JPS6219499B2 - - Google Patents

Info

Publication number
JPS6219499B2
JPS6219499B2 JP4363783A JP4363783A JPS6219499B2 JP S6219499 B2 JPS6219499 B2 JP S6219499B2 JP 4363783 A JP4363783 A JP 4363783A JP 4363783 A JP4363783 A JP 4363783A JP S6219499 B2 JPS6219499 B2 JP S6219499B2
Authority
JP
Japan
Prior art keywords
self
alloy
wear
resistance
fusing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP4363783A
Other languages
Japanese (ja)
Other versions
JPS59170235A (en
Inventor
Takao Teramoto
Kensuke Hidaka
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fukuda Kinzoku Hakufun Kogyo Kk
Original Assignee
Fukuda Kinzoku Hakufun Kogyo Kk
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fukuda Kinzoku Hakufun Kogyo Kk filed Critical Fukuda Kinzoku Hakufun Kogyo Kk
Priority to JP4363783A priority Critical patent/JPS59170235A/en
Publication of JPS59170235A publication Critical patent/JPS59170235A/en
Publication of JPS6219499B2 publication Critical patent/JPS6219499B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Coating By Spraying Or Casting (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は耐摩耗性および耐スカツフイング性、
耐ピツチング性に優れた表面硬化用自溶性合金に
関するものである。 従来から耐摩耗性を必要とされる機械部品の表
面硬化用材料としては、溶射溶着用あるいは肉盛
用自溶性合金がよく知られている。このうち自動
車エンジンのバルブロツカーアームのパツド面の
表面硬化用に使用される自溶性合金としては、
Ni基、Co基又はFe基の自溶性合金があり、これ
らの合金は他の表面硬化法、クロムメツキやチル
組織鋳鉄、窒化処理、浸炭焼入処理と共に条件に
応じて使い分けられている。周知のように自動車
エンジンのバルブロツカーアームのカムシヤフト
のリード面に接触する部分であるパツド面は、高
度な耐摩耗性、耐スカツフイング性、耐ピツチン
グ性が要求されるが、上記いずれの表面硬化法に
も一長一短がある。例えばクロムメツキはスカツ
フイングが生じ易く、チル組織鋳鉄はピツチング
や摩耗が生じ易い。窒化処理、浸炭焼入処理は耐
摩耗性が不充分である。そのため自溶性合金を、
バルブロツカーアームのパツド面に溶射溶着ある
いは肉盛することが近年行なわれているが、Ni
基自溶性合金は、金属対金属が高速高荷重で摺動
する時または潤滑条件が悪化したとき、急激にス
カツフイングやピツチングが生ずる欠点があり、
Co基自溶性合金は、自身の摩耗量は少ないがこ
れと接触する相手材を激しく摩耗させる欠点があ
る。さらにFe基自溶性合金は、Ni基およびCo基
自溶性合金とは逆に、耐スカツフイング性、耐ピ
ツチング性が良く、相手材をほとんど摩耗させな
いが、自身の摩耗量が大きいという欠点がある。 本発明合金は、従来の自溶性合金の欠点を是正
し、自身の耐摩耗性を向上させ、しかも耐スカツ
フイング性、耐ピツチング性を向上させて相手材
の摩耗をも低減させる自溶性合金を提供すること
にあり、その合金の組成はFe6〜22%、Cr8〜15
%、Si3〜9%、B1〜3%、C0.3〜1.5%、Mo1〜
8%、Cu1〜5%、残部が実質的にNiよりなるも
のである。 以下本発明合金の各構成元素の限定範囲につい
て述べる。 SiはBと共に自溶性を付与する元素であり、ニ
ツケルシリサイドを生成させて合金自体の硬さを
高め、耐摩耗性、耐スカツフイング性、耐ピツチ
ング性のいずれも向上させるための重要な元素で
ある。Siが3%未満ではそれらの特性が充分に得
られず、これに対し9%を越えると硬さが大とな
りすぎて脆くなり、加工時や使用時にクラツクが
発生し易い。それゆえSiは3〜9%とした。 BはSiと同じく合金に自溶性を付与する元素で
あり、Crと結合してボライドを生成させて硬さ
を高め、耐摩耗性を向上するのに有効な元素であ
る。Bが1%未満ではその効果が充分でなく、3
%以上ではボライドがシリサイド以上に生成し、
耐スカツフイング性が悪くなる。それゆえBは1
〜3%とした。 CはCrと結合してカーバイドを生成し、また
マトリツクス中にも固溶して、合金全体の硬さを
高め耐摩耗性を向上させる元素である。Cが0.3
%未満ではカーバイドの生成が不充分で耐摩耗性
が悪くなり、1.5%を越えるとカーバイドが多く
なりすぎて硬さは高くなるが、耐スカツフイング
性が悪くなる。それゆえCは0.3〜1.5%とした。 CrはB、Cと結びついてボライド、カーバイ
ドを生成し硬さを高め、耐摩耗性を向上させるた
めの必須の元素である。Crが8%未満ではクロ
ムボライド、クロムカーバイドの生成が不充分で
硬さが高くならず耐摩耗性が悪くなる。しかし15
%を越えるとクロムボライド、クロムカーバイド
の生成は充分となり硬さも高くなるが、合金の融
点が上昇して、本発明の基本的特性である自溶性
が阻害され溶射溶着や肉盛溶接による表面硬化加
工が困難となる。それゆえCrは8〜15%とし
た。 FeはNiと共にマトリツクスを形成し、マトリ
ツクス中へのCの固溶度を向上させ、マトリツク
ス自体の硬さを高めることにより、合金全体の硬
さを向上させるのに役立つ。マトリツクスの硬さ
が高くなることは、その周囲に存在するニツケル
シリサイドやクロムボライド、クロムカーバイド
との硬さの差が小さくなることになり、スカツフ
イングやピツチングが発生しにくくなる。Feが
6%未満ではマトリツクスの硬さを高めるのに不
充分であり、22%以上になるとこの合金の表面硬
化加工が困難となり、また研削性も著しく悪くな
る。それゆえFeは6〜22%とした。 MoはNi、Feのマトリツクス中に固溶し合金自
身の強度を増す効果がある。Moを添加しないと
実施例で示すような高速高荷重条件で摩耗試験を
行なうとその試験面にクラツクが発生するが、
Moを添加するとクラツクは発生しなくなる。そ
の効果は1%以上から期待できるが、8%以上に
なると逆効果となり無添加のものよりもクラツク
が発生し易くなる。それゆえMoの添加量は1〜
8%とした。 CuはNiのマトリツクス中に固溶し、その周囲
に析出するクロムボライド、クロムカーバイドを
組織的に安定化させる効果がある。Cuが1%未
満ではクロムボライドやカーバイドが偏析し易
く、ピツチングが発生する原因となる。しかし5
%を越えると析出効果が大となり、また脆くな
る。そして自溶性も阻害されるので好ましくな
い。それゆえCuの添加量は1〜5%とした。 次に本発明合金の実施例について述べる。 実施例 1 第1表に示す各種自溶性合金粉末を作成し、軟
鋼母材上にガス溶射溶着法により厚さ約1.5mmの
表面硬化皮膜を形成し、その表面を鏡面仕上した
ものを試験片とした。そして第1図に示すような
高速で回転する回転片に試験片を押しつけ、境界
潤滑状態で金属同志を摺動させて摩耗試験する装
置を用いて下記条件により試験した。 回転片材質 特殊合金チル鋳鉄 回 転 数 3370rpm 試験荷重 40Kg 潤 滑 油 白スピンドル油 潤滑油温度 70℃温調 試験時間 5時間 試験後、試験片に付いた摩耗痕の大きさ(mm2
の測定、痕面のスカツフイング状態(スジ状のキ
ス)ピツチング状態(部分的な欠損)の観察、お
よび回転片の摩耗減量(mg)の測定を行ない総合
的な耐摩耗性の評価を行なつた。試験の結果を第
2表にまとめて示す。第2表から明らかなように
従来の自溶性合金(試料No.8〜12)に較べ、本発
明自溶性合金(試料No.1〜7)は、摩耗痕の大き
さ、回転片摩耗量ともバランスのとれた耐摩耗性
を示し、スカツフイングやピツチングが少なく相
手材とのなじみ性が良いことを示し、総合的な耐
摩耗性に優れた合金であることがわかつた。
The present invention provides wear resistance and scuffing resistance,
This invention relates to a self-fusing alloy for surface hardening that has excellent pitting resistance. Self-fusing alloys for thermal spray welding or overlay have been well known as surface hardening materials for mechanical parts that require wear resistance. Among these, the self-fusing alloys used for surface hardening of the pad surface of the valve rocker arm of automobile engines are:
There are Ni-based, Co-based, or Fe-based self-fusing alloys, and these alloys are used depending on the conditions along with other surface hardening methods, chrome plating, chill structure cast iron, nitriding treatment, and carburizing and quenching treatments. As is well known, the pad surface of the valve rocker arm of an automobile engine, which is the part that contacts the lead surface of the camshaft, is required to have a high degree of wear resistance, scuffing resistance, and pitting resistance, but none of the above surface hardening methods can be used. There are advantages and disadvantages to both. For example, chrome plating is prone to scuffing, and chilled cast iron is prone to pitting and wear. Nitriding treatment and carburizing and quenching treatment have insufficient wear resistance. Therefore, self-fusing alloys
In recent years, thermal spray welding or overlaying has been carried out on the pad surface of valve blocker arms, but Ni
Base self-fusing alloys have the disadvantage that scuffing and pitting occur rapidly when metal-to-metal sliding occurs at high speeds and under high loads, or when lubrication conditions deteriorate.
Co-based self-fluxing alloys have a small amount of wear on themselves, but have the disadvantage of causing severe wear on the other materials that come into contact with them. Furthermore, Fe-based self-fluxing alloys, contrary to Ni-based and Co-based self-fluxing alloys, have good scuffing resistance and pitting resistance, and cause almost no wear on the mating material, but they have the disadvantage of a large amount of wear themselves. The alloy of the present invention corrects the shortcomings of conventional self-fusing alloys, improves its own wear resistance, and provides a self-fusing alloy that also improves scuffing resistance and pitting resistance and reduces wear of mating materials. The composition of the alloy is Fe6~22%, Cr8~15
%, Si3~9%, B1~3%, C0.3~1.5%, Mo1~
8% Cu, 1 to 5% Cu, and the remainder substantially Ni. The limited ranges of each constituent element of the alloy of the present invention will be described below. Si is an element that imparts self-solubility together with B, and is an important element for generating nickel silicide, increasing the hardness of the alloy itself, and improving wear resistance, scuffing resistance, and pitting resistance. . If the Si content is less than 3%, these characteristics cannot be sufficiently obtained, whereas if it exceeds 9%, the hardness becomes too large and becomes brittle, and cracks are likely to occur during processing or use. Therefore, Si was set at 3 to 9%. Like Si, B is an element that imparts self-solubility to the alloy, and is an effective element for combining with Cr to form boride, increasing hardness, and improving wear resistance. If B is less than 1%, the effect is not sufficient, and 3
% or more, boride is generated more than silicide,
Scratching resistance deteriorates. Therefore B is 1
~3%. C is an element that combines with Cr to form carbide, and also forms a solid solution in the matrix, increasing the hardness and wear resistance of the entire alloy. C is 0.3
If it is less than 1.5%, the formation of carbide will be insufficient, resulting in poor wear resistance, and if it exceeds 1.5%, the amount of carbide will be too large, resulting in high hardness but poor scuffing resistance. Therefore, C was set at 0.3 to 1.5%. Cr is an essential element that combines with B and C to form borides and carbides, increasing hardness and improving wear resistance. If the Cr content is less than 8%, the formation of chromium boride and chromium carbide will be insufficient, resulting in insufficient hardness and poor wear resistance. But 15
%, the formation of chromium boride and chromium carbide will be sufficient and the hardness will increase, but the melting point of the alloy will rise and the self-fluxability, which is the basic characteristic of the present invention, will be inhibited, making it difficult to harden the surface by thermal spray welding or overlay welding. becomes difficult. Therefore, Cr was set at 8 to 15%. Fe forms a matrix with Ni, improves the solid solubility of C in the matrix, and increases the hardness of the matrix itself, thereby helping to improve the hardness of the entire alloy. The higher the hardness of the matrix, the smaller the difference in hardness from the surrounding nickel silicide, chromium boride, and chromium carbide, making scuffing and pitting less likely to occur. If Fe is less than 6%, it is insufficient to increase the hardness of the matrix, and if it is more than 22%, surface hardening of this alloy becomes difficult and the grindability becomes significantly poor. Therefore, Fe was set at 6% to 22%. Mo forms a solid solution in the Ni and Fe matrix and has the effect of increasing the strength of the alloy itself. If Mo is not added, cracks will occur on the test surface when a wear test is performed under high speed and high load conditions as shown in the example.
When Mo is added, cracks no longer occur. The effect can be expected from 1% or more, but if it is 8% or more, the opposite effect occurs and cracks are more likely to occur than with no additives. Therefore, the amount of Mo added is 1~
It was set at 8%. Cu forms a solid solution in the Ni matrix, and has the effect of structurally stabilizing the chromium boride and chromium carbide that precipitate around it. If Cu is less than 1%, chromium boride and carbide are likely to segregate, causing pitting. But 5
If it exceeds %, the precipitation effect becomes large and it becomes brittle. Moreover, self-solubility is also inhibited, which is not preferable. Therefore, the amount of Cu added was set to 1 to 5%. Next, examples of the alloy of the present invention will be described. Example 1 Various self-fusing alloy powders shown in Table 1 were prepared, and a hardened surface film with a thickness of approximately 1.5 mm was formed on a mild steel base material by gas spray welding, and the surface was mirror-finished and used as a test piece. And so. The test piece was then pressed against a rotating piece rotating at high speed as shown in FIG. 1, and tested under the following conditions using an apparatus for performing an abrasion test by sliding metal pieces together in a state of boundary lubrication. Rotating piece material: Special alloy chilled cast iron Number of revolutions: 3370rpm Test load: 40Kg Lubricating oil: White spindle oil Lubricating oil temperature: 70°C Temperature control Test time: 5 hours After the test, the size of the wear marks on the test piece (mm 2 )
The overall wear resistance was evaluated by measuring the scuffing state (striped kiss) and pitting state (partial chipping) of the scratch surface, and measuring the wear loss (mg) of the rotating piece. . The test results are summarized in Table 2. As is clear from Table 2, compared to the conventional self-fusing alloys (Samples No. 8 to 12), the self-fusing alloys of the present invention (Samples Nos. 1 to 7) have larger wear scars and wear amount of rotating pieces. The alloy showed well-balanced wear resistance, little scuffing and pitting, and good compatibility with the mating material, indicating that it is an alloy with excellent overall wear resistance.

【表】【table】

【表】 実施例 2 本発明の自溶性合金試料No.3と比較材としてク
ロムメツキ品、チル組織鋳鉄品及び従来の自溶性
合金試料No.8を実際のバルブロツカーアームパツ
ド面に表面硬化加工し、実際のエンジンに近い試
験機に取り付け下記試験条件にて摩耗試験を行な
つた。 エンジン回転数 1000rpm 潤 滑 油 エンジンオイル (10W30) 試 験 時間 200hr 試験の結果は第3表に示すとおりである。 本発明自溶性合金は、実際のバルブロツカーア
ームパツド材として実績のある比較材よりも優れ
た耐摩耗性を有するものであることがわかつた。
[Table] Example 2 Surface hardening of self-fusing alloy sample No. 3 of the present invention and comparison materials such as chrome-plated products, chill structure cast iron products, and conventional self-fusing alloy sample No. 8 on actual valve rocker arm pad surfaces. We installed it on a test machine similar to an actual engine and conducted a wear test under the following test conditions. Engine speed: 1000rpm Lubricating oil: Engine oil (10W30) Test time: 200hr The results of the test are shown in Table 3. It has been found that the self-fusing alloy of the present invention has superior wear resistance to comparative materials that have been used as actual valve rocker arm pad materials.

【表】 実施例 3 実施例2で試験した本発明の自溶性合金試料No.
3及び従来の自溶性合金試料No.8の100メツシユ
以下の粒度のアトマイズ粉末を、アクリル樹脂を
主成分とするバインダーで約1mm厚のシート状に
形成したものを、ロツカーアームのパツド面に貼
り付け、次いでバツチ式真空炉中で1000℃、
10-3Torrにて10分間保持後ガス冷却状態で取り
出した。この方法にて表面硬化加工したロツカー
アームは面ダレ、剥離など起こらず良好な外観及
び断面組織を示した。このように表面硬化加工し
たものを実施例2と同様の摩耗試験を行なつたと
ころ第3表に示す結果と全く同様の結果を得た。
[Table] Example 3 Self-fusing alloy sample No. of the present invention tested in Example 2.
3 and conventional self-fusing alloy sample No. 8 with a particle size of 100 mesh or less, formed into a sheet approximately 1 mm thick with a binder whose main component is acrylic resin, and pasted on the pad surface of the rocker arm. , then heated to 1000℃ in a batch vacuum furnace.
After being held at 10 -3 Torr for 10 minutes, it was taken out in a gas-cooled state. The Rocker arm surface-hardened using this method exhibited good appearance and cross-sectional structure without surface sag or peeling. When the thus surface-hardened material was subjected to the same wear test as in Example 2, the results were exactly the same as those shown in Table 3.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例1で使用した摩耗試験
機の本体構成略図である。 1:母材、2:表面硬化皮膜、3:回転片、
4:潤滑油、P:加重方向。
FIG. 1 is a schematic diagram of the main body configuration of the wear tester used in Example 1 of the present invention. 1: Base material, 2: Surface hardening film, 3: Rotating piece,
4: Lubricating oil, P: Loading direction.

Claims (1)

【特許請求の範囲】[Claims] 1 Fe6〜22%、Cr8〜15%、Si3〜9%、B1〜3
%、C0.3〜1.5%、Mo1〜8%、Cu1〜5%を必須
成分とし残部は実質的にNiからなることを特徴
とする耐摩耗性表面硬化用自溶性合金。
1 Fe6~22%, Cr8~15%, Si3~9%, B1~3
%, C0.3 to 1.5%, Mo1 to 8%, and Cu1 to 5% as essential components, and the remainder substantially consists of Ni.
JP4363783A 1983-03-15 1983-03-15 Wear resistant self-fluxing alloy for surface hardening Granted JPS59170235A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4363783A JPS59170235A (en) 1983-03-15 1983-03-15 Wear resistant self-fluxing alloy for surface hardening

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4363783A JPS59170235A (en) 1983-03-15 1983-03-15 Wear resistant self-fluxing alloy for surface hardening

Publications (2)

Publication Number Publication Date
JPS59170235A JPS59170235A (en) 1984-09-26
JPS6219499B2 true JPS6219499B2 (en) 1987-04-28

Family

ID=12669376

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4363783A Granted JPS59170235A (en) 1983-03-15 1983-03-15 Wear resistant self-fluxing alloy for surface hardening

Country Status (1)

Country Link
JP (1) JPS59170235A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0218798U (en) * 1988-07-26 1990-02-07

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63174798A (en) * 1987-01-14 1988-07-19 Toyota Motor Corp Corrosion resistant alloy for build-up welding
JP4565434B2 (en) * 2004-03-23 2010-10-20 地方独立行政法人北海道立総合研究機構 Self-fluxing alloy sprayed parts that do not peel

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0218798U (en) * 1988-07-26 1990-02-07

Also Published As

Publication number Publication date
JPS59170235A (en) 1984-09-26

Similar Documents

Publication Publication Date Title
JPH01201439A (en) Heat-resistant and wear-resistant iron-based sintered alloy
JPH0360897B2 (en)
US6037067A (en) High temperature abrasion resistant copper alloy
JPS6119809B2 (en)
JPH01237A (en) High strength and wear resistant copper alloy
JPS6219499B2 (en)
JP3279109B2 (en) Copper alloy synchronizer ring with excellent wear resistance
US2881511A (en) Highly wear-resistant sintered powdered metal
EP0799902B1 (en) Piston ring material excellent in workability
US3370941A (en) Tungsten-containing alloy cast iron useful for internal combustion engine parts
JP2909456B2 (en) Piston ring with excellent scuffing resistance
JPH0116905B2 (en)
JP2001234305A (en) Sintered member
JPS5913580B2 (en) Manufacturing method for oil-less chain bushings
JPH03253708A (en) Valve guide for internal combustion engine
JP2866868B2 (en) Piston ring material
JP2637500B2 (en) Sliding member
JPS6043462A (en) Cast iron for rocker arm
JP2594505B2 (en) Rocker arm
KR950014348B1 (en) Process for making sintering alloy and article made thereby
JPS5944382B2 (en) Cast hot-work tool steel with excellent wear resistance
JPH0264208A (en) Rocker arm
JPS605851A (en) Wear-resistant cast iron
JPH04143256A (en) Piston ring material
JPH0387331A (en) Manufacture of iron series sintered wear-resistant material