JPS62196302A - Press molding method for high-purity tungsten powder - Google Patents
Press molding method for high-purity tungsten powderInfo
- Publication number
- JPS62196302A JPS62196302A JP3509586A JP3509586A JPS62196302A JP S62196302 A JPS62196302 A JP S62196302A JP 3509586 A JP3509586 A JP 3509586A JP 3509586 A JP3509586 A JP 3509586A JP S62196302 A JPS62196302 A JP S62196302A
- Authority
- JP
- Japan
- Prior art keywords
- press
- powder
- tungsten powder
- water
- press molding
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 title claims abstract description 37
- 238000000465 moulding Methods 0.000 title claims abstract description 13
- 238000000034 method Methods 0.000 title claims description 15
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 21
- 238000002156 mixing Methods 0.000 claims description 4
- 239000000203 mixture Substances 0.000 claims 1
- 238000011109 contamination Methods 0.000 abstract description 10
- 239000000843 powder Substances 0.000 abstract description 10
- 239000012535 impurity Substances 0.000 abstract description 7
- 229910052799 carbon Inorganic materials 0.000 abstract description 6
- 239000000314 lubricant Substances 0.000 abstract description 6
- 239000002994 raw material Substances 0.000 abstract description 6
- 229910052700 potassium Inorganic materials 0.000 abstract description 4
- 239000004065 semiconductor Substances 0.000 abstract description 4
- 229910052708 sodium Inorganic materials 0.000 abstract description 4
- 229910021642 ultra pure water Inorganic materials 0.000 abstract description 4
- 239000012498 ultrapure water Substances 0.000 abstract description 4
- 239000000047 product Substances 0.000 description 14
- 238000005245 sintering Methods 0.000 description 10
- 238000004519 manufacturing process Methods 0.000 description 8
- 229910052721 tungsten Inorganic materials 0.000 description 8
- 239000010937 tungsten Substances 0.000 description 8
- 239000002245 particle Substances 0.000 description 7
- 230000000694 effects Effects 0.000 description 6
- 229910052751 metal Inorganic materials 0.000 description 5
- 239000002184 metal Substances 0.000 description 5
- 239000011230 binding agent Substances 0.000 description 4
- 238000003825 pressing Methods 0.000 description 4
- 238000004544 sputter deposition Methods 0.000 description 4
- WQJQOUPTWCFRMM-UHFFFAOYSA-N tungsten disilicide Chemical compound [Si]#[W]#[Si] WQJQOUPTWCFRMM-UHFFFAOYSA-N 0.000 description 4
- 229910021342 tungsten silicide Inorganic materials 0.000 description 4
- 238000001704 evaporation Methods 0.000 description 3
- 230000008020 evaporation Effects 0.000 description 3
- 239000010408 film Substances 0.000 description 3
- 229910021420 polycrystalline silicon Inorganic materials 0.000 description 3
- 229920005591 polysilicon Polymers 0.000 description 3
- 239000010409 thin film Substances 0.000 description 3
- 239000004372 Polyvinyl alcohol Substances 0.000 description 2
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 238000005336 cracking Methods 0.000 description 2
- 238000005566 electron beam evaporation Methods 0.000 description 2
- 238000002844 melting Methods 0.000 description 2
- 230000008018 melting Effects 0.000 description 2
- 229920002451 polyvinyl alcohol Polymers 0.000 description 2
- 230000002250 progressing effect Effects 0.000 description 2
- 229910021332 silicide Inorganic materials 0.000 description 2
- 229910052710 silicon Inorganic materials 0.000 description 2
- 239000010703 silicon Substances 0.000 description 2
- 229910000831 Steel Inorganic materials 0.000 description 1
- 229910052783 alkali metal Inorganic materials 0.000 description 1
- 150000001340 alkali metals Chemical class 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- XKRFYHLGVUSROY-UHFFFAOYSA-N argon Substances [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- -1 argon ions Chemical class 0.000 description 1
- 239000012752 auxiliary agent Substances 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 230000018044 dehydration Effects 0.000 description 1
- 238000006297 dehydration reaction Methods 0.000 description 1
- 238000000280 densification Methods 0.000 description 1
- 238000010894 electron beam technology Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000012467 final product Substances 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 239000002480 mineral oil Substances 0.000 description 1
- 235000010446 mineral oil Nutrition 0.000 description 1
- 239000004570 mortar (masonry) Substances 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 239000008213 purified water Substances 0.000 description 1
- 230000002285 radioactive effect Effects 0.000 description 1
- 239000003870 refractory metal Substances 0.000 description 1
- FVBUAEGBCNSCDD-UHFFFAOYSA-N silicide(4-) Chemical compound [Si-4] FVBUAEGBCNSCDD-UHFFFAOYSA-N 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 229910052723 transition metal Inorganic materials 0.000 description 1
- 150000003624 transition metals Chemical class 0.000 description 1
- 238000001291 vacuum drying Methods 0.000 description 1
Landscapes
- Physical Vapour Deposition (AREA)
- Powder Metallurgy (AREA)
Abstract
Description
【発明の詳細な説明】
本発明は、高純度タングステン粉末のプレス成型法に関
するものであり、特には成型性改善の為の助剤として水
を添加混合してプレス成型を行うことを特徴とする特に
、本発明は、MOS・LSIのゲート電極、ソース電極
及びドレイン電極に代表される、電子工業用途、とりわ
け半導体装tci:のtW或いは配線の形成に用いられ
るターゲットの製造の為高純度タングステン粉末をプレ
ス成壓するのに有用である。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a press molding method for high-purity tungsten powder, and is particularly characterized in that press molding is performed by adding and mixing water as an auxiliary agent to improve moldability. In particular, the present invention is directed to high-purity tungsten powder for manufacturing targets used in electronic industry applications, particularly for forming semiconductor devices (tci) or interconnects, such as gate electrodes, source electrodes, and drain electrodes of MOS/LSI. It is useful for press production.
発明の背景
半導体装置の電極あるいは配線、特にMOS・LSIの
ゲートW、!及びドレイン電極としてはポリシリコンが
従来用いられてきたが、MOS−LSIの高集積化に伴
いポリシリコンゲート電極及びドレイン′15.極の抵
抗による信号伝搬遅延が問題化している。一方、セル7
アライン法によるMO8素子形成を容易ならしめるため
ゲート電極、ソース電極及びドレインItJL極として
融点の高い材料の使用が所望されている。こうした状況
において、ポリシリコンより抵抗率の低い高融点金属ゲ
ート電極、ソース電極及びドレインt&の研究が進む一
方、シリコンゲートプロセスとの互換性を第1とした高
bQ点金属シリサイド電極の研究が活発に進行しつつあ
る。そうした高融点金属及び高融点全組シリサイドの有
望例はタングステン及びタングステンシリサイドである
。BACKGROUND OF THE INVENTION Electrodes or wiring of semiconductor devices, especially gates W of MOS/LSI,! Conventionally, polysilicon has been used as the gate electrode and the drain electrode, but with the increasing integration of MOS-LSI, the polysilicon gate electrode and the drain electrode '15. Signal propagation delay due to pole resistance has become a problem. On the other hand, cell 7
In order to facilitate the formation of MO8 elements by the alignment method, it is desired to use materials with high melting points for the gate electrode, source electrode, and drain ItJL pole. Under these circumstances, research is progressing on high-melting-point metal gate electrodes, source electrodes, and drain T&, which have lower resistivity than polysilicon, while research on high-bQ-point metal silicide electrodes is active, with compatibility with the silicon gate process as a priority. It is progressing to Promising examples of such refractory metals and refractory all-metal silicides are tungsten and tungsten silicide.
こうしたタングステン電極は、スパッタ法、電子ビーム
蒸着法等の方法によって薄膜として形成される。スパッ
タ法は、ターゲツト板にアルゴンイオンを衝突させて金
属を放出させ、放出金属をターゲツト板に対向した基板
に堆積させる方法である。電子ビーム蒸着法は、電子ビ
ームによりインゴット蒸発源を溶解し、蒸着を行う方法
である。Such a tungsten electrode is formed as a thin film by a method such as a sputtering method or an electron beam evaporation method. The sputtering method is a method in which a target plate is bombarded with argon ions to release metal, and the released metal is deposited on a substrate facing the target plate. The electron beam evaporation method is a method of melting an ingot evaporation source with an electron beam and performing evaporation.
いずれにせよ、生成膜の純度はターゲット板或いは蒸発
源(以下併せてターゲットと総称する)の純要に左右さ
れる。In any case, the purity of the produced film depends on the purity of the target plate or evaporation source (hereinafter collectively referred to as target).
タングステンシリサイド電極は、一般にタングステンシ
リサイド製ターゲットを使用して形成されるが、タング
ステンターゲットとシリコンターゲットとを併用して形
成されることもあり、この場合には生成膜の純度にタン
グステンターゲットが大きな影響を持つ。Tungsten silicide electrodes are generally formed using a tungsten silicide target, but they may also be formed using a tungsten target and a silicon target together, and in this case, the tungsten target has a large effect on the purity of the formed film. have.
生成される薄膜中に不純物が混入するとMO8素子の動
作の信頼性を低下させる。たとえば、Na、に等のアル
カリ金属はゲート絶縁膜中を容易に移動し、MO8界面
特性を劣化させ、又、放射性元素は核元素より放出する
α線によってMO8素子の動作信頼性に致命的影響を与
える。Fe等の遷移金属もMO8素子の動作の信頼性を
阻害する。Cも悪影響を与える。If impurities are mixed into the produced thin film, the reliability of the operation of the MO8 element will be reduced. For example, alkali metals such as Na, etc. easily move in the gate insulating film and deteriorate the MO8 interface characteristics, and radioactive elements have a fatal effect on the operational reliability of the MO8 element due to alpha rays emitted from the nuclear element. give. Transition metals such as Fe also inhibit the reliability of operation of MO8 devices. C also has a negative effect.
従って、タングステン或いはタングステンシリサイドゲ
ート電極、ソース電極及びドレイン電極の高純度化を画
るには、タングステンターゲット自体の高純度化を画る
必要があり、そのためターゲット作製の原料たる高純度
タングステン粉末を入手する努力が続けられ、現在では
上記のような不純物を所定水準以下にffmした高純度
タングステン粉末が得られている。Therefore, in order to improve the purity of tungsten or tungsten silicide gate electrodes, source electrodes, and drain electrodes, it is necessary to improve the purity of the tungsten target itself. Therefore, it is necessary to obtain high-purity tungsten powder, which is the raw material for target production. Efforts have continued, and high purity tungsten powder with the above-mentioned impurities ffm below a predetermined level has now been obtained.
タングステンターゲットは、こうした高純度タングステ
ン粉末を原料として幾つかの方法で成型されるが、その
代表的方法の一つはプレス成型−焼結法である。これは
金型プレスを用いて高純度タングステン粉末を冷間プレ
スし、その後プレス体を焼結するものである。しかしな
がらタングステン粉末のプレス成型性は悪く、特にタン
グステン粉末の粒径が小さいと成型性が非常に悪化する
。A tungsten target is molded by several methods using such high-purity tungsten powder as a raw material, and one of the typical methods is a press molding-sintering method. This involves cold pressing high-purity tungsten powder using a mold press, and then sintering the pressed body. However, the press moldability of tungsten powder is poor, and especially when the particle size of the tungsten powder is small, the moldability becomes extremely poor.
タングステン粉末は上記の通り成型性が悪いので、一般
に、タングステン粉末のプレス成型には、鉱油、ポリビ
ニルアルコール(PVA)水溶液等の潤滑剤、バインダ
ーが用いられてきた。これら潤滑剤、バインダーは、成
型能を改善する優れた特質を有するので、成型性は非常
に良く、3トン/鋼2までものプレス圧を使用して高密
度のプレス品を生成しうる。As mentioned above, tungsten powder has poor moldability, so lubricants and binders such as mineral oil and polyvinyl alcohol (PVA) aqueous solution have generally been used for press molding of tungsten powder. These lubricants and binders have excellent properties that improve the moldability, so that the moldability is very good and press pressures of up to 3 tons/steel 2 can be used to produce high-density pressed products.
しかしながら、これら従来からの潤滑剤、バインダーを
用いると、Na 、に%C等の汚染が生じやすいという
由々しき問題が認識された。N&やKは数ppm汚染す
ることもあり、またCは数十ppmのオーダで汚染を生
せしめる。こうした不純物を排除するため原料タングス
テン粉末としてこうした不純物を精製したものを使用し
ているにもかかわらず、プレス成型段階で汚染が起ると
そうした努力が台無しとなってしまう。However, it has been recognized that when these conventional lubricants and binders are used, there is a serious problem in that they tend to cause contamination such as Na, %C, etc. N& and K may contaminate several ppm, and C causes contamination on the order of several tens of ppm. In order to eliminate these impurities, we use refined tungsten powder as raw material, but if contamination occurs during the press molding stage, these efforts will be undone.
そうかと云って、潤滑剤、バインダーを用いないと、タ
ングステンの乏しいプレス成型性のため、割れ等の欠陥
が発生し、歩留りを悪くする。プレス圧が低いと、例え
ば1トン/crn2以下だとプレス成型品の取扱いが困
難であり、特に5ooKp/m”以下では手で扱っただ
けで崩壊する。また、後の焼結操作によって高密度焼結
体を得るにはプレス成型品の密度を上げる必要がある。However, if a lubricant or binder is not used, defects such as cracks will occur due to the poor press moldability of tungsten, resulting in poor yield. If the press pressure is low, for example, if it is less than 1 ton/crn2, it will be difficult to handle the press-formed product, and especially if it is less than 5ooKp/m, it will collapse just by handling it by hand.In addition, the subsequent sintering operation will make it difficult to handle the press-formed product. In order to obtain a sintered body, it is necessary to increase the density of the press-molded product.
そのため、取扱いと高密度焼結体製造の観点から少くと
も1トン/ cm ”を越える充分のプレス圧の採用が
望まれる。しかし、成型性はプレス圧が高くなる程悪化
する。Therefore, from the viewpoint of handling and production of a high-density sintered body, it is desirable to employ a sufficient press pressure exceeding at least 1 ton/cm 2 .However, the higher the press pressure, the worse the moldability becomes.
ターゲットは、その密度比が高いことを要求される。こ
れはターゲットに空隙が多いと、スパッタ時にターゲッ
ト内で一様々熱伝導が行われないためターゲットが割れ
たり、包隙ガスの放出が起ったりしてスパッタリング特
性を悪化し、良質の薄膜を形成しえないからである。The target is required to have a high density ratio. This is because if there are many voids in the target, heat conduction will not take place within the target during sputtering, resulting in cracks in the target and release of pore gas, which will deteriorate sputtering characteristics and result in the formation of a high-quality thin film. This is because it cannot be done.
従って、高純度且つ高密度のターゲットを製造するには
、汚染源となるような潤滑剤等を使用すること々く且つ
所定水準以上のプレス圧を用いてのプレス成型時の成型
能を改善する対策が必要である。Therefore, in order to manufacture high-purity and high-density targets, it is necessary to take measures to improve the forming performance during press forming, which often uses lubricants and the like that can cause contamination, and uses press pressures higher than a predetermined level. is necessary.
発明の概要
上記のような問題はVLSIのゲート電極等高密麓且つ
高純度のターゲツト板の製造という課題の下で始めて生
れた問題であり、従来はとんど問題視されていなかった
だけに、本発明者等は対策に苦慮したが、全く意外にも
水を添加すると成型性の改善が得られることが見出され
た。精製された純水を用いることにより汚染問題は生ず
る余地がなく、適正量の水を用いることによりかなりの
プレス圧をかけても割れが生ずることがない。タングス
テン粉末のプレス成型性改善に水が効力を有するとは従
来概念では全く予想だにしえないことであった。SUMMARY OF THE INVENTION The above-mentioned problem first arose under the challenge of manufacturing high-density and high-purity target plates such as VLSI gate electrodes, and it was not considered a problem in the past. Although the inventors of the present invention struggled to find countermeasures, it was completely unexpectedly discovered that moldability could be improved by adding water. By using purified pure water, there is no possibility of contamination problems, and by using an appropriate amount of water, cracks will not occur even when considerable press pressure is applied. Based on conventional concepts, it was completely impossible to predict that water would be effective in improving the press moldability of tungsten powder.
斯くして、本発明は、高純腿タングステン粉末に水を2
〜6重f%添加混合してプレス成型することを特徴とす
る高純度タングステン粉末のプレス成型法を提供する。Thus, the present invention provides high purity tungsten powder with water.
Provided is a press-molding method for high-purity tungsten powder, which is characterized in that tungsten powder is press-molded after addition and mixing of ~6w/f%.
原料タングステン粉末は高純度のものを使用する。特に
、電子工業用途に用いられるターゲットの製造目的の為
には、前述したような不純物の少ないものが望まれる。High purity raw material tungsten powder is used. In particular, for the purpose of manufacturing targets used in the electronic industry, it is desirable to have fewer impurities as described above.
そうした高純度タングステン粉末を製造する技術は既に
確立されておりここでは詳述しない。The technology for producing such high purity tungsten powder has already been established and will not be described in detail here.
こうした高純度タングステン粉末は、冷間金型プレスに
おいてプレス成型される。プレス圧は、粉末の粒径に依
存して1〜2.5トン/−2の0囲のうちから適正値を
選択する。粉末の粒径が小さい程低いプレス圧で焼結後
高密化しうる。プレス圧が高い程、生成プレス品の取扱
い性が容易と々す(即ち取扱いに際して崩れ難い)また
焼結後に高密度焼結体が得られるので、なるたけプレス
圧を許容範囲で高めることが望ましい。反面、成型性は
プレス圧が高くなる程悪くなる。プレス圧が1トン/儂
2未満では、小さな粒径のものでも取扱い性及び高密化
の観点から充分のプレスを行いえない。他方、2.5ト
ン/い2、最大限で3トン/cr!Ltを越えると本発
明の水添加の下では割れのないプレス成型品を生成しえ
ない。但し、この上限以下で、充分の高密度プレス成型
品が得られる。Such high-purity tungsten powder is press-molded in a cold die press. An appropriate value for the press pressure is selected from a range of 1 to 2.5 tons/-2 depending on the particle size of the powder. The smaller the particle size of the powder, the higher the density can be achieved after sintering with a lower pressing pressure. The higher the press pressure, the easier the handleability of the resulting pressed product (that is, the less likely it will collapse during handling), and the higher the density of the sintered body obtained after sintering, so it is desirable to increase the press pressure within an allowable range. On the other hand, the higher the press pressure, the worse the moldability becomes. If the pressing pressure is less than 1 ton/min, even small particles cannot be pressed sufficiently from the viewpoints of ease of handling and densification. On the other hand, 2.5 tons/cr!2, maximum 3 tons/cr! If Lt is exceeded, a crack-free press-molded product cannot be produced under the water addition method of the present invention. However, below this upper limit, a sufficiently high-density press-molded product can be obtained.
水添加量はタングステン粉末の2〜6重景チとされる。The amount of water added is 2 to 6 times the amount of tungsten powder.
水による成型性改善効果を得るには少くとも21斧チの
添加が必要である。反面、余剰に水を添加しても、プレ
ス時に参み出してしまいその効果は上昇しない。タング
ステン粉末の粒径に依存するが、一般に、その上限は6
重量%である。In order to obtain the moldability improving effect of water, it is necessary to add at least 21 ml of water. On the other hand, even if excess water is added, it will seep out during pressing and the effect will not increase. Although it depends on the particle size of the tungsten powder, the upper limit is generally 6
Weight%.
水としては、精製された、Na 、K及びCを含まない
水、特に比抵抗18MΩaの超純水の使用が好ましい。As the water, it is preferable to use purified water that does not contain Na, K, and C, especially ultrapure water with a specific resistance of 18 MΩa.
プレス成型後のプレス品はその後焼結されるが、焼結に
先立って、脱水しておくことがより好ましい。脱水は、
粗真空(10Torr程度)の下で常温において真空乾
燥することによって行いうるが、ゆっくりと昇温して真
空焼結する時には省略してもよい。The pressed product after press molding is then sintered, but it is more preferable to dehydrate it prior to sintering. Dehydration is
This can be done by vacuum drying at room temperature under a rough vacuum (about 10 Torr), but may be omitted when vacuum sintering is performed by slowly raising the temperature.
こうして得られたプレス成型品は、充分の取扱い強度と
@度を有しており、その後焼結することにより高密度焼
結体が生成する。焼結後、ターゲットその他の最終製品
形態に機械加工される。The press-molded product thus obtained has sufficient handling strength and toughness, and is then sintered to produce a high-density sintered body. After sintering, it is machined into targets or other final product forms.
発明の効果
水を添加混合するという簡易な手段によって高純度タン
グステン粉末のプレス成型性を改善し、これまで生じた
Na、に%C等の不純物の汚染を回避するのに成功した
。これら不純物による汚染を嫌う用途、特にMOS−L
SIのゲーIt極、ソース電極及びドレイン電極のよう
な半導体装置の電極形成の為のターゲットの製造に本発
明は有益である。Effects of the Invention The press moldability of high purity tungsten powder was improved by the simple means of adding and mixing water, and the contamination with impurities such as Na and %C that had occurred in the past was successfully avoided. Applications that do not like contamination by these impurities, especially MOS-L
The present invention is useful for manufacturing targets for forming electrodes of semiconductor devices, such as SI gate electrodes, source electrodes, and drain electrodes.
実施例
平均粒径1μ及び5μの高純度タングステン粉末に0〜
6wt%の超純水を加え、乳鉢にてよく混錬し、冷間金
型プレスにて約3on径X101i淳のプレス品を作製
し、割れの発生状況を観察した。プレス圧は1〜3トン
/ cm ”とした。結果を以下に示す。超純水2〜6
%の添加により、割れから見たプレス圧上限が上昇し、
それだけ高密度プレス品を作製することが出来る。プレ
ス品焼結後のNa 、K及びC含有相を分析したが、そ
れらの汚染は全く認められなかった。Example High purity tungsten powder with average particle diameters of 1 μ and 5 μ
6 wt % of ultrapure water was added, thoroughly kneaded in a mortar, and a pressed product with a diameter of about 3 on diameter x 101i was produced using a cold die press, and the occurrence of cracks was observed. The press pressure was 1 to 3 tons/cm''. The results are shown below. Ultrapure water 2 to 6
% addition, the upper limit of press pressure seen from cracking increases,
Accordingly, it is possible to produce high-density pressed products. When the Na, K and C containing phases of the pressed product were analyzed after sintering, no contamination was observed.
(1)5μ粉の成型性
(2)1μ粉の成型性
×割れ
5μ粉の場合、高密度品を得るにはt5トン/儂1以上
のプレス圧を要し、そのためには2〜6wj%の水の添
加が必要である。他方、1μ粉の場合、粒径が小さいた
め成型性が悪くなるが、反面焼結後高密度化しやすいの
で、1トン/cTLt程度の圧力で許容水準のプレス品
を生成しうる。水の添加量はλ〜5w′t、% が好ま
しい。(1) Formability of 5μ powder (2) Formability of 1μ powder x cracking In the case of 5μ powder, a press pressure of t5 tons/me or more is required to obtain a high-density product, and for that purpose 2 to 6 wj% of water is required. On the other hand, in the case of 1μ powder, the particle size is small, so the moldability is poor, but on the other hand, it is easy to increase the density after sintering, so it is possible to produce an acceptable pressed product at a pressure of about 1 ton/cTLt. The amount of water added is preferably λ~5w't,%.
Claims (1)
合してプレス成型することを特徴とする高純度タングス
テン粉末のプレス成型法。1) A press-molding method for high-purity tungsten powder, which comprises adding and mixing 2 to 6% by weight of water to high-purity tungsten powder and press-molding the mixture.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3509586A JPS62196302A (en) | 1986-02-21 | 1986-02-21 | Press molding method for high-purity tungsten powder |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3509586A JPS62196302A (en) | 1986-02-21 | 1986-02-21 | Press molding method for high-purity tungsten powder |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS62196302A true JPS62196302A (en) | 1987-08-29 |
JPH0319281B2 JPH0319281B2 (en) | 1991-03-14 |
Family
ID=12432384
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP3509586A Granted JPS62196302A (en) | 1986-02-21 | 1986-02-21 | Press molding method for high-purity tungsten powder |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS62196302A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2476293C2 (en) * | 2011-04-21 | 2013-02-27 | Федеральное государственное образовательное учреждение высшего профессионального образования "Национальный исследовательский технологический университет "МИСиС" | Method of forming powder materials with liophobic fluid and device to this end |
CN108188390A (en) * | 2018-02-02 | 2018-06-22 | 东北大学 | A kind of method for preparing pure tungsten metal part |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6039135A (en) * | 1983-08-10 | 1985-02-28 | Tohoku Metal Ind Ltd | Manufacture of dust core of magnetic iron-silicon- aluminum alloy |
-
1986
- 1986-02-21 JP JP3509586A patent/JPS62196302A/en active Granted
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6039135A (en) * | 1983-08-10 | 1985-02-28 | Tohoku Metal Ind Ltd | Manufacture of dust core of magnetic iron-silicon- aluminum alloy |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2476293C2 (en) * | 2011-04-21 | 2013-02-27 | Федеральное государственное образовательное учреждение высшего профессионального образования "Национальный исследовательский технологический университет "МИСиС" | Method of forming powder materials with liophobic fluid and device to this end |
CN108188390A (en) * | 2018-02-02 | 2018-06-22 | 东北大学 | A kind of method for preparing pure tungsten metal part |
CN108188390B (en) * | 2018-02-02 | 2020-01-10 | 东北大学 | Method for preparing pure tungsten metal part |
Also Published As
Publication number | Publication date |
---|---|
JPH0319281B2 (en) | 1991-03-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6328927B1 (en) | Method of making high-density, high-purity tungsten sputter targets | |
US5618397A (en) | Silicide targets for sputtering | |
KR100721691B1 (en) | Method of making high density sputtering targets | |
KR100457724B1 (en) | Tungsten target for sputtering and method for preparing thereof | |
JP4541969B2 (en) | Aluminum powder alloy composite material for neutron absorption, method for manufacturing the same, and basket manufactured therewith | |
CN112111719B (en) | Tungsten titanium silicon alloy sputtering target material and preparation method thereof | |
CN112030120A (en) | Preparation method of tantalum-silicon alloy sputtering target material | |
KR950703668A (en) | HIGH MELTING POINT METALLIC SILICIDE TARGET AND METHOD FOR PRODUCING THE SAME, HIGH MELTING POINT METALLIC SILICIDE FILM AND SEMICOMDUCTOR DEVICE | |
JP2005171389A (en) | Method for manufacturing tungsten target for sputtering | |
JPS62196302A (en) | Press molding method for high-purity tungsten powder | |
KR100727242B1 (en) | Ito sputtering target | |
JP3280054B2 (en) | Method for manufacturing tungsten target for semiconductor | |
JP3998972B2 (en) | Method for producing sputtering tungsten target | |
KR102316360B1 (en) | Sputtering target and production method | |
JPH04116161A (en) | Titanium target material and production thereof | |
US6258719B1 (en) | Intermetallic aluminides and silicides articles, such as sputtering targets, and methods of making same | |
JP2003160861A (en) | METHOD FOR MANUFACTURING Mg-CONTAINING ITO SPUTTERING TARGET | |
DE3874526T2 (en) | TARGET MATERIAL FOR THE FORMATION OF A SUPRAL-CONDUCTING FILM. | |
US6589310B1 (en) | High conductivity copper/refractory metal composites and method for making same | |
EP0588439A1 (en) | A method of manufacturing objects based on aluminium | |
JP6258222B2 (en) | Niobium capacitor anode chemical and method for producing the same | |
JP2002121639A (en) | Heat radiation substrate, and high-power high-frequency transistor package using it | |
JPH04160104A (en) | Production of tungsten target | |
JPH05186802A (en) | Molybdenum multiple powder, molybdenum composite sheet and their production | |
JPH1017959A (en) | Composite material and its production |