KR950014348B1 - Process for making sintering alloy and article made thereby - Google Patents

Process for making sintering alloy and article made thereby Download PDF

Info

Publication number
KR950014348B1
KR950014348B1 KR1019930029709A KR930029709A KR950014348B1 KR 950014348 B1 KR950014348 B1 KR 950014348B1 KR 1019930029709 A KR1019930029709 A KR 1019930029709A KR 930029709 A KR930029709 A KR 930029709A KR 950014348 B1 KR950014348 B1 KR 950014348B1
Authority
KR
South Korea
Prior art keywords
powder
temperature
alloy
based alloy
alloy powder
Prior art date
Application number
KR1019930029709A
Other languages
Korean (ko)
Other versions
KR950017010A (en
Inventor
임종섭
이영수
이범주
김정국
Original Assignee
대우중공업주식회사
석진철
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 대우중공업주식회사, 석진철 filed Critical 대우중공업주식회사
Priority to KR1019930029709A priority Critical patent/KR950014348B1/en
Publication of KR950017010A publication Critical patent/KR950017010A/en
Application granted granted Critical
Publication of KR950014348B1 publication Critical patent/KR950014348B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C33/00Making ferrous alloys
    • C22C33/02Making ferrous alloys by powder metallurgy
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/52Ferrous alloys, e.g. steel alloys containing chromium with nickel with cobalt

Abstract

The abrasion resistance iron based sintered alloy is manufactured by (a) mixing 77.0 wt% Fe-Cr-Mo-W-V-C based alloy powder, 11.5 wt% Fe-Cr-Mo-Ni based alloy powder, 10.0 wt% Fe-Cr-Mo-W-Co-C based alloy powder, 1.0 wt% graphite powder and 0.5 wt% MnS powder, (b) pressing the mixture under 5-8 ton/cm2, (c) sintering the molded body at 1,120-1,220 deg.C in vacuum to make the framework body for impregnation, (d) impregnation green compact, pressed with 3-6 ton/cm2 and composed of Cu impregnation agent and MoS2 powder, on the framework body at the atmosphere of decomposition ammonia gas or mixture gas of nitrogen and hydrogen, at 1,080-1,150 deg.C for 30-60 min., (e) annealing the impregnation framework body at 1,000-1,200 deg.C for 1-3 hrs. in salt bath furnace or vacuum furnace, (f) tempering it at 540-600 deg.C for 1-2 hrs. in nonoxidative atmosphere.

Description

내마모성 소결합금 및 그 제조방법Abrasion resistant small bond alloy and its manufacturing method

본 발명은 내마모성 및 내식성이 우수한 밸브시트용 철계소결합금에 관한 것으로, 특히 LPG를 연료로 사용하여 운전되는 엔진의 내식성 및 내마모성이 뛰어난 내마모성 철계소결합금 및 그 제조방법에 관한 것이다.The present invention relates to an iron base alloy for valve seat having excellent abrasion resistance and corrosion resistance, and more particularly, to a wear resistant iron base alloy having excellent corrosion resistance and abrasion resistance of an engine operated using LPG as fuel.

일반적으로 밸브시트는 엔진부품 중에서 사용 환경상 마모조건이 매우 가혹하며, 특히 LPG를 연료로 사용하는 엔진에서는 더욱 마모에 대한 피로가 심한데, 이는 LPG를 사용할 경우에 마찰을 상쇄시켜 주는 윤활제 역할을 하는 성분이 없어, 일반 가솔린이나 디겔을 연료로 사용하는 내연기관 보다도 그 사용조건이 극히 가혹한 상태로 작동되기 때문에 윤활상태가 좋지 않을 뿐만 아니라, 건조상태에서의 엔진작동으로 인해 유막이 단절되는 등의 밸브시트의 마모정도가 대우 심하게 나타나므로, 특히 밸브시트의 내마모성이 요구되고 있다.In general, the valve seat has a severe wear condition among the engine parts, and especially in an engine using LPG as fuel, the wear fatigue is more severe, which is a lubricant that offsets friction when using LPG. Since the operating conditions are much harsher than that of an internal combustion engine that uses gasoline or diesel as fuel, the lubrication is not good and the valve seat is cut off due to engine operation in a dry state. The wear resistance of the valve sheet is severely treated, and thus the wear resistance of the valve seat is particularly required.

종래의 LPG를 연료로 사용하는 내연기관의 밸브시이트는 Pb 함침법에 의해 제조된 것을 주로 사용하여 왔는데, 이는 Pb가 융점이 낮은 관계로 소결체를 진공중에서 Pb 함침시의 Pb 증기 발생으로 인한 작업상의 환경오염 문제가 있으며, 특히 400-500℃의 온도에서 Pb 함침을 시키므로 제품의 모재경도가 낮아 성능이 떨어졌다.Conventional valve seats of internal combustion engines using LPG as a fuel have been mainly manufactured by Pb impregnation method. This is due to the low melting point of Pb. There is a problem of environmental pollution, and in particular, Pb impregnation at a temperature of 400-500 ℃ lowered the base material hardness of the product was poor performance.

또한 종래에 Fe-Cr-Mo-W-V계 합금분말을 사용하여 Cu용침시킨 밸브시트를 가솔린 엔진용 밸보시트로 사용한 경우도 있으나, 이보다 더욱 가혹한 조건인 LPG용으로는 걱합하지 못하였다.In addition, although a valve seat in which Cu is infiltrated using Fe-Cr-Mo-W-V alloy powder has been conventionally used as a gasoline engine valve seat, it has not been well suited for LPG, which is a more severe condition.

따라서 본 발명은 LPG를 연료로 사용하여 운전되는 엔진에 우수한 내식성 및 내마모성을 갖는 새로운 조성의 내마모성 철계소결합금을 제공하는데 그 목적이 있다.Accordingly, an object of the present invention is to provide a wear-resistant iron-based alloy of a new composition having excellent corrosion resistance and wear resistance to an engine operated using LPG as a fuel.

철계소결합금을 제조함에 있어서, 그 원료성분으로 Fe-Cr-Mo-W-V-C계 합금분말에, Fe-Cr-Mo-W-Co-C계 합금분말과 Fe-Cr-Mo-Ni계 합금분말과 흑연분말과 MnS분말을 Zn-스테아린산과함께 브이콘(V-cone) 혼합기에 넣고, 편석이 발생되지 않으며 과도한 혼합으로 윤활재의 성능을 떨어뜨리지 않는 시간범위인 20-30분간 18-20rpm의 조건으로 혼합한 후, 상온에서 성형체가 께지지 않으며, 과도한 압력으로 금형파괴가 발생하지 않는 압력범위인 5-8ton/㎠의 압력을 가하여 성형하고, 이 성형체를 산화가 발생하지 않는 최소의 진공도인 (1-6)×10-3Torr의 진공도와 미소결이 발생하지 않으며 입자성장이 크게 생기지 않는 1,120-1,220℃의 온도로 진공소결하여 용침용 골격체를 만든다.In the production of iron-based small alloys, Fe-Cr-Mo-WVC-based alloy powder, Fe-Cr-Mo-W-Co-C-based alloy powder, Fe-Cr-Mo-Ni-based alloy powder, Put graphite powder and MnS powder together with Zn-stearic acid in V-cone mixer, and do not cause segregation and do not degrade the lubricant by excessive mixing. After mixing, the molded body is not sintered at room temperature and is molded by applying a pressure of 5-8 ton / cm 2, which is a pressure range in which no mold breakage occurs due to excessive pressure. Vacuum sintering of -6) × 10 -3 Torr does not occur and grain growth does not occur, and vacuum sintering is carried out at a temperature of 1,120-1,220 ° C. to make a infiltration skeleton.

여기서 Fe-Cr-Mo-Ni계 합금분말은 프리알로이(Pre-Alloy) 상태로 각 원소들을 공급하기 위해 사용된다.Here, the Fe-Cr-Mo-Ni-based alloy powder is used to supply each element in a pre-alloy state.

또한 Cu 용침제와 MsO2분말을 정해진 조성으로 혼합하여 성형체가 깨지지 않으며, 금형에 손상이 없을정도인 3-6ton/㎠ 정도의 압력을 가하여 원하는 형상내로 성형하여 압분체를 만든 후, 용침용 골격체 위에 상기의 압분제를 올려놓고 분해암모니아가스나 혼합가스(N2/H2) 분위기에서 미소결이 발생하지 않으며 입자성장이 크게 일어나지 않는 온도와 시간범위인 1080-1150℃의 온도로 30-60분간 가열하고, 용침(Cu+MoS2)시켜 용침된 골격체를 만든 다음, 염욕로 또는 진공로에서 충분한 경도를 보장할 수 있으며 업자성장이 발생하지 않는 범위인 1,000-1,200℃의 온도로 1-3시간 유지한 후 소입하며, 무산화분위기에서 경한 조직의 취성을 최대한 억제하며, 경도저하가 발생하지 않는 범위인 540-600℃의 온도로 소려를 2회 실시한다.In addition, the Cu injector and MsO 2 powder are mixed in a predetermined composition so that the molded product is not broken, and the molded product is formed into a desired shape by applying a pressure of about 3-6 ton / cm 2, which does not damage the mold, and then forms a green compact. Putting the above-mentioned green powder on the sieve, 30- at a temperature of 1080-1150 ℃ which is a temperature and time range in which microparticles do not occur and particle growth does not occur significantly in the decomposition ammonia gas or mixed gas (N 2 / H 2 ) atmosphere. Heated for 60 minutes, infiltrated (Cu + MoS 2 ) to make the infiltrated skeleton, and then in a salt bath or vacuum furnace to ensure a sufficient hardness, and 1 to a temperature of 1,000-1,200 ℃ range that does not occur in the industry growth It is quenched after holding for 3 hours, and the brittleness of the hard tissue is suppressed to the maximum in an oxidizing atmosphere, and the soaking is carried out twice at a temperature of 540-600 ° C. in which hardness decrease does not occur.

상기의 제조방법에 의해 얻어진 철계소결합금의 최종 조성범위는 1.0-3.5wt%의 C, 8.0-15.0wt%의 Cr, 1.0-3.0wt%의 Co, 2,5-5.0wt%의 Mo, 0.5-3.0wt%의 Ni, 3.5-7.5wt%의 W, 0.5-3.0wt%의V, 8.0-18.0wt%의 Cu, 0.2-1.0wt%의 MnS, 0.1-1.5wt%의 MoS2, 나머지 잔여량이 Fe로 이루어진다.The final composition range of the iron-based alloy obtained by the above production method is 1.0-3.5wt% C, 8.0-15.0wt% Cr, 1.0-3.0wt% Co, 2,5-5.0wt% Mo, 0.5 -3.0 wt% Ni, 3.5-7.5 wt% W, 0.5-3.0 wt% V, 8.0-18.0 wt% Cu, 0.2-1.0 wt% MnS, 0.1-1.5 wt% MoS 2 , remaining amount This is made of Fe.

본 발명의 첨가성분으로 구성되는 원소들의 영향을 살펴보면 다음과 같다. Cr은 C와 반응해서 탄화물을 형성하여 내마모성을 향상시킴과 동시에 내열성도 향상시키며, 경질상(Hard Spot) 내에서 Fe-Cr-Mo-W-C계 복탄화물을 형성하여 경도 밋 고온 내마모성을 향상시킨다. 그러나 8% 미만인 경우엔 효과가 떨어지며, 15% 이상인 경우엔 성형성이 문제가 되며 피삭성을 저하시킨다.Looking at the influence of the elements consisting of the additive component of the present invention. Cr reacts with C to form carbides to improve wear resistance and at the same time to improve heat resistance, and to form Fe-Cr-Mo-W-C based carbide in hard spots to improve hardness and high temperature wear resistance. However, if less than 8%, the effect is reduced, if more than 15% formability is a problem and machinability is reduced.

Mo는 일부가 기지조직 내에 고용되어 기지를 고용강화시키고, 일부는 Fe-Cr-Mo-W-C계 복탄화물을 형성시켜 내마모성의 향상을 가져오지만, 2.5% 미만인 경우엔 만족할 만한 효과가 없으며, 5.0% 이상이면 경제성 및 피삭성이 떨어진다.Mo is partly employed in the base structure to enhance the employment of the base, while some form Fe-Cr-Mo-WC-based carbide to improve wear resistance, but less than 2.5% is not satisfactory, 5.0% If it is abnormal, economy and machinability will be inferior.

Co는 기지조직에 고용되어 강도, 내열성을 향상시키는데, 1.0% 이하이면 효과가 없고,3.0% 이상이면 가격이 상승되어 경제성이 없게 된다.Co is employed in the base structure to improve strength and heat resistance. If it is 1.0% or less, it is ineffective, and if it is 3.0% or more, the price is increased to become economical.

Ni는 기지조직에 고용되어 강도, 인성 및 내열성을 향상시키지만, 0.5% 이하에서는 효과가 없으며, 30% 이상이면 경제성이 떨어진다.Ni is dissolved in the matrix structure to improve the strength, toughness and heat resistance, but Ni is not effective at 0.5% or less, and at 30% or more, the economy is inferior.

W는 일부가 기지조직에 고용되어 고용강화시키며, 일부는 복탄화물을 형성하여 내마모성을 한층 더 향상시키는 작용을 한다. 첨가량이 3.5% 이하이면 원하는 내마모성의 효과가 떨어지며, 7.5% 이상이면 상대부재를 현저히 마모시키므로 이들의 첨가량은 3.5-7.5%로 한다.W is partly employed in the base organization to strengthen the employment, while some form a complex carbide to act to further improve wear resistance. If the added amount is 3.5% or less, the effect of the desired wear resistance is inferior. If the added amount is 7.5% or more, the counterpart member is significantly worn out, so that the added amount thereof is 3.5-7.5%.

V는 주로 Fe, Cr, Mo, C 등과 복탄화물을 형성시키지만, 자신도 단독으로 탄화물을 형성하여 고경도를유지시켜서 내마모성을 향상시킨다. 그러나 0.5% 이하이면 원하는 경도 향상의 효과가 떨어지고, 3.0% 이상이면 단독 탄화물의 증가로 인해 상대 부재를 현저히 마모시키므로 첨가량을 0.5-3.0%로 한다.V mainly forms complex carbides with Fe, Cr, Mo, C and the like, but itself forms carbides to maintain high hardness to improve wear resistance. However, if it is 0.5% or less, the effect of improving the desired hardness is inferior, and if it is 3.0% or more, the relative member wears remarkably due to the increase of single carbide, so that the addition amount is made 0.5-3.0%.

Cu는 동용침처리에 의해 철계의 소결체 내부에 존재하는 기공들을 메워서 밀도 및 경도를 향상시키는 효과가 있고, 또한 일전도도가 우수하므로 열전도성을 향상시키며 고온 부식방지의 효과도 있다.Cu fills pores existing in the sintered body of the iron system by copper infiltration to improve density and hardness, and also has excellent work conductivity, thereby improving thermal conductivity and preventing high temperature corrosion.

첨가량이 8.0% 이하이면 일부 기공만 메우게 되어 Cu 용침효과가 떨어지며, 18% 이상이면 과용되어 제품의 형상이 나빠지고 제품표면으로 흘러나오게 되므로 그 양을 8.0-18%로 하는 것이 바람직하다.If the amount is 8.0% or less, only some pores are filled, so the Cu infiltration effect is lowered. If the amount is more than 18%, the amount of the product is excessively excessive, resulting in deterioration of the shape of the product and outflow to the surface of the product.

MoS2는 합금소결체에 자기 윤활성 및 피삭성을 개선시키는 효과가 있는데, 0.1% 이하이면 효과가 없고, 1.5% 이상이면 경제성이 띨어지며, 소결성 저하로 인한 강도 저하의 효과가 있으므로 첨가량을 0.1-1.5%로 한다MoS 2 has the effect of improving the self-lubricating property and machinability of the alloy sintered body, 0.1% or less is ineffective, 1.5% or more is less economical, and because of the effect of lowering the strength due to a decrease in sinterability, the addition amount is 0.1-1.5 Should be%

MnS는 피삭성 개선효과가 있는데, 첨가량이 0.2% 이하이면 그 효과가 없고, 1.0% 이상이면 경제성이 떨어지므로 그 양을 0.2-1.0%로 하는 것이 좋다.MnS has an effect of improving machinability. If the amount is 0.2% or less, the effect is not effective. If MnS is 1.0% or more, the economy is inferior. Therefore, the amount is preferably 0.2-1.0%.

본 발명은 Fe-Cr-Mo-W-V-C계 합금분말을 기지분말로 사용하여 기지조직을 강화시켰고, Fe-Cr-Mo-W-Co-C계 합금분말과 Fe-Cr-Mo-Ni계 합금분말을 사용하여 내마모성을 향상시 켰으며, 또한 분말야금법에 의한 제품 제조시 필연적으로 생기는 기공들을 Cu로 용침시켜서 일전도도와 내마모성을 향상시켰고, 고체 윤활제 MoS2를 첨가시켜서 한층더 내마모성을 향상시켰으며, 또한 MnS를 첨가시켜 소결합금의 가공성을 향상시켰다.The present invention uses the Fe-Cr-Mo-WVC alloy powder as a base powder to strengthen the matrix structure, Fe-Cr-Mo-W-Co-C alloy powder and Fe-Cr-Mo-Ni alloy powder was turned improve the wear resistance by using, also by infiltration of the pores caused by inevitable manufacturing products by powder metallurgy as a Cu sikyeotgo also improve the wear resistance help days, by the addition of a solid lubricant MoS 2 stylized further improve the wear resistance In addition, MnS was added to improve the workability of the small alloy.

이하에 본 발명의 철계소결합금의 조성에 따른 실시예를 설명한다.Hereinafter, an embodiment according to the composition of the iron-based alloy of the present invention will be described.

[실시예]EXAMPLE

아래의 표 1에 나타난 조성비에 따라 원료분말을 혼합한 다음, 혼합된 분말을 6ton/㎠의 압력으로 성형하고, 이 성형제를 2×10-3Torr의 진공도와 1,170℃의 온도로 진공 소결하여 용침용 골격제를 만든다.The raw material powder was mixed according to the composition ratio shown in Table 1 below, and then the mixed powder was molded at a pressure of 6ton / cm 2, and the molding agent was vacuum sintered at a vacuum of 2 × 10 −3 Torr and a temperature of 1,170 ° C. Make an infiltration skeleton.

그리고 Cu 용침제와 MoS2분말을 중량비로 30 : 1의 비율로 혼합하여 5ton/㎠의 압력으로 성형된 압분체를 상기 골격제 위에 올리놓고, 환원성분위기에서 1,120℃의 온도로 가열하고 용침시켜 용침된 골격체를 만든 다음, 진공로에서 1,100℃의 온도로 60분간 유지하여 소입한 후, 550℃의 온도로 2회 소려를 실시한다.Then, Cu injector and MoS 2 powder were mixed in a weight ratio of 30: 1, and the green compact formed at a pressure of 5ton / cm 2 was placed on the skeletal agent, and heated and infiltrated at a temperature of 1,120 ° C. in a reducing atmosphere. After making the prepared skeletal body, the mixture was kept in a vacuum furnace at a temperature of 1,100 ° C. for 60 minutes, and then quenched twice at a temperature of 550 ° C.

상기와 같은 제조공정으로 제조된 소결합금은 밀도가 7.8g/㎤이고, 경도가 HRA76으로 나타났다.The small bonds prepared by the above manufacturing process had a density of 7.8 g / cm 3 and a hardness of HRA 76.

[표 1]TABLE 1

상기 실시예의 제조공정에 의해 얻어진 밸브시트를 전용 마모시험기를 사용하여 내구성시험을 실시하였는데, 그 시험조건과 시험결과는 표 2와 같으며, 이때 상대 밸브의 재절은 내열 단조강인 SUH36을 사용하였다.The durability test was performed on the valve seat obtained by the manufacturing process of the above example using a dedicated abrasion tester. The test conditions and test results are shown in Table 2, in which the relative valves were reheated using SUH36, a heat-resistant forged steel.

[표 2]TABLE 2

상기 실시예의 제조방법에 의해 얻어지는 본 발명의 밸브시트용 철계 소결합금의 성분조성 범위를 종래의 소결합금과 비교하여 나타내면 표 3과 같다.Table 3 shows the component composition range of the iron base alloy for valve seat of the present invention obtained by the production method of the above embodiment compared with the conventional small alloy.

[표 3]TABLE 3

이상에서와 같이 본 발명의 실시예에 의한 밸브시트를 LPG로 가동하는 엔진에서 내구성시험을 실시한결과, 종래예보다 실시예의 밸브시이트의 내마모성이 현저히 향상되었으며, 따라서 본 발명의 소결밸브시트는 LPG를 연료로 사용하는 소형 엔진의 밸브시트용 소재로 우수한 효과를 갖는다.As described above, as a result of the durability test in the engine operating the valve seat according to the embodiment of the present invention to LPG, the wear resistance of the valve seat of the embodiment is significantly improved compared to the conventional example, therefore, the sintered valve seat of the present invention is LPG It is excellent material for valve seat of small engine used as fuel.

Claims (2)

1.0-3.5wt%의 C, 8.0-15.0wt%의 Cr, 1.0-3.0wt%의 Co, 2.5-5.0wt%의 Mo, 0.5-3.0wt%의Ni, 3.5-7.5wt%의 W, 0.5-3.0wt%의 V, 8.0-18.0wt%의 Cu, 0.1-1.5wt%의 MoS2, 0.2-1.0wt%의 MnS, 나머지 잔여량이 Fe로 이루어지는 것을 특징으로 하는 내마모성 철계소결합금.1.0-3.5 wt% C, 8.0-15.0 wt% Cr, 1.0-3.0 wt% Co, 2.5-5.0 wt% Mo, 0.5-3.0 wt% Ni, 3.5-7.5 wt% W, 0.5- Wear-resistant iron-based alloy, characterized in that the 3.0 wt% V, 8.0-18.0wt% Cu, 0.1-1.5wt% MoS 2 , 0.2-1.0wt% MnS, the remaining amount is made of Fe. 77.0wt%의 Fe-Cr-Mo-W-V-C계 합금분말, 11.5wt%의 Fe-Cr-Mo-Ni계 합금분말,10.0wt%의 Fe-Cr-Mo-W-Co-C계 합금분말, 1.0wt%의 혹연분말, 0.5wt%의 MnS 분말을 혼합하고, 5-8ton/㎠의 압력을 가하여 성형체를 만드는 단계와, 이 성형체를 1,120-1,220℃의 온도로 진공 소결하여 용침용 골격체를 만드는 단계와, Cu 용침제와 MoS2분말을 혼합하여 3-6ton/㎠ 압력으로 성형한 압분체를 상기 용침용 골격체 위에 올려놓고 분해암모니아가스나 혼합가스(N2/H2) 분위기에서 1080-1150℃의 온도로 30-60분간 가열하여 용침시키는 단계와, 용침된 골격체를 염욕로 또는 진공로에서 1,000-1,200℃의 온도로 1-3시간 유지하여 소입한 후, 540-600℃의 온도로 1-2시간 무산화분위기에서 소려시키는 것을 특징으로 하는 내마모성 철계소결합금의 제조방법.77.0 wt% Fe-Cr-Mo-WVC alloy powder, 11.5 wt% Fe-Cr-Mo-Ni alloy powder, 10.0 wt% Fe-Cr-Mo-W-Co-C alloy powder, 1.0 Mixing wt% flammable powder, 0.5wt% MnS powder, and applying a pressure of 5-8ton / cm 2 to make a molded body, and vacuum-sintering the molded body at a temperature of 1,120-1,220 ° C. to form a infiltrating skeleton. ; and infiltrant and MoS 2 powder mixed 3-6ton / ㎠ place the green compact molded by a pressure put on the skeleton body for immersion decomposed ammonia gas or a mixed gas for Cu (N 2 / H 2) in the atmosphere of 1080 - The step of infiltration by heating for 30-60 minutes at a temperature of 1150 ℃, and quenched by maintaining the infiltrated skeleton at a temperature of 1,000-1,200 ℃ 1-3 hours in a salt bath or vacuum furnace, and then the temperature of 540-600 ℃ Method for producing a wear-resistant iron-based alloy, characterized in that the source is soaked in an oxygen-free atmosphere for 1-2 hours.
KR1019930029709A 1993-12-24 1993-12-24 Process for making sintering alloy and article made thereby KR950014348B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019930029709A KR950014348B1 (en) 1993-12-24 1993-12-24 Process for making sintering alloy and article made thereby

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019930029709A KR950014348B1 (en) 1993-12-24 1993-12-24 Process for making sintering alloy and article made thereby

Publications (2)

Publication Number Publication Date
KR950017010A KR950017010A (en) 1995-07-20
KR950014348B1 true KR950014348B1 (en) 1995-11-25

Family

ID=19372731

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019930029709A KR950014348B1 (en) 1993-12-24 1993-12-24 Process for making sintering alloy and article made thereby

Country Status (1)

Country Link
KR (1) KR950014348B1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030021916A (en) * 2001-09-10 2003-03-15 현대자동차주식회사 A compound of wear-resistant sintered alloy for valve seat and its manufacturing method

Also Published As

Publication number Publication date
KR950017010A (en) 1995-07-20

Similar Documents

Publication Publication Date Title
EP0312161B1 (en) Sintered materials
US6679932B2 (en) High machinability iron base sintered alloy for valve seat inserts
KR101245069B1 (en) A powder metal engine composition
EP0418943B1 (en) Sintered materials
JP5887374B2 (en) Ferrous sintered alloy valve seat
KR920007937B1 (en) Fe-sintered alloy for valve seat
US6783568B1 (en) Sintered steel material
JPH1171651A (en) Ferrous sintered alloy for valve seat
JP6929313B2 (en) Iron-based sintered alloy for high-temperature wear resistance
JP3186816B2 (en) Sintered alloy for valve seat
KR950014348B1 (en) Process for making sintering alloy and article made thereby
JP3434527B2 (en) Sintered alloy for valve seat
KR102180531B1 (en) Sabrication method of valve-seat using sintered steel alloy for wear resistance at high temperatures
KR950014353B1 (en) Process for making sintering alloy of valve sheet and article made thereby
KR20070084359A (en) Sintered alloys for cam lobes and other high wear articles
JPS61291954A (en) Sintering material having wear resistance and corrosion resistance at high temperature and its manufacture
KR950014352B1 (en) Process for making sintering alloy of valve sheet and article made thereby
KR20120125817A (en) Manufacturing method for valve seat of gas fuel car
JPS5810460B2 (en) Engine cylinder head manufacturing method
JP3264092B2 (en) Wear-resistant iron-based sintered alloy and method for producing the same
KR100521578B1 (en) Wear resist sintering alloy for valve seat and method for manufacturing the same
JPS6164859A (en) Iron compound sintered alloy for valve seat
JPS61505A (en) Sintered-alloy valve seat material and its manufacture
JPH05320833A (en) High strength nitrided and sintered member excellent in wear resistant and its manufacture
JPS6164857A (en) Iron compound sintered alloy for valve seat

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
G160 Decision to publish patent application
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20111115

Year of fee payment: 17

FPAY Annual fee payment

Payment date: 20121116

Year of fee payment: 18

EXPY Expiration of term