JPS62197209A - Camber controlling method for hot rolling of metal plate - Google Patents

Camber controlling method for hot rolling of metal plate

Info

Publication number
JPS62197209A
JPS62197209A JP61040745A JP4074586A JPS62197209A JP S62197209 A JPS62197209 A JP S62197209A JP 61040745 A JP61040745 A JP 61040745A JP 4074586 A JP4074586 A JP 4074586A JP S62197209 A JPS62197209 A JP S62197209A
Authority
JP
Japan
Prior art keywords
rolling
camber
amount
pass
rough
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61040745A
Other languages
Japanese (ja)
Inventor
Junji Sato
準治 佐藤
Yoshio Oike
大池 美雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP61040745A priority Critical patent/JPS62197209A/en
Publication of JPS62197209A publication Critical patent/JPS62197209A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B37/00Control devices or methods specially adapted for metal-rolling mills or the work produced thereby
    • B21B37/28Control of flatness or profile during rolling of strip, sheets or plates
    • B21B37/44Control of flatness or profile during rolling of strip, sheets or plates using heating, lubricating or water-spray cooling of the product

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Control Of Metal Rolling (AREA)

Abstract

PURPOSE:To eliminate troubles after a finishing rolling and succeeding processes and to improve the yield of finished plate stocks by making a heated slab a symmetrical rough bar without cambers or wedges using a rough rolling mill and eliminating a difference between a right edge and a left edge temp. on the inlet side of a finishing rolling mill. CONSTITUTION:Temps. in the width direction of a heated slab are measured 5 on the inlet side of a reversible rough rolling mill 1 and the slab is roughly rolled 1 after making a right edge and a left edge temp. equal by adjusting an edge heater 4 by a controller 6. A camber meter 7 on the outlet side and a right and a left plate thickness meter 8a and 8b detect a slab shape and the rough bar 3 is formed into a symmetrical good shape without cambers or wedges by repetitive rolling. Again, the temp. in the width direction of the rough bar 3 is measured 5 and the bar 3 is carried to a tandem finishing rolling mill 2 after eliminating a difference between both edge temps. by controlling the edge heater 4 by the controller 6. Thus, occurrence of cambers being sensitive to temp. differences is prevented so as to remarkably reduce rolling troubles in the finishing and succeeding processes and to improve the yield of finished plate stocks.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、板材の熱間圧延におけるキャンバ制御方法、
特に、仕」二圧延でのキャンバの発生を防止する方法に
関するものである。
Detailed Description of the Invention (Industrial Field of Application) The present invention provides a method for controlling camber in hot rolling of plate materials;
In particular, the present invention relates to a method for preventing the occurrence of camber during double-finish rolling.

(従来の技術) 一般に板材の熱間圧延においては、しばしば圧延機及び
被圧延材の作業側と駆動側(以下、この両側を総称して
左右という。)についての種々の非対称が起因して、被
圧延材にキャンバが生じることがある。これは、左右圧
下位置差、左右入側板厚差、左右板温度差、左右ミル剛
性差及び板中心とミル中心とのずれなどの要因が複合し
て左右圧下率差を生じ、被圧延材にキャンバが発生ずる
のである。
(Prior Art) In general, in hot rolling of plate materials, various asymmetries between the working side and the driving side (hereinafter, both sides are collectively referred to as left and right) of the rolling mill and the rolled material are often caused. Camber may occur in the rolled material. This is caused by a combination of factors such as the difference in the rolling position between the left and right sides, the difference in plate thickness between the left and right entrance sides, the temperature difference between the left and right plates, the difference in mill rigidity between the left and right sides, and the deviation between the center of the plate and the center of the mill, resulting in a difference in the rolling reduction rate between the left and right sides, which causes the difference in the rolling material. This causes camber.

このようなキャンバが粗圧延で生じると、仕」二圧延時
に先端面がりによる通板不良や、尾端尻抜は時の蛇行に
よる絞り込み等の圧延トラブルを生じて、作業能率が著
しく悪化するとともに、歩留りも低下する。
If such camber occurs during rough rolling, it will cause rolling troubles such as poor sheet threading due to tip end face rounding during finish rolling, and rolling troubles such as narrowing due to meandering during tail end removal, and work efficiency will deteriorate significantly. , yield also decreases.

板圧延におけるキャンバ制御に関しては種々の方法が提
案されているが、ある圧延工程でキャンバのみを修正し
てし、それだけでは次工程の圧延でのキャンバの発生を
十分に防止することはできない。すなわち、板圧延にお
けるキャンバ発生の要因のうち被圧延材に関する主なも
のは、板素材のキャンバ、ウェッジ及び左右温度差であ
り、キャンバがなくてもウェッジや左右温度差があれば
キャンバが発生ずる。第13図は左右温度差とキャンバ
量の関係を示しており、わずかの温度差で大きなキャン
バを生じることがイつかる。
Various methods have been proposed for camber control in plate rolling, but correcting only the camber in a certain rolling process cannot sufficiently prevent the occurrence of camber in the next rolling process. In other words, among the factors that cause camber in plate rolling, the main factors related to the rolled material are the camber, wedge, and temperature difference between the left and right sides of the plate material, and even if there is no camber, camber will occur if there is a wedge or a temperature difference between the left and right sides. . FIG. 13 shows the relationship between the left and right temperature difference and the amount of camber, and it can be seen that a small temperature difference can cause a large camber.

左右温度差によるキャンバの発生を防止する方法として
、例えば、特開昭58−163512号公報に見られる
ように、仕上圧延機の入側に設置した幅方向温度計の出
力に基づいて仕上圧延機の左右の圧下位置を修正するこ
とが行なわれている。
As a method for preventing the occurrence of camber due to temperature differences between the left and right sides, for example, as seen in Japanese Patent Application Laid-Open No. 58-163512, the finishing mill The left and right rolling positions are being corrected.

(発明が解決しようとする問題点) しかしながら、前記従来の方法では、左右温度差と左右
圧下位置の修正猾の関係が圧延条件によって変化するた
め、定量化が難しく、必ずしも十分にキャンバの発生を
防止できるとは限らない。従って、特に左右温度差が大
きい時には、過制御や制御不足によるキャンバの発生が
前記の様な圧延トラブルを生じる可能性がある等の問題
点を有している。
(Problems to be Solved by the Invention) However, in the conventional method, since the relationship between the left and right temperature difference and the correction of the left and right rolling positions changes depending on the rolling conditions, it is difficult to quantify, and it is not always possible to sufficiently prevent the occurrence of camber. It doesn't necessarily mean it can be prevented. Therefore, especially when the temperature difference between the left and right sides is large, there are problems such as the occurrence of camber due to over-control or insufficient control, which may cause the above-mentioned rolling troubles.

本発明は、斯かる問題点に鑑みてなされたもので、粗圧
延後の被圧延材の左右温度差を零とすることが可能で、
次仕上圧延工程においてキャンバが再発する等のトラブ
ルが解消され、高い歩留りを達成し得る板材の熱間圧延
におけるキャンバ制御方法を提供することを目的とする
The present invention was made in view of such problems, and it is possible to reduce the temperature difference between the left and right sides of the rolled material after rough rolling to zero.
It is an object of the present invention to provide a method for controlling camber in hot rolling of a plate material, which eliminates troubles such as recurrence of camber in the next finish rolling process and achieves a high yield.

(問題点を解決するための手段) 前記問題点を解決するため、本発明は、予め、粗圧延に
おいて被圧延材のキャンバ及びウェッジを修正して左右
対称な形状のラフバーとした後、粗圧延機と仕上圧延機
の間に幅方向温度計とその下流側の左右にエツジヒータ
とを設けて、前記幅方向温度計により前記ラフバーの少
なくとも幅方向両側端部の温度を測定し、該測定結果に
基づいて、ラフバーの両側端部の温度差が零となるよう
に、前記エツジヒータの左右の出力を調整するものであ
る。
(Means for Solving the Problems) In order to solve the above problems, the present invention corrects the camber and wedge of the material to be rolled in advance in rough rolling to form a rough bar with a symmetrical shape, and then rough rolling. A widthwise thermometer and edge heaters are provided on the left and right sides of the downstream side between the finishing rolling machine and the finishing mill, and the temperature of at least the widthwise both ends of the rough bar is measured by the widthwise thermometer, and Based on this, the left and right outputs of the edge heaters are adjusted so that the temperature difference between both ends of the rough bar becomes zero.

(実施例) 次に、本発明の一実施例を図面に従って説明する。(Example) Next, one embodiment of the present invention will be described with reference to the drawings.

(1)熱間圧延ラインの構成 第1図は、本発明を適用する熱間圧延ラインの概略構成
を示す。すなわち、この熱間圧延ラインは、上流側に粗
圧延機l、下流側にタンデム型の仕上圧延機2が配置さ
れている。
(1) Configuration of hot rolling line FIG. 1 shows a schematic configuration of a hot rolling line to which the present invention is applied. That is, in this hot rolling line, a rough rolling mill 1 is arranged on the upstream side, and a tandem-type finishing mill 2 is arranged on the downstream side.

粗圧延機Iの入側には、被圧延材3の両側部を加熱する
エツジヒータ4が設けられ、その上流側に設けた幅方向
温度計5にて検出した左右温度差に基づき制御器6を介
してエツジヒータ4の温度が調整可能になっている。
An edge heater 4 that heats both sides of the material to be rolled 3 is installed on the entry side of the rough rolling mill I, and a controller 6 is activated based on the temperature difference between the left and right sides detected by a width direction thermometer 5 installed on the upstream side of the edge heater 4. Through this, the temperature of the edge heater 4 can be adjusted.

また、粗圧延機1の出側には、被圧延材3のキャンバ量
を実測するキャンバ計7、及び被圧延材3の左右の板厚
を検出する左右板厚計8a、8bが設けられ、このキャ
ンバ計7及び左右板厚計8a、8bからの信号に基づい
て、制御器9を介して粗圧延機Iの左右圧下位置の設定
を行なうようになっている。
Further, on the exit side of the rough rolling mill 1, a camber gauge 7 for actually measuring the amount of camber of the rolled material 3, and left and right plate thickness gauges 8a and 8b for detecting the left and right thicknesses of the rolled material 3 are provided. Based on the signals from the camber gauge 7 and the left and right plate thickness gauges 8a and 8b, the left and right rolling positions of the roughing mill I are set via the controller 9.

一方、仕」二圧延機2の入側には、前記粗圧延機1と同
様、エツジヒータ41幅方向温度計5及び制御器6が設
けられている。
On the other hand, on the entry side of the second rolling mill 2, an edge heater 41, a width direction thermometer 5, and a controller 6 are provided, similar to the rough rolling mill 1 described above.

前記エツジヒータ4は、本来、板材の機械的性質を幅方
向に均一にすることを目的とするものであり、第2図に
示すように被圧延材の幅方向中央部と両端部との温度差
を除去するために、エツジヒータ4の出力を調整する制
御が行なわれるものである。しかし、本発明に係る方法
においては、エツジヒータ4は左右の温度差を除去して
、キャンバの発生を抑制することを目的とするものであ
るから、第3図に示すように、左右の温度を同一にする
だけの制御機能を備えておればよい。このように、本発
明は公知のエツジヒータを用いるものであるが、その使
用目的及び使用方法は全く異なったものである。
The edge heater 4 is originally intended to make the mechanical properties of the plate uniform in the width direction, and as shown in FIG. In order to eliminate this, control is performed to adjust the output of the edge heater 4. However, in the method according to the present invention, since the edge heater 4 is intended to suppress the generation of camber by eliminating the temperature difference between the left and right sides, as shown in FIG. It is sufficient to have a control function to make them the same. As described above, although the present invention uses a known edge heater, its purpose and method of use are completely different.

(2)粗圧延段階におけるキャンバ制御方法の具体例 以上の構成からなる熱間圧延ラインにおいて、まず、粗
圧延段階にてキャンバ及びウェッジを修正し、左右対称
な形状のラフバーを得る方法について説明する。
(2) Specific example of camber control method in rough rolling stage In a hot rolling line configured as above, first, a method for correcting camber and wedge in the rough rolling stage to obtain a symmetrically shaped rough bar will be explained. .

まず、前記粗圧延機1における粗圧延の最終2パスを除
く任意の第iパスにて、前記キャンバ計7及び左右板厚
計8a、8bによりキャンバ量及びウェッジ量を実測し
て、キャンバ曲率及びウェッジ率を算出する。
First, in any i-th pass of rough rolling in the rough rolling mill 1 excluding the final two passes, the camber amount and wedge amount are actually measured using the camber total 7 and left and right plate thickness totals 8a and 8b, and the camber curvature and Calculate the wedge rate.

あるいは、当該第1パスにおける左右圧延荷重差の変化
量により、キャンバ曲率及びウェッジ率を推定する方法
を用いてもよい。以下、この推定方法について、第4図
に示すフローチャートのステップIからステップ4に基
づいて説明する。
Alternatively, a method may be used in which the camber curvature and wedge ratio are estimated based on the amount of change in the left and right rolling load difference in the first pass. This estimation method will be explained below based on steps I to 4 of the flowchart shown in FIG.

まず任意の第iパスの圧延において、ステップ七として
、左右圧延荷重差Pdfiを圧延中2以上の任意の時点
で測定し、測定時点の時間間隔とその間での左右圧延荷
重差の変化量δPdfiを求める。なお、添え字dfは
左右の差を表し、駆動側に蛇行する方向を正とする。
First, in any i-th pass of rolling, as Step 7, the left and right rolling load difference Pdfi is measured at any point 2 or more during rolling, and the time interval between the measurement points and the amount of change δPdfi in the left and right rolling load difference during that time are calculated. demand. Note that the subscript df represents the difference between the left and right sides, and the direction of meandering toward the drive side is defined as positive.

次にステップ2として、この時間間隔と左右圧延荷重差
の変化量δPdfiから、当該パスでの左右圧下位置差
の適性値5dfi*からのズレ量Δ5dfiを実験式又
は理論式により推定する。
Next, in step 2, from this time interval and the change amount δPdfi in the left and right rolling load difference, the deviation amount Δ5dfi of the left and right rolling position difference from the appropriate value 5dfi* in the relevant pass is estimated by an experimental formula or a theoretical formula.

第5図は左右圧下位置差のズレ量ΔSdfとある時間間
隔での左右圧延荷重差の変化量δPdfの関係をアルミ
ニウム板を用いた実験で求めたものであり、両者はほぼ
比例関係にある。従って、前辺てこの関係を実験により
求めておけば、δPdfiを測定してΔ5dfiを推定
することが可能である。
FIG. 5 shows the relationship between the deviation amount ΔSdf of the left-right rolling position difference and the change amount δPdf of the left-right rolling load difference at a certain time interval, which was determined by an experiment using an aluminum plate, and the two are approximately proportional. Therefore, if the relationship between the front levers is determined through experiments, it is possible to measure δPdfi and estimate Δ5dfi.

また、δPdfiから理論的にΔ5dfiを計算するこ
ともできる。左右圧延荷重差の変化は主として被圧延材
の蛇行によって生じ、ある時刻AからBの間の左右圧延
荷重差がPdfAからparBになり、第6図で表され
る蛇行量がyAからVBになったとすると、両者の関係
は力とモーメントのつり合いから次式で表される。
Further, Δ5dfi can also be calculated theoretically from δPdfi. The change in the difference in the rolling load between the left and right sides is mainly caused by the meandering of the rolled material, and the difference in the rolling load between the left and right sides between a certain time A and B changes from PdfA to parB, and the amount of meandering shown in Fig. 6 changes from yA to VB. Then, the relationship between the two is expressed by the following equation from the balance of force and moment.

ここで、Pは左右圧延荷重の和、Lはバックアップロー
ルの支点間距離である。蛇行量の圧延の進行に伴う変化
は次式で表される。
Here, P is the sum of the left and right rolling loads, and L is the distance between the supporting points of the backup rolls. The change in meandering amount as rolling progresses is expressed by the following equation.

=8− ここで、yoは噛み込み時のオフセンター量、Xは圧延
長さ、γは圧延機の仕様及び圧延条件から求まる定数で
ある。f (z)は種々の左右非対称要因の影響項であ
り、例えば左右非対称要因のひとつとして左右ミル定数
差Marを考えると、次式で表される。
=8- Here, yo is the off-center amount at the time of biting, X is the rolling length, and γ is a constant determined from the specifications of the rolling mill and the rolling conditions. f (z) is an influence term of various left-right asymmetry factors, and for example, considering the left-right Mill constant difference Mar as one of the left-right asymmetry factors, it is expressed by the following equation.

5df=Sdf*+ASdr ここで、Mは左右ミル定数の和である。■式から明らか
なように噛み込み時に被圧延材がオフセンターしていな
ければ(yo=o)、f(z)−〇のとき蛇行は生じな
い。従って、蛇行を生じないための左右圧下位置差の適
正値S df*は0式でf(z)−〇とおいて求められ
る。
5df=Sdf*+ASdr Here, M is the sum of the left and right Mill constants. (2) As is clear from the equation, if the material to be rolled is not off center at the time of biting (yo=o), meandering will not occur when f(z)-〇. Therefore, the appropriate value S df* of the difference in left and right lowering positions to prevent meandering can be found using the formula 0 as f(z)−〇.

左右圧下位置差が適正値S df*からズしているとき
、f (z)は適正値からのズレ量ΔSdfによって次
のように表される。
When the left and right pressure position difference deviates from the proper value S df*, f (z) is expressed by the deviation amount ΔSdf from the proper value as follows.

f (z)は他の左右非対称要因についても0式と同じ
くそれぞれの項の一次結合で表されるので、どのような
非対称要因についても左右圧下位置差の適正値S df
*が存在し、適正値からのズレ量ΔSdfがあるとき蛇
行が生じる。0式に■式から求まるyA及びYBを代入
すると、 −e−7XA)            ・・00式に
0式を代入し、yo=0とおくと、・ΔSdf    
        ・・・■となり、δPdfとΔSdf
が比例関係にあることがわかる。従って、δPdfを実
測すれば■式を用いてΔSdfを計算することができる
Since f (z) is also expressed as a linear combination of each term for other left-right asymmetry factors as in equation 0, the appropriate value of the left-right depression position difference S df for any asymmetry factor
* exists and meandering occurs when there is a deviation amount ΔSdf from the appropriate value. Substituting yA and YB found from formula ■ into equation 0, -e-7XA) ・・Substituting equation 0 into equation 00 and setting yo=0, ・ΔSdf
...■, and δPdf and ΔSdf
It can be seen that there is a proportional relationship. Therefore, if δPdf is actually measured, ΔSdf can be calculated using equation (2).

第7図は左右圧延荷重差の変化量を実際のΔSdfから
計算した値(δP df)cと実測値(δP df) 
Mの関係を調べたものである。両者はほぼ比例関係にあ
るが、実測値のほうが計算値より若干小さい。
Figure 7 shows the amount of change in the left and right rolling load difference calculated from the actual ΔSdf (δP df)c and the measured value (δP df).
This study investigated the relationship between M. Although the two are almost proportional, the actual measured value is slightly smaller than the calculated value.

これを補うため修正係数を導入して、 (δPdf)M−α・(δPdf)c      ・・
■と表すことができる。ここで、αは実験によって求め
られる修正係数である。■式と0式より、実測の圧延荷
重差の変化量(δPdf)mから当該パスの左右圧下位
置差のズレ量ΔSd4は次式で求めることができる。
To compensate for this, a correction coefficient is introduced, and (δPdf)M-α・(δPdf)c ・・
It can be expressed as ■. Here, α is a correction coefficient determined by experiment. From equation (2) and equation (0), the amount of deviation ΔSd4 in the left and right rolling position difference of the pass can be determined from the amount of change (δPdf)m in the actual rolling load difference using the following equation.

・(δPdf)M           ・・0次にス
テップ影として、左右圧下位置差のズレ量ΔSdfから
当該パス後のウェッジ率φを推定する。ウェッジがワー
クロールの傾きにならって生じるとすれば、幾何学的関
係からウェッジfihdfとΔSdl’の関係は次式で
表される。
・(δPdf)M ・As the 0th step shadow, the wedge rate φ after the relevant pass is estimated from the shift amount ΔSdf of the left and right lowering position difference. If the wedge is generated following the inclination of the work roll, the relationship between the wedge fihdf and ΔSdl' is expressed by the following equation from a geometrical relationship.

ここで、Bは板幅である。ウェッジ率φを次式で定義す
る。
Here, B is the plate width. The wedge rate φ is defined by the following equation.

ここで、hは平均の出側板厚である。[相]式と0式よ
りΔSdfとφの関係は次式で表される。
Here, h is the average outlet side plate thickness. From the [phase] equation and the 0 equation, the relationship between ΔSdf and φ is expressed by the following equation.

0式によって左右圧下位置差のズレ量ΔSdfからウェ
ッジ率φを推定することができる。なお、[相]式から
第iパスと第(i−1)パスの間でのΔSdfの変更量
とhdfの変化量の関係は次式で求めることができる。
The wedge ratio φ can be estimated from the deviation amount ΔSdf of the left and right lowering position difference using the equation 0. Note that from the [phase] equation, the relationship between the amount of change in ΔSdf and the amount of change in hdf between the i-th pass and the (i-1)th pass can be determined by the following equation.

第8図は0式を確認するために行った実験結果であり、
hdf、 −hdf、−+とΔSdf、−Δ5d4i−
,は比例関係にあり、0式が正しいことがわかる。ただ
し、この場合ウェッジを板幅端から10mm位置の板厚
で定義しているので、図中の理論式は[相]式おいてB
をB−20としている。
Figure 8 shows the results of an experiment conducted to confirm Equation 0.
hdf, −hdf, −+ and ΔSdf, −Δ5d4i−
, are in a proportional relationship, and it can be seen that equation 0 is correct. However, in this case, the wedge is defined as the plate thickness at the 10 mm position from the plate width edge, so the theoretical formula in the figure is B in the [phase] formula.
is designated as B-20.

次にステップ4として、ウェッジ率φからキャンバ曲率
ρを推定する。第iパスと第(i−1)パスのウェッジ
率とキャンバ曲率の関係は、平面歪み状態を仮定すれば
次式で表される。
Next, in step 4, the camber curvature ρ is estimated from the wedge ratio φ. The relationship between the wedge ratio and camber curvature of the i-th pass and the (i-1)th pass is expressed by the following equation, assuming a plane distortion state.

ここで、λiは第iパスの伸び率(λ、 =h、−1/
h、)であり、ウェッジ率が変化しなくてもキャンバ曲
率は伸びの分だけ小さくなることがわかる。しかし実際
には3次元変形が生じるため、ウェッジ率の変化はどキ
ャンバ曲率は変化しない。第9図はウェッジ率変化とキ
ャンバ曲率変化の関係を実験により求めたものである。
Here, λi is the elongation rate of the i-th pass (λ, =h, -1/
h, ), and it can be seen that even if the wedge ratio does not change, the camber curvature decreases by the amount of elongation. However, since three-dimensional deformation actually occurs, the camber curvature does not change even though the wedge ratio changes. FIG. 9 shows the relationship between the wedge ratio change and the camber curvature change, which was determined through experiments.

両者は板厚に拘わらずほぼ一定の比例関係にあるが、平
面歪みを仮定した場合(傾き45°の直線)に比べて実
際のキャンバ曲率の変化は小さい。ここで、実際の両者
の比例関係を表す直線の傾きをキャンバ変化係数ξと定
義する。第1O図は圧下率rとキャンバ変化係数ξの関
係を実験で求めたものである。圧下率rが大きいほどキ
ャンバ変化係数ξは小さい。従って、実際のウェッジ率
変化とキャンバ曲率変化の関係は次式で表される。
Although the two have a substantially constant proportional relationship regardless of the plate thickness, the actual change in camber curvature is smaller than when plane distortion is assumed (a straight line with an inclination of 45°). Here, the slope of the straight line representing the actual proportional relationship between the two is defined as the camber change coefficient ξ. FIG. 1O shows the relationship between the rolling reduction r and the camber change coefficient ξ, which was obtained through experiments. The larger the reduction rate r is, the smaller the camber change coefficient ξ is. Therefore, the relationship between the actual wedge ratio change and the camber curvature change is expressed by the following equation.

従ってξ(r)をあらかじめ実験によって求めておけば
、0式でρ1−1−0.φ1−1=0とすることによっ
て第iパス後のウェッジ率φiから第iパス後のキャン
バ曲率ρiが求められる。
Therefore, if ξ(r) is found experimentally in advance, then ρ1-1-0. By setting φ1-1=0, the camber curvature ρi after the i-th pass is determined from the wedge ratio φi after the i-th pass.

次にステップ5として、実測、あるいはステップ1から
ステップ4に従って推定した第1パス後のウェッジ率φ
1及びキャンバ曲率ρiと第(i+1)パス以降のパス
スケジュールから、第(i+1)パス後のウェッジ率φ
j+1及びキャンバ曲率ρj+1の目標値を決定する。
Next, as step 5, the wedge rate φ after the first pass is actually measured or estimated according to steps 1 to 4.
1, the camber curvature ρi, and the pass schedule after the (i+1)th pass, the wedge ratio φ after the (i+1)th pass
Target values of j+1 and camber curvature ρj+1 are determined.

以下、この決定方法を第8図に示す制御概念図によって
説明する。
This determination method will be explained below with reference to the control conceptual diagram shown in FIG.

今、第iパス後のウェッジ率φi及びキャンバ曲率ρi
が上記の推定によって既知とする。ここでφi及びρ1
は縦軸にキャンバ1llI率、横軸にウェッジ率をとっ
た座標上の点Aで表される。
Now, the wedge ratio φi and the camber curvature ρi after the i-th pass
is known by the above estimation. Here φi and ρ1
is represented by a point A on coordinates with the camber 1llI ratio on the vertical axis and the wedge ratio on the horizontal axis.

次に第(i+ 1 )パスで、ウェッジ率及びキャンバ
曲率は0式に従って変化するが、この過程を左右均一圧
下によりウェッジ率が変化しない成分と、左右不均一圧
下によりウェッジ率が変化する成分に分けて考える。ま
ずキャンバ曲率が左右均一圧下ニヨリρ1からρj/λ
r+1(タタシ、λ、+I−hI/h、+、)になった
状態が座標上の点A′であり、左右不均一圧下によりウ
ェッジ率とキャンバ曲率がそれぞれφiからφ1+1に
、ρ、/λ21+1からρi+1になった状態が点Bで
ある。即ち、点Bは点A。
Next, in the (i+1)th pass, the wedge ratio and camber curvature change according to equation 0, but this process can be divided into a component in which the wedge ratio does not change due to uniform pressure on the left and right sides, and a component in which the wedge ratio changes due to uneven pressure on the left and right sides. Think separately. First, the camber curvature is from ρ1 to ρj/λ
The state where r+1 (tatashi, λ, +I-hI/h, +,) is reached is point A' on the coordinates, and the wedge ratio and camber curvature change from φi to φ1+1, ρ, /λ21+1, respectively due to the left and right uneven pressure. The state where ρi+1 is reached is point B. In other words, point B is point A.

を通って傾きξ(ri + 1)の直線Q1上の点であ
る。
It is a point on a straight line Q1 passing through the line and having a slope ξ(ri + 1).

同様に第(i+2)パスでは、ウェッジ率及びキャンバ
曲率は点B(φi+1.ρ1+1)から点B’(φi+
1゜ρ、+1/λ1+2)を経て点C(φ、+2.ρ、
+2)になる。
Similarly, in the (i+2)th pass, the wedge ratio and camber curvature change from point B (φi+1.ρ1+1) to point B' (φi+
1°ρ, +1/λ1+2) to point C(φ, +2.ρ,
+2).

ここで点B゛は第(i+1)パスでの点へ°と同様に点
Bの縦軸の値カ月/λr+2になる点である。点Bは傾
きξ(ri+1)の直線Q、上にあるから、点B。
Here, point B' is a point where the value of the vertical axis of point B is month/λr+2, similar to the point to the point on the (i+1)th pass. Point B is on the straight line Q with slope ξ(ri+1), so it is point B.

は直線121と横軸の交点(pI+1−ρ1+1/λr
+2−0)を通り、傾きξ(ri+1)/λ12+2の
直線ρ2上にある。
is the intersection of the straight line 121 and the horizontal axis (pI+1−ρ1+1/λr
+2-0) and lies on the straight line ρ2 with a slope ξ(ri+1)/λ12+2.

一方、第(i+2)パス後はキャンバ、ウェッジとも零
とすることか目標であるから、第(i+2)パス後の状
態(点C)は原点になければならない。従って、点B°
は原点を通って傾きξ(ri+2)の直線Q。
On the other hand, since the goal is to make both the camber and wedge zero after the (i+2)th pass, the state (point C) after the (i+2)th pass must be at the origin. Therefore, point B°
is a straight line Q passing through the origin and having a slope ξ(ri+2).

上にあることが必要である。よって目標を達成するため
の点B′は直線Q2と直線Q3の交点として決まり、点
B°から縦軸に平行におろした線と直線乙の交点が目標
とする点B、即ち第(i+1)パス後のウェッジ率φ1
+1及びキャンバ曲率ρ1+1である。
It needs to be on top. Therefore, point B' for achieving the goal is determined as the intersection of straight line Q2 and straight line Q3, and the intersection of the line drawn parallel to the vertical axis from point B° and straight line O is the target point B, that is, the (i+1)th point. Wedge rate after pass φ1
+1 and camber curvature ρ1+1.

次にステップ6として、ステップ5において決定した第
(i+1)パス後のウェッジ率φ、+1の目標値を用い
て、0式及び0式から得られる次式により第(i+1)
パスでの左右圧下位置差の修正量を求める。
Next, in step 6, using the target value of wedge ratio φ, +1 after the (i+1)th pass determined in step 5, the (i+1th)
Find the amount of correction for the difference in left and right lowering positions in the pass.

Δ5df1+l−ΔSdf、 =L(h、+lφi+1
−hiφi)・・・[相] 次にステップ7において、初期設定の左右圧下位置をS
D1+1及びSWi+1として、第(t+1)パスにお
ける修正左右圧下位置S、”、+1及びsWi+1を次
式により求める。
Δ5df1+l−ΔSdf, =L(h,+lφi+1
-hiφi)... [phase] Next, in step 7, the initial setting left and right downward position is set to S.
As D1+1 and SWi+1, the corrected left and right lowering positions S, '', +1 and sWi+1 in the (t+1)th pass are determined by the following equations.

−h、φ1)) −h、φi))           ・・・0そして
、0式より求めた左右圧下位置に従って圧下位置を設定
し、第(i+1)パスの圧延を行う。
-h, φ1)) -h, φi)) . . . 0 Then, the rolling position is set according to the left and right rolling positions obtained from formula 0, and the (i+1)th pass of rolling is performed.

次にステップ8として、第(i+1)パスと同様に第(
i+2)パスの左右圧下位置差の修正量を求める。ここ
で第(4+2)パス後のウェッジを零とするため、0式
から第(i+2)パスの左右下位置差のズレ量は Δ5df1+2−0             ・・・
[株]となる。すなわち、第(i+2)パスではウェッ
ジを零とするため、左右圧下位置差の適正値S df*
からのズレ量をなくすようにして圧延する。なお、左右
圧下位置差の適正値S df*は前述したように、例え
ば、左右のミル定数差がある場合は0式から求めことが
できる。
Next, as step 8, the (i+1)th pass is
i+2) Calculate the amount of correction of the left and right pressure position difference of the pass. Here, since the wedge after the (4+2)th pass is set to zero, the shift amount of the left and right bottom position difference of the (i+2)th pass from equation 0 is Δ5df1+2-0...
Becomes a [stock]. That is, in the (i+2)th pass, the wedge is set to zero, so the appropriate value of the left and right pressure position difference S df*
Rolling is done so as to eliminate the amount of deviation from the surface. Note that, as described above, the appropriate value S df* of the difference in the left and right pressing positions can be obtained from the formula 0, for example, when there is a difference in the mill constant between the left and right sides.

なお、前記具体例では任意の第iパスでキャンバとウェ
ッジを検出して後続する2パスでこれらを修正するよう
にしたが、同じ原理に基づいて後続する3パス以上でキ
ャンバとウェッジを修正することも可能である。
In the above specific example, the camber and wedge were detected in the arbitrary i-th pass and corrected in the following two passes, but based on the same principle, the camber and wedge are corrected in the subsequent three or more passes. It is also possible.

また、前記具体例は、キャンバ計7、左右板厚計8 a
、 8 bにより被圧延材3のウェッジ量及びキャンバ
量を実測してウェッジ率及びキャンバ曲率を算出する方
法、及び左右圧延荷重差の変化量からウェッジ率及びキ
ャンバ曲線を算出する方法を示したが、ウェッジ量又は
キャンバ量のいずれか一方を実測して、他方は前記0式
によって推定ずろことも可能である。
In addition, the specific example has a camber total of 7 and a left and right plate thickness total of 8 a.
, 8b showed a method of calculating the wedge ratio and camber curvature by actually measuring the wedge amount and camber amount of the rolled material 3, and a method of calculating the wedge ratio and camber curve from the amount of change in the left and right rolling load difference. It is also possible to actually measure either the wedge amount or the camber amount, and estimate the other amount using the above-mentioned formula 0.

次に、以」二の粗圧延段階におけるキャンバ制御方法を
下記仕様の熱延粗ミルに実際に適用した場合の具体例に
ついて説明する。
Next, a specific example will be described in which the camber control method in the second rough rolling stage is actually applied to a hot rolling rough mill having the following specifications.

バックアップロール寸法二1430’mmmmX213
4Qワークロール寸法:    1070 ’mmX 
2186Qmmバックアップロール支点間距離・315
0mmミル定数:         380 TON/
mm上記仕様の粗ミルの第2スタンドにおいて、厚さ1
20mm、幅1214闘のバーを本発明に係る方法を適
用して3パスで厚さ30mmに圧延した。
Backup roll dimensions 2 1430'mmmm x 213
4Q work roll dimensions: 1070'mmX
2186Qmm Backup roll distance between fulcrums/315
0mm mil constant: 380 TON/
mm In the second stand of the coarse mill with the above specifications, the thickness is 1
A bar having a diameter of 20 mm and a width of 1214 mm was rolled to a thickness of 30 mm in 3 passes by applying the method according to the present invention.

圧下スケジュールは120 mm→75 mm−+ 4
.5 mm−+30mmである。第9図は各パスのウェ
ッジ率とキャンバ曲率であり、以下本図に基づいて説明
を行なう。
The reduction schedule is 120 mm → 75 mm-+ 4
.. 5 mm-+30 mm. FIG. 9 shows the wedge ratio and camber curvature of each pass, and the following explanation will be given based on this figure.

粗ミル第1スタンド出側でのキャンバ曲率及びウェッジ
率はほぼ零であったが、第1パスの圧延を行なったとこ
ろ、キャンバが発生し、この時の左右圧延荷重差の変化
量は圧延開始から終了まで約120 tonであった。
The camber curvature and wedge ratio at the exit side of the first stand of the rough mill were almost zero, but when the first pass of rolling was performed, camber occurred, and the amount of change in the left and right rolling load difference at this time was the same as that at the start of rolling. The amount was approximately 120 tons from start to finish.

この左右圧延荷重差の変化量からキャンバ曲率ρ1及び
ウェッジ率φ1を推定すると図中に示すように、ρ、−
1.0 x I O−”(]/mm) 、 φ+=2.
Ox I 0−6(1/mm)となった。また本発明に
係る方法に従って計算を行なえば第2パス後の目標キャ
ンバ曲率ρ2及び目標ウェッジ率φ、は図中に示すよう
にρ、−−1. OX I 0−0(1/mm) 、 
 φ2−1. Ox 10−80−8(17となり、目
標を達成するための左右圧下位置差の修正量は−0゜6
1+nmとなった。この左右圧下位置差に従って左右圧
下位置を設定して第2パスの圧延を行ない、逆キャンバ
を発生させた。続いて左右圧下位置差のズレ量が零とな
るように圧下位置を設定して第3パスの圧延を行なった
ところ、キャンバ、ウェッジともほぼ零のラフバーが得
られた。
If the camber curvature ρ1 and the wedge ratio φ1 are estimated from the amount of change in the left and right rolling load difference, as shown in the figure, ρ, -
1.0 x I O-” (]/mm), φ+=2.
Ox I was 0-6 (1/mm). Further, if calculation is performed according to the method according to the present invention, the target camber curvature ρ2 and target wedge ratio φ after the second pass will be ρ, −1. OX I 0-0 (1/mm),
φ2-1. Ox 10-80-8 (17, the amount of correction of the left and right pressure position difference to achieve the target is -0°6
It became 1+nm. The left and right rolling positions were set according to the difference in the left and right rolling positions, and a second pass of rolling was performed to generate reverse camber. Subsequently, a third pass of rolling was performed by setting the rolling position so that the deviation amount between the left and right rolling positions was zero, and a rough bar with substantially zero camber and wedge was obtained.

なお、以上の粗圧延段階におけるキャンバ制御方法は、
キャンバ及びウェッジのないラフバーを得るための最適
な方法であるが、キャンバとウェッジを同時に修正可能
なものであれば、他の方法を採用してもよい。
The camber control method in the above rough rolling stage is as follows:
Although this is the optimal method for obtaining a rough bar without camber and wedge, other methods may be used as long as they can correct camber and wedge at the same time.

(2)仕上圧延段階におけるキャンバ制御方法法に、本
発明の一実施例である仕上圧延段階にお(Jるキャンバ
制御方法について説明する。
(2) Camber control method in finish rolling stage A camber control method in the finish rolling stage, which is an embodiment of the present invention, will be described.

仕上圧延機2の入側に設けた前記幅方向温度計5により
、被圧延材3の左右の少なくとも板端部の温度を検出し
、その左右の温度が同一になるように制御器6を介して
エツジヒータ4の左右の出力を調整する。
The temperature of at least the left and right plate ends of the material to be rolled 3 is detected by the width direction thermometer 5 provided on the entry side of the finishing rolling mill 2, and the temperature is controlled via the controller 6 so that the left and right temperatures are the same. to adjust the left and right outputs of the edge heater 4.

被圧延材3は前記粗圧延段階で既にキャンバおよびウェ
ッジのない左右対称な形状のラフバーとなっているため
、仕上圧延機2の入側にて前記エツジヒータ4により左
右温度差が除去されると、キャンバ発生の要因はほぼ完
全に除去されたこととなる。ただし、仕上圧延において
も、圧延機の左右非対称やサイドガイドの設定不良によ
る通板時のオフセンタ等のキャンバ発生要因が存在する
が、これらに起因して発生するキャンバ量は小さく、公
知の制御技術で十分に制御可能である。従って、粗圧延
段階でキャンバ及びウェッジを除去することを前提とし
て、仕上圧延段階において本発明を適用することにより
、仕上圧延におけるキャンバの発生を完全に抑制するこ
とが可能となる。
Since the material to be rolled 3 has already become a symmetrical rough bar without camber and wedge in the rough rolling stage, when the temperature difference between the left and right sides is removed by the edge heater 4 on the entry side of the finishing rolling mill 2, This means that the causes of camber generation have been almost completely eliminated. However, even in finish rolling, there are factors that cause camber, such as off-center during threading due to asymmetry of the rolling mill and improper setting of side guides, but the amount of camber that occurs due to these is small, and known control techniques It is fully controllable. Therefore, by applying the present invention in the finishing rolling stage on the premise that camber and wedges are removed in the rough rolling stage, it is possible to completely suppress the occurrence of camber in the finishing rolling.

なお、仕上圧延段階では、はとんど通板時と尻抜は時に
キャンバが発生していることに鑑みれば、粗圧延後のラ
フバーの先端及び後端のみに本発明を適用したとしても
、はぼその目的を達成することができる。特に、従来、
仕上圧延における先端部のキャンバ発生を防止するため
のキャンバ制御方法が確立されていなかったため、本発
明を仕上圧延の先端部のみに適用することは有効である
In addition, in the finish rolling stage, considering that camber occurs mostly during sheet passing and sometimes during bottom removal, even if the present invention is applied only to the leading and trailing ends of the rough bar after rough rolling, You can achieve your goals. In particular, conventionally,
Since a camber control method for preventing the occurrence of camber at the tip end in finish rolling has not been established, it is effective to apply the present invention only to the tip end of finish rolling.

この場合、被圧延材3の1本当りに要するエツジヒータ
4に費されるエネルギーは少なくてすむことになる。
In this case, less energy is required for the edge heater 4 per roll of rolled material 3.

また、本実施例において、粗圧延機1の入側に仕上圧延
機2と同様のエツジヒータ4.左右温度計5及び制御器
6を設けであるのは、粗圧延段階において、被圧延材3
の左右温度差を除去して、キャンバとウェッジを同時に
修正するキャンバ制御の精度向」二を図るためである。
In addition, in this embodiment, an edge heater 4 similar to that of the finishing rolling mill 2 is installed on the inlet side of the rough rolling mill 1. The reason why the left and right thermometers 5 and the controller 6 are provided is when the rolled material 3 is in the rough rolling stage.
This is to improve the accuracy of camber control that simultaneously corrects camber and wedge by removing the temperature difference between the left and right sides.

(発明の効果) 以上の説明から明らかなように、本発明によれ粗圧延段
階においてギャンバ及びウェッジのないラフバーとし、
仕−に圧延前に当該ラフバーの左右温度差を除去するも
のである。
(Effects of the Invention) As is clear from the above explanation, according to the present invention, a rough bar without gambar and wedge is obtained in the rough rolling stage,
The purpose is to eliminate the temperature difference between the left and right sides of the rough bar before rolling.

このため、仕上圧延段階におけるキャンバ発生の主要な
要因が完全に除去され、当該仕」二圧延及び次工程での
圧延トラブルを著しく減少させることができるとともに
、歩留りの向上を図ることができる等の効果を有してい
る。
Therefore, the main cause of camber generation in the finish rolling stage is completely eliminated, and rolling troubles in the finish rolling and the next process can be significantly reduced, and the yield can be improved. It has an effect.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明を適用する熱間圧延ラインの機器構成図
、第2図は本来のエツジヒータの機能の説明図、第3図
は本発明に用いるエツジヒータの機能の説明図、第4図
は粗圧延段階におけるキャンバ制御方法のフローヂャー
ト、第5図は左右圧下位置差と左右圧延荷重差の変化量
の関係図、第6図は蛇行量の説明図、第7図は左右圧延
荷重差の変化量の計算値と実測値の関係図、第8図は左
右圧下位置差の修正型とウェッジの変化量の関係図、第
9図はウェッジ率変化とキャンバ曲率変化の関係図、第
1O図は圧下率とキャンバ変化係数の関係図、第11図
は粗圧延段階におけるキャンバ制御方法の概念図、第1
2図は熱延粗ミルでのキャンバ制御方法の実施例、第1
3図は幅方向温度差と発生キャンバ量の関係を示す図で
ある。 I・・粗圧延機、2・・仕上圧延機、3・・被圧延材(
ラフバー)、4・・・エツジヒータ、5・・・幅方向温
度計、6・・・制御器。 特 許 出 願 人  株式会社神戸製鋼所代 理 人
 弁理士  青白 葆 ばか2名(”’L’+1−10
1JρLl−IOLJρ4(uolll)J+llJ 
uJpd (11l1luu/ll h−+、、1 第1図 第12図 i xlo−6 −〉 ′2″2L       −冑看漣 一             〇堆定イ直′善− 第13図 @錦遥渡差T”CI
Fig. 1 is an equipment configuration diagram of a hot rolling line to which the present invention is applied, Fig. 2 is an explanatory diagram of the original function of the edge heater, Fig. 3 is an explanatory diagram of the function of the edge heater used in the present invention, and Fig. 4 is an explanatory diagram of the function of the edge heater used in the present invention. A flowchart of the camber control method in the rough rolling stage, Fig. 5 is a diagram showing the relationship between the left and right rolling position difference and the amount of change in the left and right rolling load difference, Fig. 6 is an explanatory diagram of the meandering amount, and Fig. 7 is a change in the left and right rolling load difference. Figure 8 is a diagram showing the relationship between the calculated value and actual measured value, Figure 8 is a diagram showing the relationship between the modified type of left and right reduction position difference and the amount of change in the wedge, Figure 9 is a diagram showing the relationship between wedge ratio change and camber curvature change, and Figure 1O is the relationship diagram between the wedge ratio change and camber curvature change. Figure 11 is a diagram showing the relationship between rolling reduction and camber change coefficient, and Figure 11 is a conceptual diagram of the camber control method in the rough rolling stage.
Figure 2 is an example of the camber control method in a hot rolling rough mill, the first
FIG. 3 is a diagram showing the relationship between the temperature difference in the width direction and the amount of camber generated. I... Rough rolling mill, 2... Finishing rolling mill, 3... Rolled material (
Rough bar), 4... Edge heater, 5... Width direction thermometer, 6... Controller. Patent applicant Kobe Steel Co., Ltd. agent Patent attorney Two idiots ("'L'+1-10")
1JρLl−IOLJρ4(uoll)J+llJ
uJpd (11l1luu/ll h-+,, 1 Fig. 1 Fig. 12 i xlo-6 ->'2'' 2L - 冑控 Renichi 〇Establishment I direct'zen- Fig. 13 @ Nishiki Haruka Watari T” C.I.

Claims (3)

【特許請求の範囲】[Claims] (1)予め、粗圧延において被圧延材のキャンバ及びウ
エッジを修正して左右対称な形状のラフバーとした後、
粗圧延機と仕上圧延機の間に幅方向温度計と、その下流
側の左右にエッジヒータとを設けて、前記幅方向温度計
により前記ラフバーの少なくとも幅方向両側端部の温度
を測定し、該測定結果に基づいて、ラフバーの両側端部
の温度差が零となるように、前記エッジヒータの左右の
出力を調整することを特徴とする板材の熱間圧延におけ
るキャンバ制御方法。
(1) After correcting the camber and wedge of the rolled material in advance during rough rolling to make a rough bar with a symmetrical shape,
A width direction thermometer is provided between a rough rolling mill and a finishing rolling mill, and edge heaters are provided on the left and right sides of the downstream side thereof, and the temperature of at least the width direction both ends of the rough bar is measured by the width direction thermometer, A method for controlling camber in hot rolling of a sheet material, comprising adjusting the left and right outputs of the edge heaters based on the measurement results so that the temperature difference between both ends of the rough bar becomes zero.
(2)前記粗圧延における左右対称な形状のラフバーが
、 少なくとも2つの最終板圧延パスを除く任意の第iパス
にて推定又は実測により求めた当該第iパス通過後の被
圧延材のキャンバ量とウエッジ量及び後続のパススケジ
ュールに基づいて、後続する少なくとも第i+2パス以
降のキャンバ量及びウエッジ量を零とするための第i+
1パス通過後の目標キャンバ量及び目標ウエッジ量を推
定し、この目標ウエッジ量から第i+1パス以降におけ
る圧延機の作業側と駆動側の圧下位置差の修正量を求め
、この圧下位置差の修正量に応じて前記両側の圧下位置
を設定し、後続する第i+1パス以降の圧延を行うこと
により得られるものであることを特徴とする特許請求の
範囲第1項に記載の板材の熱間圧延におけるキャンバ制
御方法。
(2) The camber amount of the rolled material after passing through the i-th pass, which is determined by estimation or actual measurement in any i-th pass excluding at least two final plate rolling passes, of the symmetrically shaped rough bar in the rough rolling. Based on the wedge amount and the subsequent pass schedule, the i+th
Estimate the target camber amount and target wedge amount after passing one pass, calculate the correction amount of the rolling position difference between the working side and the drive side of the rolling mill after the i+1th pass from the target wedge amount, and correct this rolling position difference. Hot rolling of the plate material according to claim 1, characterized in that it is obtained by setting rolling positions on both sides according to the rolling amount and performing subsequent rolling from the i+1th pass onward. camber control method.
(3)前記キャンバ量とウエッジ量のうち少なくとも一
方を、 前記任意の第iパスの2以上の任意の時点にて計測した
前記両側の圧延荷重差の時間的変化量に基づいて前記両
側の圧下位置差を推定した後、この圧下位置差に基づい
て推定することを特徴とする特許請求の範囲第2項に記
載の板材の熱間圧延におけるキャンバ制御方法。
(3) At least one of the camber amount and wedge amount is reduced on both sides based on the amount of change over time in the rolling load difference on both sides measured at two or more arbitrary points in the arbitrary i-th pass. The camber control method in hot rolling of a plate material according to claim 2, wherein after estimating the positional difference, the estimation is performed based on the rolling position difference.
JP61040745A 1986-02-25 1986-02-25 Camber controlling method for hot rolling of metal plate Pending JPS62197209A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61040745A JPS62197209A (en) 1986-02-25 1986-02-25 Camber controlling method for hot rolling of metal plate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61040745A JPS62197209A (en) 1986-02-25 1986-02-25 Camber controlling method for hot rolling of metal plate

Publications (1)

Publication Number Publication Date
JPS62197209A true JPS62197209A (en) 1987-08-31

Family

ID=12589168

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61040745A Pending JPS62197209A (en) 1986-02-25 1986-02-25 Camber controlling method for hot rolling of metal plate

Country Status (1)

Country Link
JP (1) JPS62197209A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1033182A1 (en) * 1998-09-08 2000-09-06 Kawasaki Jukogyo Kabushiki Kaisha Sheet hot rolling mill
CN106607459A (en) * 2015-10-27 2017-05-03 宝山钢铁股份有限公司 Wedge control system and method for hot rolled strip steel
JP2019123004A (en) * 2018-01-18 2019-07-25 Jfeスチール株式会社 Rough-rolling method of hot rolling, rough-rolling device of hot rolling, manufacturing method of hot-rolled steel plate and manufacturing device of hot-rolled steel plate
CN111014308A (en) * 2019-12-09 2020-04-17 北京科技大学设计研究院有限公司 Early warning method for head deviation of rough rolling intermediate blank in furnace coil rolling line

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS594201A (en) * 1982-06-30 1984-01-11 Hitachi Ltd Method for fitting board

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS594201A (en) * 1982-06-30 1984-01-11 Hitachi Ltd Method for fitting board

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1033182A1 (en) * 1998-09-08 2000-09-06 Kawasaki Jukogyo Kabushiki Kaisha Sheet hot rolling mill
EP1033182A4 (en) * 1998-09-08 2005-06-01 Kawasaki Heavy Ind Ltd Sheet hot rolling mill
CN106607459A (en) * 2015-10-27 2017-05-03 宝山钢铁股份有限公司 Wedge control system and method for hot rolled strip steel
JP2019123004A (en) * 2018-01-18 2019-07-25 Jfeスチール株式会社 Rough-rolling method of hot rolling, rough-rolling device of hot rolling, manufacturing method of hot-rolled steel plate and manufacturing device of hot-rolled steel plate
CN111014308A (en) * 2019-12-09 2020-04-17 北京科技大学设计研究院有限公司 Early warning method for head deviation of rough rolling intermediate blank in furnace coil rolling line
CN111014308B (en) * 2019-12-09 2021-08-03 北京科技大学设计研究院有限公司 Early warning method for head deviation of rough rolling intermediate blank in furnace coil rolling line

Similar Documents

Publication Publication Date Title
JP5239728B2 (en) Rolling method and rolling apparatus for metal sheet
JP6809488B2 (en) Hot-rolled rough rolling method, hot-rolled rough rolling equipment, hot-rolled steel sheet manufacturing method, and hot-rolled steel sheet manufacturing equipment
JP4267609B2 (en) Rolling method and rolling apparatus for metal sheet
JPS62197209A (en) Camber controlling method for hot rolling of metal plate
WO1995007776A1 (en) Snaking control method and tandem plate rolling mill facility line
JP2000326012A (en) Method for correcting crowning correction in roller leveler and crowning device
JPH0521648B2 (en)
JP4227243B2 (en) Control method for tail end meandering of rolling mill
JPS649086B2 (en)
CN111451294B (en) Method for improving strip shape precision of hot-rolled strip steel
JPS61154709A (en) Device for controlling thickness profile of sheet stock
WO2024042936A1 (en) Cold-rolling method and cold-rolling equipment
JP4256827B2 (en) Rolling method and rolling apparatus for metal sheet
JPH04305304A (en) Method for controlling camber in hot rolling mill
JPH10156415A (en) Method for controlling wedge in hot finish rolling
KR19990052681A (en) Prediction of High-Precision Plate Crown Considering Thickness Profile of Hot-rolled Plate Width
JP4256832B2 (en) Rolling method and rolling apparatus for metal sheet
JP3664067B2 (en) Manufacturing method of hot rolled steel sheet
JPH0635008B2 (en) Control method for tandem rolling of strips
JPS595362B2 (en) Plate thickness control method in plate rolling
JPH0839123A (en) Method for preventing draw-in in hot rolling
JPH0234241B2 (en)
JP4238621B2 (en) Method for controlling meandering and manufacturing method of rolled steel sheet
JP2661497B2 (en) Strip crown control device and strip crown control method during hot rolling
JPS6254562B2 (en)