten steel in the tundish using optical fiber and infra-red pyrometer
KR0134654B1 (en) Apparatus and method for measuring a temperature using optical fiber
KR20190135451A (en) Method for measuring a temperature of a molten metal bath
JPH0567893B2 (en)
KR20110096587A (en) Oxygen blowing lance cooled by protective gas
US6471397B2 (en) Casting using pyrometer apparatus and method
US4525080A (en) Apparatus for accurately measuring high temperatures
US4919543A (en) Molten metal temperature probe
US6106150A (en) Method and apparatus for measuring the melt temperature in a melt vessel
TWI689362B (en) Breathable stopper rod with temperature measurement function
JP4616456B2 (en) Immersion type optical fiber radiation thermometer for measuring molten metal temperature and method for measuring temperature of molten metal
JP2876881B2 (en) Measuring device and level measuring device for molten metal
JPH0569454B2 (en)
JP3351120B2 (en) Measuring method of hot metal temperature at taphole with optical fiber thermometer
JPH0259629A (en) Continuous temperature measuring instrument for molten metal
RU2782714C1 (en) Ventilated stopper rod with temperature measurement function
KR920000415A (en) Production process of directional solidified casting
JPH04348236A (en) Temperature detector for molten metal
CN209986224U (en) Ventilative formula stopper stick with temperature measurement function
CN211373207U (en) Real-time monitoring device for molten aluminum of heat preservation furnace
JPH0815040A (en) Temperature measuring device with optical fiber for high temperature liquid
SU1280468A1 (en) Device for sampling liquid metal and measuring its temperature
JPH054928Y2 (en)
JP2822875B2 (en) Molten metal temperature measuring device
JP3191780B2 (en) Method and apparatus for measuring temperature of molten metal, optical fiber coated with metal tube, continuous casting machine, mold and tundish