JPS62194682A - Manufacture of pin diode - Google Patents

Manufacture of pin diode

Info

Publication number
JPS62194682A
JPS62194682A JP3699286A JP3699286A JPS62194682A JP S62194682 A JPS62194682 A JP S62194682A JP 3699286 A JP3699286 A JP 3699286A JP 3699286 A JP3699286 A JP 3699286A JP S62194682 A JPS62194682 A JP S62194682A
Authority
JP
Japan
Prior art keywords
layer
resistance
low resistance
prescribed
silicon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3699286A
Other languages
Japanese (ja)
Inventor
Takeshi Kajimura
梶村 武史
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP3699286A priority Critical patent/JPS62194682A/en
Publication of JPS62194682A publication Critical patent/JPS62194682A/en
Pending legal-status Critical Current

Links

Landscapes

  • Semiconductor Integrated Circuits (AREA)

Abstract

PURPOSE:To enable the attainment of an excellent high-frequency characteristic by a method wherein a low resistance value layer having prescribed sizes is formed on one surface of a high specific resistance silicon substrate by means of diffusion or the like, and after the silicon substrate if finished to a prescribed thickness by grinding or the like, polycrystalline silicon doped with impurities having a conductivity type reverse to the one of the low resistance layer is made to grow. CONSTITUTION:A window of prescribed sizes is formed in a silicon oxide film 2 of prescribed thickness on an n-type silicon substrate 1 having so high a specific resistance as 100OMEGAcm or above, and after a p-type low resistance layer 3 is formed by diffusion of boron or the like, a silicon oxide film or a nitride film 4 or the like is formed on the whole surface. Next, the high resistance substrate 1 is ground to a thickness enabling the attainment of aimed Rd (high-frequency resistance) characteristic by means of etching or the like, and thereafter polycrystalline silicon 5 of low resistance doped with As or the like is formed to be about 100-150mum thick. Then, an n-type low resistance layer 6 is formed by subjecting the wafer to heat treatment, a window 7 is formed in the silicon oxide film or the nitride film or the like on the p-type low resistance layer 3, and an electrode 8 is formed of a prescribed metal.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は超高周波帯で使用されるPINダイオードの製
造方法に関し、特にAGCスイッチ等に用いるPINダ
イオードのチップの製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method of manufacturing a PIN diode used in an ultra-high frequency band, and particularly to a method of manufacturing a PIN diode chip used in an AGC switch or the like.

〔従来の技術〕[Conventional technology]

P I Nダイオードは真性に近い高比抵抗半導体によ
って分離された高濃度にドープされたn領域とn領域を
有した構造をもっている1、超高周波帯において、順方
向バイアスの場き、この真性に近い高比抵抗層(以下i
層と呼ぶ)に両速濃度層からそれぞれにキャリアが注入
され非常に低いインピーダンスを示し、又逆方向バイア
スの場合は非常に高いインピーダンスをもっていること
、又i層によってきまる高周波抵抗がダイオードのバイ
アスの変化によって連続的に変化することを利用した乙
のである。このバイアス電流対高周波抵抗の関係は下の
式によって表わされる。
A P I N diode has a structure with a highly doped n region and an n region separated by a high resistivity semiconductor close to the intrinsic property.1 In the ultra-high frequency band, when forward biased, this intrinsic Near high resistivity layer (hereinafter referred to as i
carriers are injected from the bi-velocity concentration layer into the two layers (called "layer"), which exhibits a very low impedance, and in the case of reverse bias, it has a very high impedance, and the high frequency resistance determined by the i-layer is due to the bias of the diode. It is a method that takes advantage of the fact that it changes continuously due to changes. The relationship between bias current and high frequency resistance is expressed by the equation below.

Rd”W2.−’μτ■。Rd”W2.−’μτ■.

ここでRdは高周波抵抗、Wは高濃度9層およびn層を
分離する距離、すなわちi層の厚さ、1t 。
Here, Rd is the high frequency resistance, W is the distance separating the high concentration 9 layers and the n layer, that is, the thickness of the i layer, and 1t.

ではそれぞれキャリアの移動度およびライフタタイム、
■・は印加電流である。すなわち、PINダイオードの
主特性はi層の厚さによって決定され、通常種々の目的
に応じて数1t rnから200μmの範囲のものが主
流となっている。
The carrier mobility and lifeta time, respectively, are
■・ is the applied current. That is, the main characteristics of a PIN diode are determined by the thickness of the i-layer, which is usually in the range of several 1 trn to 200 μm depending on various purposes.

従来、この種のPINダイオードは低抵抗シリコン基板
にエピタキシャル成長によって所定のi層を形成し、こ
のi層に低抵抗基板と逆の導電型を有する低抵抗層を拡
散等の手法によって形成して、いたり、又真性に近い高
比抵抗シリコン基板を研磨及びエツチングによって所定
の厚さにした後、両面にそれぞれ別の導電型の低抵抗層
を拡散等によって形成したちのである。通常i層が10
0 Bm以下のものはエピタキシャル層分、100〜2
00μmのものは基板を利用したものが主流である。
Conventionally, this type of PIN diode is made by forming a predetermined i-layer on a low-resistance silicon substrate by epitaxial growth, and forming a low-resistance layer having a conductivity type opposite to that of the low-resistance substrate on this i-layer by a method such as diffusion. Alternatively, after polishing and etching a near-intrinsic high-resistivity silicon substrate to a predetermined thickness, low-resistance layers of different conductivity types are formed on both surfaces by diffusion or the like. Usually the i layer is 10
For those below 0 Bm, the epitaxial layer is 100 to 2
The mainstream of 00 μm ones is those using a substrate.

[発明が解決しようとする問題点〕 上述した従来のPINダイオードの製法のうち、高抵抗
エピタキシャル層をi層として利用する方法は、このi
層の結晶性及び抵抗率の点で高抵抗基板を利用したもの
にくらべ劣り、高周波特性において、特にバイアスのオ
ン、オフ時の高周波抵抗比が小さい(誠穴’f::’f
、A (Ii (、”、の場合ダイナミック側5ンジが
小さい、スイ・ソチの場合アイソレーションが小さい)
′8の欠点がある。y、】層として高比抵抗シリコン基
板を利用した場き、近年比〃(抗が100Ω(・m以−
ヒという良好な結晶が容易に得られるようになっている
。しかし1ンの特性の要求からi層の厚さは200 μ
m以下(200μm以上の場き一般にバイアスのオン時
の抵抗を下げるために数百m Aという大電流が必要で
実用的でない)が要求されるためPINダイオ−トチ・
ツブの製造中にウェーハが割れやすく、量産性に劣ると
いう欠点を有していた。
[Problems to be Solved by the Invention] Among the conventional PIN diode manufacturing methods described above, the method of using a high-resistance epitaxial layer as the i-layer is
In terms of crystallinity and resistivity of the layer, it is inferior to that using a high-resistance substrate, and in terms of high-frequency characteristics, the high-frequency resistance ratio is small, especially when the bias is on and off.
,A (Ii (,'', the dynamic side is small, the isolation is small in the case of Sui-Sochi)
There are 8 drawbacks. When using a high-resistivity silicon substrate as a layer, compared to recent years, the resistance is 100Ω (・m or more).
It is now possible to easily obtain good crystals. However, due to the requirements for the characteristics of 1, the thickness of the i layer is 200 μm.
(If the diameter is 200 μm or more, a large current of several hundred mA is required to lower the resistance when the bias is turned on, which is impractical.)
This method had the disadvantage that the wafers were easily broken during the manufacture of the tubes, and mass productivity was poor.

本発明の目的は高周波特性が優れ、しかもウェーハの割
れ等の量産性の問題ら解決されたPINダイオードの製
造方法を提供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide a method for manufacturing a PIN diode which has excellent high frequency characteristics and which solves mass production problems such as cracking of wafers.

〔問題点を解決するための手段J 本発明のPINダイオードの製造方法は、通常取扱い上
問題のない厚さの高比抵抗シリコン基板の一面に所定の
大きさを有する低抵抗層を拡散等の手段を用いて形成し
、前記シリコン基板を研磨エツチング等によって所定の
厚さに仕上げた後、前記低抵抗層と逆の導電型をもった
不純物をドープした多結晶シリコンを100〜150μ
m程度成長することにより構成される。
[Means for Solving the Problems J] The method for manufacturing a PIN diode of the present invention involves depositing a low-resistance layer of a predetermined size on one surface of a high-resistivity silicon substrate with a thickness that does not pose problems in normal handling, such as by diffusion. After finishing the silicon substrate to a predetermined thickness by polishing and etching, etc., a layer of polycrystalline silicon doped with an impurity having a conductivity type opposite to that of the low resistance layer is deposited to a thickness of 100 to 150 μm.
It is formed by growing about m.

〔実施例〕〔Example〕

次に、本発明の実施例について図面を参照して説明する
。第1図(a)〜(d)は本発明の一実施例を説明する
ために工程順に示したチップの断面図である。以下、工
程順に本°発明の一実施例を説明する。
Next, embodiments of the present invention will be described with reference to the drawings. FIGS. 1(a) to 1(d) are cross-sectional views of a chip shown in the order of steps for explaining an embodiment of the present invention. An embodiment of the present invention will be described below in order of steps.

まず、第1図(a)に示すように、100Ω1以上とい
う高比抵抗n型シリコン基板1の所定の厚さのシリコン
酸化膜2に所定の大きさの窓を形成しホウ素拡散等によ
ってn型低抵抗層3を形成したのち全面にシリコン酸化
膜、又は窒化膜4等を形成する。
First, as shown in FIG. 1(a), a window of a predetermined size is formed in a silicon oxide film 2 of a predetermined thickness on an n-type silicon substrate 1 with a high specific resistance of 100Ω1 or more, and an n-type After forming the low resistance layer 3, a silicon oxide film, a nitride film 4, etc. is formed on the entire surface.

次に、第1図(b)に示すように、その後上記高抵抗基
板1を研磨、エツチング等の手段によっテ目的ノRd特
性を得る厚さく 50MIIz 〜l0GHz に’)
減衰器、AGC、スイッチの場合100〜150μm程
度)にしたのち、As等をドープした低抵抗の多結晶シ
リコン5を100〜150μm程度形成する。
Next, as shown in FIG. 1(b), the high-resistance substrate 1 is polished to a thickness of 50 MIIz to 10 GHz to obtain the desired Rd characteristics by means such as polishing and etching.
(in the case of attenuators, AGCs, and switches, the thickness is about 100 to 150 μm), and then a low-resistance polycrystalline silicon 5 doped with As or the like is formed to a thickness of about 100 to 150 μm.

次に、第1図(c)に示すように、多結晶シリコン5を
形成したウェーハを熱処理することによってn型低抵抗
層6を形成する。
Next, as shown in FIG. 1(c), the wafer on which the polycrystalline silicon 5 has been formed is heat treated to form an n-type low resistance layer 6.

次に、第1図(d)に示すように、ρ型紙抵抗層3上の
シリコン酸化膜、窒化膜等に窓7を形成し、所定の金属
によって電Ii8を形成する。
Next, as shown in FIG. 1(d), a window 7 is formed in the silicon oxide film, nitride film, etc. on the ρ-shaped paper resistance layer 3, and an electrode Ii8 is formed of a predetermined metal.

以、Eにより本実施例は完成する。Hereinafter, this embodiment is completed by E.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明はPINダイオードのi層
に高抵抗基板を使用することによって良好な高周波特性
を得ることが出来、従来の欠点であったウェーハ割れ等
の量産性の問題も低抵抗多結晶シリコンを上記高比抵抗
を薄くしたすぐ後に形成することによって改善すること
が出来る。
As explained above, the present invention can obtain good high-frequency characteristics by using a high-resistance substrate for the i-layer of the PIN diode. This can be improved by forming polycrystalline silicon immediately after thinning the high resistivity.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(a)〜・((1)は本発明の一実施例を説明す
るために工程順に示したチップの1断面図である。 ]・・・高比抵抗シリコン基板、2・・・シリコン酸化
膜、3・・・n型低抵抗拡散層、4・・・シリコン酸化
膜又は窒化膜、5・・・^Sドープ多結晶シリコン、6
・・・n型低抵抗拡散層、7・・・電極用の窓、8・・
・金属電極。
FIGS. 1(a) to 1((1) are cross-sectional views of a chip shown in the order of steps for explaining an embodiment of the present invention.) High resistivity silicon substrate, 2... Silicon oxide film, 3... N-type low resistance diffusion layer, 4... Silicon oxide film or nitride film, 5...^S-doped polycrystalline silicon, 6
... n-type low resistance diffusion layer, 7... window for electrode, 8...
・Metal electrode.

Claims (1)

【特許請求の範囲】[Claims] 所定の厚さの高比抵抗シリコン基板の一面に所定の大き
さを有する低抵抗層を拡散等の手段をもちいて形成し、
上記シリコン基板を研磨エッチング等の手段をもちいて
所定の厚さに仕上げた後、前記低抵抗層と逆の導電型を
有する低抵抗多結晶シリコンを形成し、熱処理をしたの
ち両低抵抗層に所定の金属によって電極を形成すること
を特徴としたPINダイオードの製造方法。
A low resistance layer having a predetermined size is formed on one surface of a high resistivity silicon substrate having a predetermined thickness by using means such as diffusion,
After finishing the silicon substrate to a predetermined thickness using polishing etching or other means, low-resistance polycrystalline silicon having a conductivity type opposite to that of the low-resistance layer is formed, and after heat treatment, both low-resistance layers are A method for manufacturing a PIN diode, characterized in that an electrode is formed of a predetermined metal.
JP3699286A 1986-02-20 1986-02-20 Manufacture of pin diode Pending JPS62194682A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3699286A JPS62194682A (en) 1986-02-20 1986-02-20 Manufacture of pin diode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3699286A JPS62194682A (en) 1986-02-20 1986-02-20 Manufacture of pin diode

Publications (1)

Publication Number Publication Date
JPS62194682A true JPS62194682A (en) 1987-08-27

Family

ID=12485236

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3699286A Pending JPS62194682A (en) 1986-02-20 1986-02-20 Manufacture of pin diode

Country Status (1)

Country Link
JP (1) JPS62194682A (en)

Similar Documents

Publication Publication Date Title
JP6344271B2 (en) Bonded semiconductor wafer and method for manufacturing bonded semiconductor wafer
JPH03132055A (en) Semiconductor substrate and its manufacture
JPS5893221A (en) Semiconductor thin film structure and preparation thereof
US10535552B2 (en) Method for manufacture of a semiconductor wafer suitable for the manufacture of an SOI substrate, and SOI substrate wafer thus obtained
JPS61292934A (en) Manufacture of semiconductor element
CN107658364A (en) A kind of horizontal PiN structures GeSn photodetectors and preparation method thereof
JPH1064917A (en) Silicon wafer and its manufacturing method
JPH03173442A (en) Junction type fet and its manu- facture
WO1993001617A1 (en) Method for the manufacture of a semiconductor component
JPS62194682A (en) Manufacture of pin diode
US5397903A (en) Semiconductor substrate for gettering
US3685141A (en) Microalloy epitaxial varactor
JPS62195180A (en) Manufacture of semiconductor device
TWI792295B (en) Semiconductor substrate and method of fabricating the same
US4886762A (en) Monolithic temperature compensated voltage-reference diode and method for its manufacture
US3986904A (en) Process for fabricating planar scr structure
JPH02111077A (en) Semiconductor rectifying element
CN106449433A (en) Bonding structure for reducing junction capacity of switching diode and manufacturing method thereof
JPH0294632A (en) Manufacture of semiconductor device
JPH02205339A (en) Manufacture of semiconductor device
JPH0653313A (en) Manufacture of semiconductor device
JP2619734B2 (en) Semiconductor substrate and method of manufacturing the same
JP2708175B2 (en) Method for manufacturing InSb planar photovoltaic element
JPS60236243A (en) Manufacture of semiconductor device
JPH1050718A (en) Manufacture of semiconductor device