JPS62195176A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPS62195176A
JPS62195176A JP3793386A JP3793386A JPS62195176A JP S62195176 A JPS62195176 A JP S62195176A JP 3793386 A JP3793386 A JP 3793386A JP 3793386 A JP3793386 A JP 3793386A JP S62195176 A JPS62195176 A JP S62195176A
Authority
JP
Japan
Prior art keywords
film
gate electrode
implanted
conductivity type
ion implantation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3793386A
Other languages
Japanese (ja)
Inventor
Norihiko Tamaoki
徳彦 玉置
Toshiki Yabu
藪 俊樹
Masabumi Kubota
正文 久保田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP3793386A priority Critical patent/JPS62195176A/en
Publication of JPS62195176A publication Critical patent/JPS62195176A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7833Field effect transistors with field effect produced by an insulated gate with lightly doped drain or source extension, e.g. LDD MOSFET's; DDD MOSFET's
    • H01L29/7835Field effect transistors with field effect produced by an insulated gate with lightly doped drain or source extension, e.g. LDD MOSFET's; DDD MOSFET's with asymmetrical source and drain regions, e.g. lateral high-voltage MISFETs with drain offset region, extended drain MISFETs

Abstract

PURPOSE:To avoid the deterioration of the device characteristics and improve current driving capability by a method wherein a 2nd conductivity type impurity is implanted with a low concentration by using a gate electrode formed on the part of a substrate surface which is to be a transistor region as a mask and high concentration ions are implanted from the source side to the drain direction. CONSTITUTION:After element isolation and formation of a gate oxide film 3 are carried out, polycrystalline silicon 4 and a CVD-SiO2 film 5 are deposited. After a resist pattern of a gate electrode is formed on the film 5 and etching is performed and the resist is removed, the polycrystalline silicon 4 is etched with the patterned SiO2 film 6 as a mask to form the polycrystalline silicon film 7. After 2nd conductivity type impurity ions are implanted with a low concentration and n<-> type ion implanted layers 8 are formed, a CVD-SiO2 film 9 is deposited and the film 9 on the flat parts are removed to leave SiO2 side walls 10 on the sides of the gate electrode. Then 2nd conductivity type impurity ions are implanted with a high concentration along the inclined direction parallel to the direction of a gate channel to form ion implanted layers 11 and a heat treatment is carried out to form asymmetrical source and drain regions 12-14.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は高密度・高速性を備える半導体装置の製造方法
に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a method of manufacturing a semiconductor device with high density and high speed.

従来の技術 半導体集積回路は高密度・高速化が進んでいるが、MO
8素子においてゲート長が短がくなってユくニつし、ソ
ース・ドレイン間のパンチスルー耐圧が大きな問題の一
つとなってくる。そのためにL D D (light
ly doped drain )構造やDDD(do
vble diffvsed drain )構造など
ソース・ドレインのイオン注入・拡散工程に工夫をこら
した半導体プロセスが考えられてきている。これらは主
に従来のソース・ドレイン注入領域より低濃度の注入領
域を電極エツジ付近に設けその部分での電界集中を制御
することを目的としたものである。
Conventional technologySemiconductor integrated circuits are becoming denser and faster, but MO
In eight devices, the gate length is becoming shorter and uniform, and the punch-through breakdown voltage between the source and drain becomes one of the major problems. For that reason, L D D (light
ly doped drain) structure and DDD (do
Semiconductor processes have been considered in which improvements are made to the ion implantation and diffusion process for sources and drains, such as a (vble, diffvsed drain) structure. These are mainly intended to provide an implanted region with a lower concentration than the conventional source/drain implanted region near the electrode edge and to control electric field concentration in that region.

通常のLDDはポリシリコンゲー)MO8FET3ベー
ン 製造プロセスに低濃度のソースドレイン注入工程とゲー
ト側壁にCVD−8i02に設ける(サイドウオールと
呼ばれている)を加えた製造プロセスと言ってほとんど
よいと思われる。以下そのプロセスの一例を第3図を用
いて説明する。
I think it can almost be said that the manufacturing process is a manufacturing process that adds a low concentration source/drain implantation process to the MO8FET 3 vane manufacturing process (normal LDDs are polysilicon gates) and a CVD-8i02 process (called sidewalls) on the gate sidewalls. It will be done. An example of the process will be described below with reference to FIG.

素子間分離プロセス(ここではLOGOSプロセス)と
ゲート酸化膜形成プロセスを経た後、ポリシリ−772
47!:第1 (7)CV D −5iO225’fl
テホする(第3図(a))。ここで21はp型(100
)シリコン基板であり、22はLOGOSプロセスによ
り形成された素子間分離酸化膜、23はゲート酸化膜で
ある。そして、CVD−8iOz膜上にレジストでゲー
ト電極のパターン出しを行なった後、例えば(HF3i
用いたRIE(反応性イオンエツチング)でCVD−8
iO2iエツチングし、そのCVD−8iO2膜をエツ
チングマスクとしてポリシリコン膜これもRIEでエツ
チングする(第3図(b))。第3図(b)で26はエ
ツチング後のGVD−8i02膜、27は同様にエツチ
ング後のポリシリコン膜である。次にこの場合はリンの
低濃度イオン注入を行々いn一層28をソースドレイン
領域に形成する(第3図(C))。こののち第2のcv
D−8iOz29を形成しく第3図(d) ) 、これ
をRIEでエツチングし平面部の第2のG V D −
5iOz層を除去する(第3図(e))。この工程によ
りゲート電極側壁にサイドウオールSiO2と呼ばれる
cvD−8i0230が残った形となる。このサイドウ
オール5102の形状はエツチングガス・オーバーエッ
チ時間などのエツチング条件により制御することができ
る。最後にこの場合はひ素の高濃度イオン注入を行ない
n+イオン注入層31全形成しく第3図(0)、熱処理
を行なうことに」二って第3図(q)のようなLDD構
造MO3FET となる。ここで32.33はそれぞれ
n一層、n+層である[P、J、ツン、S、オグラ〃フ
アプリケーションオブハイーパフォーマンスLDDFE
Tズウィズオキサイドサイドウォールースペーザテクノ
ロジー“IEEE )ランズアクションオンエレクトロ
ンデバイジズ(P、J TSUNG S、0GURAF
abrication of High−Perfor
mance LDDFET’S5、−ゾ with 0xide Sidewall−8pace
r Technology″IEEK  Transa
ction  On  Electron  Devi
ces )Vol  ED−29A4 (1982) 
’:]。
After passing through the element isolation process (LOGOS process here) and gate oxide film formation process, polysilicon 772
47! : 1st (7) CV D -5iO225'fl
Teho (Figure 3 (a)). Here, 21 is p-type (100
) A silicon substrate, 22 is an element isolation oxide film formed by the LOGOS process, and 23 is a gate oxide film. After patterning a gate electrode using resist on the CVD-8iOz film, for example, (HF3iOz)
CVD-8 using RIE (reactive ion etching)
iO2i etching, and using the CVD-8iO2 film as an etching mask, the polysilicon film is also etched by RIE (FIG. 3(b)). In FIG. 3(b), 26 is a GVD-8i02 film after etching, and 27 is a polysilicon film after etching. Next, in this case, low concentration phosphorus ion implantation is performed to form an n-layer 28 in the source and drain regions (FIG. 3(C)). After this, the second cv
D-8iOz29 was formed (Fig. 3(d)), and this was etched by RIE to form the second G V D - of the flat part.
The 5iOz layer is removed (FIG. 3(e)). This step leaves cvD-8i0230 called sidewall SiO2 on the sidewall of the gate electrode. The shape of this sidewall 5102 can be controlled by etching conditions such as etching gas and overetching time. Finally, in this case, high-concentration arsenic ion implantation is performed to completely form the n+ ion implantation layer 31, as shown in FIG. 3 (0), and heat treatment is performed. Become. Here, 32 and 33 are the n1 layer and the n+ layer, respectively [P, J, Tsun, S, Ograph Application of High Performance LDDFE
T's with Oxide Sidewall Spacer Technology "IEEE" Lands Action on Electron Devices (P, J TSUNG S, 0GURAF
Abrication of High-Performance
mance LDDFET'S5,-with Oxide Sidewall-8pace
r Technology”IEEK Transa
ction On Electron Devi
ces) Vol ED-29A4 (1982)
':].

発明が解決しようとする問題点 ゛前述のLDD構造などによりドレイン近傍での電界集
中が緩和され、半導体集積回路の高密度・高速化に伴う
短ゲート長(177m以下)のMOSFETの特性劣化
が押さえられるようになった。しかし、n+ ソースド
レイン層とゲート電極下の反転層の間に高抵抗のn一層
が入り込むため、素子がON状態時にはこのn一層での
電圧降下によりMO8F[Tの駆動能力((Jm)が通
常MO8に対し数10係低下してし甘う[D、A、バグ
リー“ライトリ−ドープト ドレイン トランジスター
でフォーアドバンス)  VLSI  サーキット” 
 IKEE )ランズアクションオンエレクトロンデバ
イシズ(D、A。
Problems to be solved by the invention: The above-mentioned LDD structure alleviates electric field concentration near the drain, suppressing the deterioration of characteristics of MOSFETs with short gate lengths (177 m or less) accompanying the increase in density and speed of semiconductor integrated circuits. Now you can. However, since a high-resistance n-layer is inserted between the n+ source-drain layer and the inversion layer under the gate electrode, when the device is in the ON state, the voltage drop across this n-layer reduces the drive capacity of MO8F[T (Jm) It's a few tenths of a factor lower than MO8 [D, A, Bagley "Four Advance with Lightly Doped Drain Transistor] VLSI Circuit"
IKEE) Lands Action on Electron Devices (D, A.

Baglee Lightly Doped Drai
n Transistorsfor Advanced
 VLSI 0ircvit //IEEETrans
action On )C1ectron Devic
es )  VolED−31扁5(1986)〕。
Baglee Lightly Doped Drai
n Transistors for Advanced
VLSI 0ircvit // IEEE Trans
action On) C1ectron Device
es) Vol ED-31 Bian 5 (1986)].

6へ。Go to 6.

問題点を解決するだめの手段 ここで構造的に話を進めると、電界集中が発生するのは
ドレイン近傍であり、ソース側のn″′層は全く無意味
であることがわかる。
Means to Solve the Problem If we proceed structurally, it will be seen that electric field concentration occurs near the drain, and the n″′ layer on the source side is completely meaningless.

本発明はn一層形成時イオン注入は通常のプロセスで使
用されるほぼ垂直な注入角度で行ない、A4一層形成の
イオン注入をソース側からドレイン力向へ斜めから行な
うことにより、片側(ソース側)にはゲート電極エツジ
までの注入を、片側(ドレイン側)にはゲート電極の影
を利用し電極エツジからその注入角度などによって決定
されるある距離をおいて注入を行ない、前者をソース、
後者をドレインにあてることによりこの問題点を克服し
ようとするものである。丑だ、この場合、n十層形成に
おいてのイオン注入はそのプロファイルがデバイス設計
という立場から制限されており、ある深さにイオンを打
ち込むということになればソース側のn十層がゲート電
極下にある距離入り込んでし寸う。これは素子の寄生容
量を増加させスピードを低下させてし捷う為、ここでは
7・・−7 LDD同様、次のn十層形成イオン注入条件に合わせた
形状にサイドウオールCVD −3iOz’i形成した
後に最後のn十層形成イオン注入を斜め方向から行なう
とにより理想的なMO3F1i:T構造を得ようとする
ものである。
In the present invention, when forming an n single layer, ion implantation is performed at a nearly vertical implantation angle used in a normal process, and by performing ion implantation for forming an A4 single layer obliquely from the source side to the drain force direction, one side (source side) On the other hand, implantation is performed up to the edge of the gate electrode, and on one side (drain side), implantation is performed using the shadow of the gate electrode at a certain distance from the electrode edge determined by the implantation angle, etc., and the former is used as the source,
This problem is attempted to be overcome by applying the latter to the drain. Unfortunately, in this case, the profile of ion implantation for forming the n0 layer is limited from the perspective of device design, and if the ions are implanted to a certain depth, the n0 layer on the source side will be under the gate electrode. It is about to penetrate a certain distance. This increases the parasitic capacitance of the element and reduces the speed, so here, as with the 7...-7 LDD, sidewall CVD -3iOz'i is used in a shape that matches the ion implantation conditions for forming the next n0 layer. After the formation, the last n-layer forming ion implantation is performed obliquely to obtain a more ideal MO3F1i:T structure.

作用 本発明は」=記した方法により、LDD構造構造本口的
であるドレイン側の電界集中による素子特性の劣化を抑
えながら、従来LDD構造におけるn一層の存在による
電流駆動能力の低下を改善するものである。
Effects of the present invention By the method described in "=", the present invention improves the decrease in current drive ability due to the presence of n layer in the conventional LDD structure while suppressing the deterioration of device characteristics due to electric field concentration on the drain side, which is the main problem of the LDD structure. It is something.

実施例 第1図は本発明の一実施例を示す工程断面図である。前
述のLD D−MO8FET製造プロセスと同様、素子
間分離プロセス(ここではLOGOSプロセス)とゲー
ト酸化膜形成プロセスを経た後、ポリシリコン4と第1
のCVD−8iO2膜5をデポする(第1図(a))。
Embodiment FIG. 1 is a process sectional view showing an embodiment of the present invention. Similar to the LD D-MO8FET manufacturing process described above, after passing through the element isolation process (here, the LOGOS process) and the gate oxide film formation process, the polysilicon 4 and the first
A CVD-8iO2 film 5 is deposited (FIG. 1(a)).

ここで1はp型(100)シリコン基板であり、2はh
ocosプロセスにより形成された素子間分離酸化膜、
3はゲート酸化膜である。CVD−8i02膜上にレジ
ストでゲート電極のパターン出しを行なった後、例えば
CT(F3 カスf用イfcRI E T G V D
 −5iOz膜をエツチングし、レジスト除去後そのパ
ターン出しされたCVD−8iO2膜全エツチングマス
クとしてポリシリコンをこれもRIEで工、チングする
(第1図(b))。第1図(′b)で6はエツチング後
のCVD−8iOz膜、7は同様にエツチング後のポリ
シリコン膜である。
Here, 1 is a p-type (100) silicon substrate, and 2 is h
Inter-element isolation oxide film formed by ocos process,
3 is a gate oxide film. After patterning the gate electrode with resist on the CVD-8i02 film, for example, CT (F3
The -5iOz film is etched, and after the resist is removed, polysilicon is etched using RIE as an etching mask for the entire patterned CVD-8iO2 film (FIG. 1(b)). In FIG. 1('b), 6 is a CVD-8iOz film after etching, and 7 is a polysilicon film after etching.

次にこの場合はリン全40Kev・11013Ato/
cm”程度の低濃度でイオン注入を行ないn−イオン注
入層8をソースドレイン領域に形成する(第1図(C)
)。コノノち第2(DCV D −SiO2膜9をデポ
しく第1図(d))、この3io2膜9′ff:(HF
、ガスを用いたRIEでほぼ垂直にエツチングし、平面
部の第2のG V D−8iO2膜を除去する(第1図
(e))。i1図(d) 、 (e)全比較すればわか
るが、RIEの異方性エツチングの為、ゲート電極側壁
にサイドウオール5iOz10が残った形となる。この
サイドウオール5102の形状は次の斜めイオン9ペー
ノ 100の注入で電極直下にイオンが注入されないように
第2のGVD−3iOz膜厚とこのときのエツチング条
件で制御する(第3図)。
Next, in this case, phosphorus total 40Kev・11013Ato/
Ion implantation is performed at a low concentration of about 1.5 cm" to form an n- ion implantation layer 8 in the source/drain region (Fig. 1(C)).
). At the second stage (FIG. 1(d)) of depositing the DCV D -SiO2 film 9, this 3IO2 film 9'ff: (HF
, the second G V D-8iO2 film on the plane portion is removed by etching almost vertically by RIE using gas (FIG. 1(e)). As can be seen by comparing Figures i1 (d) and (e), sidewalls 5iOz10 remain on the side walls of the gate electrode due to the anisotropic etching of RIE. The shape of this sidewall 5102 is controlled by the second GVD-3iOz film thickness and the etching conditions at this time so that ions are not implanted directly under the electrode in the next implantation of oblique ions 9peno 100 (FIG. 3).

最後に第2図に示すように、ひ素イオン100f: 8
0 KeV @ 5 X 10” A tom/C$程
度の高濃度でゲートチャネルと平行方向に30°の角度
で斜め方向よりイオン注入を行ないn+イオン注入層1
1を形成しく第1図(f’l )、熱処理を行なうこと
によって第1図(q)のような非対称のソース、ドレイ
ン拡散領域を持ったMOSFETが製造される。ここで
12.13および14はそれぞれ9〜層、n十層である
。なお、12.13はドレイン、14はソース領域とな
る。 ゛ 発明の効果 本発明により、ますます高密度・高速化の進む半導体集
積回路技術の中で、ゲート長1μm以下のMOSFET
においてもサブスレッショルド特性、・鼾時特性等の良
好な特性を持ち、かつ駆動能力も良好なものを製造する
ことができるようになった。
Finally, as shown in Figure 2, arsenic ion 100f: 8
Ion implantation was performed obliquely at an angle of 30° parallel to the gate channel at a high concentration of 0 KeV @ 5 X 10" A tom/C$ to form the n+ ion implantation layer 1.
1 (f'l) and heat treatment, a MOSFET having asymmetric source and drain diffusion regions as shown in FIG. 1(q) is manufactured. Here, 12, 13 and 14 are 9 to 10 layers and n10 layers, respectively. Note that 12 and 13 are drain regions, and 14 is a source region.゛Effects of the Invention The present invention enables MOSFETs with a gate length of 1 μm or less to be used in semiconductor integrated circuit technology, which is becoming increasingly dense and fast.
It has become possible to manufacture products that have good characteristics such as subthreshold characteristics and snoring characteristics, and also have good driving performance.

104、−7104, -7

【図面の簡単な説明】[Brief explanation of drawings]

第1図(a)〜(q)は本発明の一実施例における半導
体装置の製造方法を示す工程断面図、第2図は第1図の
工程の途中におけるイオン注入状態を示す図、第3図(
a)〜(q)は従来のLDD製造プロセスの一例を示す
工程断面図である。 1・・・・・・p型(100)シリコン基板、2・・・
・・・素子間分離酸化膜、3・・・・・・ゲート酸化膜
、6・・・・・・OV D −SiO2膜、7・・・・
・・ゲートポリシリコン、1o・・・・・・サイドウオ
ール0VD−8i02.12・・・・−n−拡散層、1
3.14・・・・・・n十拡散層。 代理人の氏名 弁理士 中 尾 敏 男 はが1名ジル
:3凶 第3図 A
1A to 1Q are process cross-sectional views showing a method for manufacturing a semiconductor device according to an embodiment of the present invention, FIG. 2 is a diagram showing an ion implantation state in the middle of the process of FIG. figure(
a) to (q) are process cross-sectional views showing an example of a conventional LDD manufacturing process. 1...p-type (100) silicon substrate, 2...
...Inter-element isolation oxide film, 3...Gate oxide film, 6...OV D -SiO2 film, 7...
...Gate polysilicon, 1o...Side wall 0VD-8i02.12...-n-diffusion layer, 1
3.14...n10 diffusion layer. Name of agent: Patent attorney Toshi Nakao, 1 person, Jill: 3, Figure 3A

Claims (3)

【特許請求の範囲】[Claims] (1)ゲート酸化膜工程後の第1導電型の半導体基板表
面のトランジスタ領域となる部分にゲート電極を形成す
る工程と、前記ゲート電極をマスクに第2導電型の不純
物を低濃度で注入する第1のイオン注入工程と、同じく
前記ゲート電極をマスクに第2導電型の不純物をソース
側からドレイン方向へ高濃度イオン注入する第2のイオ
ン注入工程を含んでなる半導体装置の製造方法。
(1) After the gate oxide film process, a step of forming a gate electrode on a portion of the surface of the first conductivity type semiconductor substrate that will become a transistor region, and implanting a second conductivity type impurity at a low concentration using the gate electrode as a mask. A method of manufacturing a semiconductor device, comprising a first ion implantation step and a second ion implantation step of implanting impurities of a second conductivity type at a high concentration from the source side toward the drain using the gate electrode as a mask.
(2)ゲート電極側壁にスペーサーを形成したのち、第
2のイオン注入を行なうことを特徴とする特許請求の範
囲第1項記載の半導体装置の製造方法。
(2) The method for manufacturing a semiconductor device according to claim 1, wherein the second ion implantation is performed after forming a spacer on the side wall of the gate electrode.
(3)ソース側が第2のイオン注入による第2導電型の
高濃度不純物拡散層のみの構造となるように前記スペー
サーを形成し第2のイオン注入を行なうことを特徴とす
る特許請求の範囲第2項記載の半導体装置の製造方法。
(3) The spacer is formed and the second ion implantation is performed so that the source side has a structure of only a second conductivity type high concentration impurity diffusion layer formed by the second ion implantation. 2. A method for manufacturing a semiconductor device according to item 2.
JP3793386A 1986-02-21 1986-02-21 Manufacture of semiconductor device Pending JPS62195176A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3793386A JPS62195176A (en) 1986-02-21 1986-02-21 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3793386A JPS62195176A (en) 1986-02-21 1986-02-21 Manufacture of semiconductor device

Publications (1)

Publication Number Publication Date
JPS62195176A true JPS62195176A (en) 1987-08-27

Family

ID=12511357

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3793386A Pending JPS62195176A (en) 1986-02-21 1986-02-21 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPS62195176A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0214530A (en) * 1988-06-30 1990-01-18 Mitsubishi Electric Corp Manufacture of semiconductor device
WO1996016432A3 (en) * 1994-11-16 1996-08-15 Matsushita Electric Ind Co Ltd Channel or source/drain structure of mosfet and method for fabricating the same
US5830788A (en) * 1996-06-21 1998-11-03 Matsushita Electric Industrial Co., Ltd. Method for forming complementary MOS device having asymmetric region in channel region

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0214530A (en) * 1988-06-30 1990-01-18 Mitsubishi Electric Corp Manufacture of semiconductor device
WO1996016432A3 (en) * 1994-11-16 1996-08-15 Matsushita Electric Ind Co Ltd Channel or source/drain structure of mosfet and method for fabricating the same
US6031272A (en) * 1994-11-16 2000-02-29 Matsushita Electric Industrial Co., Ltd. MOS type semiconductor device having an impurity diffusion layer with a nonuniform impurity concentration profile in a channel region
US6355963B1 (en) 1994-11-16 2002-03-12 Matsushita Electric Industrial Co., Ltd. MOS type semiconductor device having an impurity diffusion layer
US5830788A (en) * 1996-06-21 1998-11-03 Matsushita Electric Industrial Co., Ltd. Method for forming complementary MOS device having asymmetric region in channel region
US6031268A (en) * 1996-06-21 2000-02-29 Matsushita Electric Industrial Co., Ltd. Complementary semiconductor device and method for producing the same

Similar Documents

Publication Publication Date Title
US7799641B2 (en) Method for forming a semiconductor device having recess channel
JPH0629532A (en) Mosfet and its manufacture
JPH0519811B2 (en)
JPS6318867B2 (en)
JPH04102317A (en) Manufacture of semiconductor device
JPH10178104A (en) Method of manufacturing cmosfet
JPS63281465A (en) Manufacture of field effect transistor and its intermediate product
JPH08264789A (en) Insulated gate semiconductor device and manufacture
JP2677987B2 (en) Method for manufacturing semiconductor integrated circuit device
JPH098321A (en) Transistor structure of semiconductor element and its manufacture
JP2004349377A (en) Semiconductor device and its manufacturing method
JPS6318346B2 (en)
JPS62195176A (en) Manufacture of semiconductor device
JPH10144922A (en) Field-effect transistor (fet) and method for forming semiconductor field-effect transistor
JP2004146825A (en) Mos transistor and its manufacturing method
JP2633104B2 (en) Method for manufacturing semiconductor device
JPH0370139A (en) Manufacture of semiconductor device
JPH04212467A (en) Semiconductor device and manufacture thereof
US6734070B1 (en) Method of fabricating a semiconductor device with field-effect transistors having shallow source and drain junctions
JPH02260564A (en) Semiconductor device and manufacture thereof
JP3253846B2 (en) Semiconductor device and manufacturing method thereof
JP2003249567A (en) Semiconductor device
JPH0481327B2 (en)
CN110416080B (en) Tunneling field effect transistor, manufacturing method thereof and chip
JPH07115195A (en) Mos transistor and its manufacture