JPS6119809B2 - - Google Patents

Info

Publication number
JPS6119809B2
JPS6119809B2 JP7418877A JP7418877A JPS6119809B2 JP S6119809 B2 JPS6119809 B2 JP S6119809B2 JP 7418877 A JP7418877 A JP 7418877A JP 7418877 A JP7418877 A JP 7418877A JP S6119809 B2 JPS6119809 B2 JP S6119809B2
Authority
JP
Japan
Prior art keywords
valve
shaft
carbide
welded
stellite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP7418877A
Other languages
Japanese (ja)
Other versions
JPS548138A (en
Inventor
Jun Oosawa
Nozomu Kunishige
Yoshitoshi Hagiwara
Yoshiaki Takagi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP7418877A priority Critical patent/JPS548138A/en
Priority to DE19782827271 priority patent/DE2827271A1/en
Priority to FR7818567A priority patent/FR2395394A1/en
Publication of JPS548138A publication Critical patent/JPS548138A/en
Publication of JPS6119809B2 publication Critical patent/JPS6119809B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23PMETAL-WORKING NOT OTHERWISE PROVIDED FOR; COMBINED OPERATIONS; UNIVERSAL MACHINE TOOLS
    • B23P15/00Making specific metal objects by operations not covered by a single other subclass or a group in this subclass
    • B23P15/001Making specific metal objects by operations not covered by a single other subclass or a group in this subclass valves or valve housings
    • B23P15/002Making specific metal objects by operations not covered by a single other subclass or a group in this subclass valves or valve housings poppet valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L3/00Lift-valve, i.e. cut-off apparatus with closure members having at least a component of their opening and closing motion perpendicular to the closing faces; Parts or accessories thereof
    • F01L3/02Selecting particular materials for valve-members or valve-seats; Valve-members or valve-seats composed of two or more materials

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は自動車等のエンジンに用いられる溶接
バルブに関する。 この種のバルブの傘部は吸入側で400〜600℃、
排気側で700〜900℃の高温になり、特にバルブシ
ート部では常に叩打や回転に対する耐摩耗性と耐
熱性を要するので、オーステナイト系耐熱鋼が用
いられ、焼入れ、焼戻しあるいは溶体化処理後時
効処理によつて必要な硬さを附与している。特に
厳しい条件を要求されるエンジンに用いられる場
合には、フエース部にステライトあるいはNi―
Co合金などの盛金が施されることもある。 一方、この種バルブの軸部端末は、通常エンジ
ンバルブスプリングに抗してバルブを開くために
エンジン回転の1/2の頻度で、焼入れ硬化された
ロツカアームアジヤストスクリユまたはプツシユ
ロツドの先端に接触するので、単純な点接触によ
る摩耗のみならず、エンジンの機構によつては複
雑な引掻き摩耗を発生する場合がある。一般に溶
接バルブの軸部にはSUH3(C0.35、Cr12.0、
Mo1.0、Si2.0)、SUH11(C0.45、Cr8.0、Si1・
5)等のマルテンサイト系耐熱鋼が用いられてい
るが、この種耐熱鋼は耐摩耗性が不足するので、
最近のエンジンの高性能化に十分に対応すること
ができず、そのため軸部端末へのステライト盛金
の頻度が多くなりつつある。 しかしながら軸部端末へのステライト盛金はそ
の作業に高度の熟練を要し、ピンホールの発生、
後加工の問題などでコスト高となり量産性に劣る
という不具合がある。 本発明は上記に鑑み量産性に優れ、機能的にも
ステライト盛金をしたものに匹敵する耐摩耗性を
有する軸部を備えた溶接バルブを提供することを
目的とし、常温より300℃までの範囲で少なくと
もHv500以上の硬さを有するとともに焼入れ状態
において炭化物M7C3を10体積%以上含有し、且
つ耐摩耗性の大きな、日体工業規格記号SKD11
で表わされる合金工具鋼または常温より300℃ま
での範囲で少なくともHv500以上の硬さを有する
とともに焼入れ状態において炭化物M6Cおよび
MCよりなる混合炭化物を10体積%以上含有し、
且つ耐摩耗性の大きな、同記号SKH9で表わされ
る高速度工具鋼よりなる軸部と;該軸部に溶接さ
れる、同記号SUH38で表わされるオーステナイ
ト系耐熱鋼よりなる傘部と;を備えたものであ
る。 以下、図面により本発明の一実施例について説
明すると、第1図は本発明溶接バルブを示すもの
で、Aは日本工業規格記号SKH9で表わされる合
金工具鋼よりなる軸部、Bは同記号SUH38で表
わされるオーステナイト系耐熱鋼よりなり、軸部
Aに溶接された傘部、CはステライトNo.6によ
るフエース部盛金部分、D、EおよびFは高周波
焼入によりそれぞれHRC58、50および40
に硬化された部分をそれぞれ示す。軸部Aは同記
号SKD11で表わされる高速度鋼により形成して
もよい。 第2図は従来の溶接バルブを示すもので、Bお
よびCは第1図のものと同じ材質の傘部およびフ
エース部盛金部分、A′は同記号SUH3で表わされ
るマルテンサイト系耐熱鋼よりなる軸部、Gはス
テライトNo.1の盛金部をそれぞれ表わし、Bお
よびA′とも1120℃から750℃へ油冷した後時効処
理が施されている。 第1表において軸部に用いられるSKD11およ
びSKH9と、SK3(炭素工具鋼)、SUJ2(軸受
鋼)、SUH3(マルテンサイト系耐熱鋼)および
ステライトNo.1について、それらの主要化学成
分、熱処理条件、焼入硬さおよび主要炭化物の含
有率等の基本的特性値を比較したものであり、ま
た第2表は第1表に示した各種鋼の常温および高
温における硬度を示すもので、これにより焼入れ
状態において炭化物M6CおよびMCを10体積%以
上含有するSKH9と、炭化物M7C3を10体積%以上
含有するSKD11は300℃の高温硬さがHv500以上
であり、ステライトNo.1に匹敵することが明ら
かである。 第1表において、SK3の炭化物M3CはFe3Cを
意味する。SUJ2の炭化物M3CはFe3Cを主として
それにCrがFeと置換した炭化物を含む。SKD11
の炭化物M7C3は、Cr7C3を主としてそれにFe,
Mo,VがCrと置換した炭化物を含む、SKH9の
炭化物MCは、VCを主としてそれにFe,Cr,
W,MoがVと置換した炭化物を含み、また炭化
物M6Cは、Fe4W2Cを主としてそれにCr,Mo,
VがFe,Wと置換した炭化物を含む。SUH3の炭
化物M7C3は、Cr7C3を主としてそれにFe,Moが
Crと置換した炭化物を含む。ステライトNo.1の
炭化物M6Cは、W6Cを主としてそれにCrがWと
置換した炭化物を含み、また炭化物M7C3は、
Cr7C3を主としてそれにWがCrと置換した炭化物
を含む。
The present invention relates to a welded valve used in engines such as automobiles. The umbrella part of this type of valve has a temperature of 400 to 600℃ on the suction side.
The exhaust side reaches a high temperature of 700 to 900°C, and the valve seat in particular requires wear resistance and heat resistance against constant hammering and rotation, so austenitic heat-resistant steel is used, and it is hardened, tempered, or solution-treated followed by aging treatment. This provides the necessary hardness. When used in engines that require particularly severe conditions, stellite or Ni-
It is also sometimes coated with metal such as Co alloy. On the other hand, the shaft end of this type of valve normally contacts the tip of the hardened rocker arm adjusting screw or push rod at a frequency of 1/2 of the engine rotation to open the valve against the engine valve spring. Therefore, not only wear due to simple point contact but also complex scratching wear may occur depending on the engine mechanism. Generally, SUH 3 (C0.35, Cr12.0,
Mo1.0, Si2.0), SUH11 (C0.45, Cr8.0, Si1・
Martensitic heat-resistant steel such as 5) is used, but this type of heat-resistant steel lacks wear resistance.
It has not been possible to sufficiently respond to the recent improvements in engine performance, and as a result, the frequency of stellite overlay on the shaft end is increasing. However, applying stellite to the end of the shaft requires a high degree of skill, and pinholes may occur.
There are disadvantages such as high costs due to post-processing problems and poor mass productivity. In view of the above, the purpose of the present invention is to provide a welded valve with a shaft portion that is excellent in mass production and functionally has a wear resistance comparable to that of a valve with stellite overlay. Japan Industrial Standards symbol SKD11, which has a hardness of at least Hv500 or more in the range, contains carbide M 7 C 3 at 10% by volume or more in the quenched state, and has high wear resistance.
An alloy tool steel represented by
Contains 10% by volume or more of mixed carbide consisting of MC,
It also has a shaft made of high-speed tool steel with the same symbol SKH9, which has high wear resistance; and a cap made of austenitic heat-resistant steel with the same symbol SUH38, which is welded to the shaft. It is something. Hereinafter, one embodiment of the present invention will be explained with reference to the drawings. Fig. 1 shows a welded valve of the present invention, where A is a shaft made of alloy tool steel represented by the Japanese Industrial Standard symbol SKH9, and B is the same symbol SUH38. The cap is made of austenitic heat-resistant steel represented by , and is welded to the shaft part A, C is the face part filler part made of Stellite No. 6, and D, E and F are H R C58, 50 and H R C58, 50 and 50, respectively, by induction hardening. 40
The hardened parts are shown respectively. The shaft portion A may be formed of high-speed steel represented by the same symbol SKD11. Figure 2 shows a conventional welded valve, where B and C are the cap and face filler parts made of the same material as those in Figure 1, and A' is martensitic heat-resistant steel represented by the same symbol SUH 3 . The shank portion and G represent the metal filling portion of Stellite No. 1, respectively, and both B and A' were oil-cooled from 1120°C to 750°C and then subjected to aging treatment. Table 1 shows the main chemical components and heat treatment conditions for SKD11 and SKH9, SK3 (carbon tool steel), SUJ2 (bearing steel), SUH3 (martensitic heat-resistant steel), and Stellite No.1 used for the shaft. Table 2 shows the hardness of the various steels shown in Table 1 at room temperature and high temperature. SKH9, which contains 10% by volume or more of carbides M 6 C and MC in the quenched state, and SKD11, which contains 10% by volume or more of carbides M 7 C 3 , have a high-temperature hardness of 500 Hv or more at 300°C, and are ranked No. 1 in Stellite. It is clear that they are comparable. In Table 1, the carbide M 3 C of SK3 means Fe 3 C. The carbide M 3 C of SUJ2 mainly contains Fe 3 C, in which Cr is substituted for Fe. SKD11
The carbide M 7 C 3 is mainly composed of Cr 7 C 3 and Fe,
Carbide MC of SKH9, which contains carbides in which Mo and V are substituted with Cr, mainly contains VC with Fe, Cr,
Contains carbides in which W and Mo are substituted with V, and carbides M 6 C mainly contain Fe 4 W 2 C with Cr, Mo,
Contains carbides in which V is replaced with Fe or W. Carbide M 7 C 3 of SUH3 is mainly composed of Cr 7 C 3 and Fe and Mo.
Contains carbide substituted with Cr. Carbide M 6 C of Stellite No. 1 mainly contains W 6 C with Cr replacing W, and carbide M 7 C 3 contains:
Contains carbides mainly composed of Cr 7 C 3 in which W is substituted for Cr.

【表】【table】

【表】 次に軸部Aを前記第1,第2表に記載した
SK3、SUJ2、SKD11、SKH9およびSUH3により
形成し、一方傘部BをSUH38(C0.32、Si0.35、
P0.32、Ni10.5、Cr20.5、Mo1.7、B0.001)により
形成して、第1図と同一構成の溶接バルブを製造
し、これらを用いて以下に述べるような各種テス
トを行つた。 先ず、第1ステツプとして、各溶接バルブを装
着したエンジンについてモータリングテストを行
い、その結果耐久性に優れたもののみについてさ
らに耐久ベンチテストによる確認を行なつた。モ
ータリングテストでは、SK3、SUJ2、SUH3を用
いた溶接バルブに可成の引掻き摩耗痕が認められ
たが、SUH3を用いた溶接バルブだけは現用使用
バルブとして比較のために残し、これとSKH9、
SKD11を用いた溶接バルブとテストバルブとし
て耐久ベンチテストに使用した。なお、バルブの
軸部端末にステライトNo.1を盛金した第2図の
ものについては、既に同一条件で数十回に亘り耐
久ベンチテストが行われているので、このバルブ
については過去のデータを用いた。 さらに各テストバルブについてフアイアリング
により耐久性を確認するため、排気量1500c.c.の頭
上弁式エンジンを使用して、回転速度5000r.p.m
全負荷、タペツトクリアランス0.15mmで200時間
の高速耐久テストを行ない第3表の結果を得た。
表中のテストバルブは軸部鋼種および盛金にて表
わし、また各数値は摩耗量(mm)を表わす。この
場合使用燃料としては、特に軸部端末を激しく摩
耗させる性質をもつたハイオクタン有鉛ガソリン
(鉛含有率2.0g/ガロン)を使用した。
[Table] Next, the shaft part A is listed in Tables 1 and 2 above.
SK3, SUJ2, SKD11, SKH9 and SUH3, while the umbrella part B is made of SUH38 (C0.32, Si0.35,
P0.32, Ni10.5, Cr20.5, Mo1.7, B0.001) and manufactured a welded valve with the same configuration as in Fig. 1, and used it to conduct various tests as described below. I went. First, as a first step, a motoring test was conducted on engines equipped with each welded valve, and only those with excellent durability were further confirmed by a durability bench test. In the motoring test, welded valves using SK3, SUJ2, and SUH3 were found to have some scratch marks, but only the welded valve using SUH3 was kept for comparison as the currently used valve, and this and SKH9,
It was used as a welded valve and test valve using SKD11 for durability bench tests. The valve shown in Figure 2, in which Stellite No. 1 is deposited on the end of the valve shaft, has already been subjected to durability bench tests several dozen times under the same conditions, so this valve is based on past data. was used. Furthermore, in order to confirm the durability of each test valve by firing, an overhead valve engine with a displacement of 1500 c.c. was used at a rotation speed of 5000 r.pm.
A 200 hour high speed durability test was conducted under full load and tappet clearance of 0.15mm, and the results shown in Table 3 were obtained.
The test valves in the table are expressed by the steel type and metallization of the shaft, and each value indicates the amount of wear (mm). In this case, the fuel used was high octane leaded gasoline (lead content: 2.0 g/gallon), which has the property of causing severe wear especially at the end of the shaft.

【表】 以上の結果から考察すると、バルブの軸部端末
における摩耗の要因としては、前述したような機
械的なものの他に、エンジン内におけるガソリン
および潤滑オイル等の燃焼生成物によるものも考
えられ、また軸部端末の表面では摩擦熱の発生に
よる影響も大きいと思われる。 また浸炭硬化したアジヤストスクリユ等を用い
る場合も、ステライトNo.1盛金を施したバルブ
に対しては合性上摩耗を生じ易いので、バルブと
しては焼戻し抵抗に優れ、高温における硬度が高
く、単純炭化物よりも複合炭化物を適量含有する
材料が好適であり、生産上も前述したようにステ
ライト盛金に比較して一貫作業工程に組込むこと
ができるので、製造費も安価で充分量産にも適し
ていると考えられる。 なお、本発明溶接バルブは、次の〔〕または
〔〕の製造工程を経て製造される。
[Table] Considering the above results, the causes of wear at the end of the valve shaft are not only mechanical as mentioned above, but also combustion products such as gasoline and lubricating oil in the engine. It is also thought that the surface of the shaft end is greatly affected by the generation of frictional heat. In addition, even when using carburized hardened azimuth screws, they tend to wear out due to their compatibility with valves made with Stellite No. 1 metallization, so the valves have excellent tempering resistance and high hardness at high temperatures. A material containing an appropriate amount of composite carbide is more suitable than simple carbide, and as mentioned above, it can be incorporated into the integrated work process compared to stellite metal, so the manufacturing cost is low and it is suitable for mass production. considered suitable. The welded valve of the present invention is manufactured through the following manufacturing process [] or [].

【表】 軸部端末の 軸部端末の
( ) ( )
高周波焼入れ 高周波焼入れ
[Table] Shaft terminal Shaft terminal
( ) ( )
Induction hardening Induction hardening

Claims (1)

【特許請求の範囲】 1 常温より300℃までの範囲で少なくとも
Hv500以上の硬さを有するとともに焼入れ状態に
おいて炭化物M7C3を10体積%以上含有し、且つ
耐摩耗性の大きな、日本工業規格記号SKD11表
わされる合金工具鋼 または 常温より300℃までの範囲で少なくともHv500
以上の硬さを有するとともに焼入れ状態において
炭化物M6CおよびMCよりなる混合炭化物を10体
積%以上含有し、且つ耐摩耗性の大きな、同記号
SKH9で表わされる高速度工具鋼よりなる軸部
と; 該軸部に溶接される、同記号SUH38で表わさ
れるオーステナイト系耐熱鋼よりなる傘部と;を
備えた溶接バルブ。
[Claims] 1. At least in the range from room temperature to 300°C
Alloy tool steel with the Japanese Industrial Standard symbol SKD11, which has a hardness of Hv500 or more, contains carbides M7C3 in the quenched state at least 10% by volume, and has high wear resistance, or in the range from room temperature to 300℃. At least Hv500
The same symbol has the same hardness, contains 10% by volume or more of a mixed carbide consisting of carbide M 6 C and MC in the quenched state, and has high wear resistance.
A welded valve comprising: a shaft made of high-speed tool steel represented by SKH9; and a cap made of austenitic heat-resistant steel represented by the same symbol SUH38, which is welded to the shaft.
JP7418877A 1977-06-22 1977-06-22 Method of making welded valve Granted JPS548138A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP7418877A JPS548138A (en) 1977-06-22 1977-06-22 Method of making welded valve
DE19782827271 DE2827271A1 (en) 1977-06-22 1978-06-21 MANUFACTURING PROCESS FOR WELDED VALVE CONES
FR7818567A FR2395394A1 (en) 1977-06-22 1978-06-21 Welded valve cone - composed of austenitic steel welded to martensitic steel, the shaft end being hardened

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7418877A JPS548138A (en) 1977-06-22 1977-06-22 Method of making welded valve

Publications (2)

Publication Number Publication Date
JPS548138A JPS548138A (en) 1979-01-22
JPS6119809B2 true JPS6119809B2 (en) 1986-05-19

Family

ID=13539936

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7418877A Granted JPS548138A (en) 1977-06-22 1977-06-22 Method of making welded valve

Country Status (3)

Country Link
JP (1) JPS548138A (en)
DE (1) DE2827271A1 (en)
FR (1) FR2395394A1 (en)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3142670C2 (en) * 1981-10-28 1983-09-29 Daimler-Benz Ag, 7000 Stuttgart Gas exchange valve for an internal combustion engine
JPS5874813A (en) * 1981-10-28 1983-05-06 Aisan Ind Co Ltd Manufacture of engine valve
JPS58151306U (en) * 1982-04-05 1983-10-11 日産自動車株式会社 Internal combustion engine intake and exhaust valves
JPS61202606U (en) * 1985-06-10 1986-12-19
US5517956A (en) * 1994-08-11 1996-05-21 Del West Engineering, Inc. Titanium engine valve
DE19618477C2 (en) * 1996-05-08 2000-08-03 Trw Deutschland Gmbh Manufacturing process for a nitrided bimetal valve
DE20203171U1 (en) * 2002-02-28 2002-07-04 Trw Deutschland Gmbh Actuator for a camshaft-less valve train of an internal combustion engine
US7779807B2 (en) * 2003-11-11 2010-08-24 Honda Motor Co., Ltd. Intake/exhaust valve and its seal for internal combustion engine
JP2008215157A (en) * 2007-03-02 2008-09-18 Aisan Ind Co Ltd Engine valve
CN102990306A (en) * 2012-12-07 2013-03-27 山东耐材集团中齐耐火有限公司 Technology for welding working cylinder opening of cold isostatic press
CN103047441B (en) * 2012-12-24 2014-08-13 苏州赛华仪控股份有限公司 Valve rod for high-temperature high-pressure stop valve and machining method of valve rod
CN103433704B (en) * 2013-08-16 2016-02-24 浙江百灵气动科技有限公司 A kind of production technology of precise pressure-reducing valve main valve plug
DE102013223571A1 (en) * 2013-11-19 2015-05-21 Mahle International Gmbh Valve for a valve device
CN107516569A (en) * 2016-06-15 2017-12-26 董晓程 Electromagnet is integrally formed sleeve pipe and its preparation technology with guide pin bushing and magnetic shield
CN107855736A (en) * 2017-11-07 2018-03-30 华润电力湖北有限公司 A kind of conical surface seal grinding-in of valve technique

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR786046A (en) * 1934-06-01 1935-08-24 New manufacturing process for bi-metallic exhaust valves

Also Published As

Publication number Publication date
JPS548138A (en) 1979-01-22
FR2395394B1 (en) 1982-03-05
DE2827271A1 (en) 1979-01-18
FR2395394A1 (en) 1979-01-19

Similar Documents

Publication Publication Date Title
CN109402518B (en) High performance iron-based alloys for engine valvetrain applications, methods of making and uses thereof
JPS6119809B2 (en)
EP1614762A2 (en) Wear resistant alloy for valve seat insert
CA1184405A (en) Material for valve-actuating mechanism of internal combustion engine
JP6767398B2 (en) Tribology system including valve seat ring and valve
EP2162561B1 (en) Piston ring with a sulphonitriding treatment
US4761344A (en) Vehicle component part
JPS6070163A (en) Wear resistant sintered alloy member
KR950014353B1 (en) Process for making sintering alloy of valve sheet and article made thereby
JPS6217364A (en) Fuel injection nozzle for internal-combustion engine
JPS608295B2 (en) How to combine valve stem and valve guide
JPH0116905B2 (en)
JPS597003B2 (en) Valve mechanism for internal combustion engines
CA2584460A1 (en) Sintered alloys for cam lobes and other high wear articles
Colwell Corrosion-resistant metals for valves and seats on heavy-duty engines
EP0711904B1 (en) Sliding part and a method of producing thereof
Cowley et al. Internal combustion engine poppet valves: A study of mechanical and metallurgical requirements
Heron et al. Exhaust Valve Materials for Internal-Combustion Engines
KR100243840B1 (en) Engine tappet
KR100254820B1 (en) Abrasion proof sintering alloy for exhaust valve seat
Banks Valve and Valve-Seat Technique for Automobile and Aero Engines
JPS6043462A (en) Cast iron for rocker arm
Hoertz et al. Recent Trends in Engine Valve Design and Maintenance
KR890005173B1 (en) Method of producing valve seat
KR100334983B1 (en) Sintered steel alloy and fabrication method of valve-seat using the same