JPS62194605A - Manufacture of magnetic core - Google Patents

Manufacture of magnetic core

Info

Publication number
JPS62194605A
JPS62194605A JP3505086A JP3505086A JPS62194605A JP S62194605 A JPS62194605 A JP S62194605A JP 3505086 A JP3505086 A JP 3505086A JP 3505086 A JP3505086 A JP 3505086A JP S62194605 A JPS62194605 A JP S62194605A
Authority
JP
Japan
Prior art keywords
magnetic
magnetic core
alloy thin
bodies
magnetic alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3505086A
Other languages
Japanese (ja)
Inventor
Takao Kusaka
隆夫 日下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP3505086A priority Critical patent/JPS62194605A/en
Publication of JPS62194605A publication Critical patent/JPS62194605A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a magnetic core having sufficient magnetic characteristics, particularly, high permeability, stably by annealing the magnetic core formed by winding a magnetic alloy thin-body up to a temperature directly higher than a Curie point from a heat-treatment temperature and quenching the magnetic core when the magnetic core is thermally treated. CONSTITUTION:Annealing through which strain is difficult to be generated is conducted in a high temperature region up to a temperature directly higher than a Curie point where passage through a quenching process is required, and predetermined magnetic characteristics are acquired through quenching. When frictional force between magnetic alloy thin-bodies in case of heat shrinkage is reduced and a lubricating medium is positioned between the magnetic alloy thin-bodies in order to minimize strain by heat shrinkage, an effect is further displayed. The surfaces of the magnetic alloy thin bodies are coated with ceramic powder (such as, alumina, magnesia, etc.) having heat resistance and nonmagnetism in a process such as a pre-process in which the magnetic alloy thin-bodies are wound.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は磁心の製造方法に関する。[Detailed description of the invention] [Technical field of invention] The present invention relates to a method for manufacturing a magnetic core.

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

磁性合金薄体よりなる磁心を、例えばノイズフィルター
・トランス用磁心として用いる場合は高い透磁率を有す
る磁心が要求される。そのため磁気特性の良好である非
晶質合金薄帯の使用が実用化されている。
When a magnetic core made of a thin magnetic alloy is used, for example, as a magnetic core for a noise filter or transformer, a magnetic core having high magnetic permeability is required. Therefore, the use of amorphous alloy ribbons with good magnetic properties has been put into practical use.

従来、非晶質合金薄帯を高い透磁率を有する磁心として
用いる場合は、非晶質合金薄帯を巻回して円環状に成形
後、キューリー点以上結晶化編度以下で一定時闇の熱処
理を行い、その後この熱処理温度からの急冷工程を設は
所望の磁気特性を得ている。この急冷工程においてキュ
ーリー点を通過する際の冷却速度が大きいほど磁気特性
は良好になる。特にコバルト系非晶質合金薄帯を用いる
場合はこの効果が大きい。
Conventionally, when an amorphous alloy ribbon is used as a magnetic core with high magnetic permeability, the amorphous alloy ribbon is wound and formed into an annular shape, and then heat-treated in the dark for a certain period of time at a temperature above the Curie point and below the crystallization degree. After that, a quenching process from this heat treatment temperature is performed to obtain the desired magnetic properties. In this quenching step, the faster the cooling rate when passing through the Curie point, the better the magnetic properties will be. This effect is particularly significant when a cobalt-based amorphous alloy ribbon is used.

しかし、前記磁心の急冷工程により得られる磁気特性は
バラツキが生じやすく、所望の磁気特性を安定して得る
ことができない場合があった。
However, the magnetic properties obtained by the quenching step of the magnetic core tend to vary, and it may not be possible to stably obtain the desired magnetic properties.

〔発明の目的〕[Purpose of the invention]

本発明は、上記問題を解消し、十分な磁気特性、特に高
透磁率を有する磁心を安定して得ることができる¥l造
方法を提供するものである。
The present invention solves the above problems and provides a manufacturing method capable of stably obtaining a magnetic core having sufficient magnetic properties, particularly high magnetic permeability.

〔発明の概要〕[Summary of the invention]

本発明者は、上記目的を達成すべく鋭意研究を重ねた結
果数のような現象を見出し本発明を完成した。すなわち
、磁心はキューリー点以上結晶化温度以下の熱処理温度
からの急冷工程の際に熱収縮を生じ、隣接する外側と内
側の磁性合金薄体の熱収縮状態の差により、あるいは磁
性合金薄体相互の摩擦による歪または変形を発生し、そ
のために磁気特性が劣下するのである。
In order to achieve the above object, the inventor of the present invention has conducted extensive research, and as a result, has discovered a number of phenomena and has completed the present invention. In other words, the magnetic core undergoes thermal contraction during the rapid cooling process from a heat treatment temperature above the Curie point and below the crystallization temperature, and due to the difference in the thermal contraction state of the adjacent outer and inner magnetic alloy thin bodies, or due to the mutual contraction of the magnetic alloy thin bodies. This causes distortion or deformation due to friction, which deteriorates the magnetic properties.

特にこれらの現象は高温度域での急冷状態において顕著
である。したがって本発明者は、熱収縮による歪を低減
するためには急冷の際の温度差を小さくすればよいとい
う見地より、熱処理温度からキューリー点直上までは除
冷を行い、その後急冷することにより十分な磁気特性、
特に高透磁率を有づる磁心を得るしのである。キューリ
ー点は磁性変態点でありキューリー点以上から磁心を急
冷することにより良好な磁気特性を得ることができる。
In particular, these phenomena are remarkable in rapid cooling in a high temperature range. Therefore, from the viewpoint that in order to reduce the distortion caused by thermal contraction, it is sufficient to reduce the temperature difference during rapid cooling, the inventors believe that slow cooling from the heat treatment temperature to just above the Curie point, and then rapid cooling is sufficient. magnetic properties,
In particular, it is possible to obtain a magnetic core with high magnetic permeability. The Curie point is a magnetic transformation point, and good magnetic properties can be obtained by rapidly cooling the magnetic core from the Curie point or above.

すなわら、急冷過程による通過が必要とさねるキューリ
ー点の直上までのIs渇領領域は歪が発生しにくい徐冷
を行い、その後急冷して所定の磁気特性を得るものであ
る。ここで急冷とは磁心を室温以下の冷却液(例えば水
等)に浸すかあるいは磁心に冷却液を吹きかける等によ
り急激に冷却するものである。また除冷とは、例えば炉
冷等のように磁心に冷却の際の影響が出ない冷却速度で
の冷却をさす。
In other words, the Is depletion region up to just above the Curie point, which must be passed through the rapid cooling process, is subjected to slow cooling where distortion is less likely to occur, and then rapidly cooled to obtain predetermined magnetic properties. Here, quenching refers to rapidly cooling the magnetic core by immersing it in a cooling liquid (for example, water, etc.) below room temperature or by spraying the magnetic core with a cooling liquid. Further, slow cooling refers to cooling at a cooling rate that does not affect the magnetic core during cooling, such as furnace cooling.

また、熱収縮の際の磁性合金薄体相互間の摩擦力を低減
し、熱収縮による歪を減少するために磁性合金薄体相互
間に潤滑媒体を存在させると本発明の効果がより大きく
なる。例えば磁性合金薄体を巻回する前工程で磁性合金
薄体表面に耐熱性を有し非磁性であるセラミック粉(例
えばアルミナ、マグネシア等)をコーティングする。本
発明の熱処理方法は急冷による磁気特性の影響が大きな
COO非晶質合金薄帯よりくする磁心の製造方法に対し
て特に有効である。更に本発明は急冷の際に熱収縮の影
響を太き(受ける大型の磁心、または肉厚の磁心に対し
て有効である。
Furthermore, the effect of the present invention will be even greater if a lubricating medium is present between the magnetic alloy thin bodies in order to reduce the frictional force between the magnetic alloy thin bodies during thermal contraction and reduce the distortion caused by thermal contraction. . For example, in the process before winding the magnetic alloy thin body, the surface of the magnetic alloy thin body is coated with heat-resistant and non-magnetic ceramic powder (eg, alumina, magnesia, etc.). The heat treatment method of the present invention is particularly effective for manufacturing a magnetic core made of COO amorphous alloy ribbon, whose magnetic properties are greatly affected by rapid cooling. Furthermore, the present invention is effective for large magnetic cores or thick magnetic cores that are subject to the effects of thermal contraction during rapid cooling.

〔発明の実施例〕[Embodiments of the invention]

CO系系非晶質合金布帯用いて可飽和コア用磁心を製造
する場合の実施例を説明する。
An example will be described in which a magnetic core for a saturable core is manufactured using a CO-based amorphous alloy cloth strip.

実施例1 巾1011厚さ18μ履のCOO非晶質合金薄帯を巻回
し、外径30n+m、内径15IIII11高ざ10m
5の巻磁心を得た。
Example 1 A COO amorphous alloy ribbon with a width of 1011 and a thickness of 18 μm is wound, with an outer diameter of 30n+m, an inner diameter of 15III11, and a height of 10m.
A winding core of 5 was obtained.

この磁心に約450℃で1時間の熱9a理を施しその侵
約300℃のキューリー点直上まで除冷(放冷)し、キ
ューリー点直上から水中急冷を行った。得られた磁心(
試料1)の透磁率の周波数に対する変化を第1図に示す
。また、比較とし、て熱処理温度から直ちに水中に投入
する急冷によりIFIられた磁心(試料3)の透磁率の
周波数に対する変化を第1図に示す。
This magnetic core was subjected to a heat treatment at about 450° C. for 1 hour, slowly cooled (cooled) to just above the Curie point of 300° C., and then rapidly cooled in water from just above the Curie point. The obtained magnetic core (
Figure 1 shows the change in magnetic permeability of sample 1) with respect to frequency. For comparison, FIG. 1 shows the change in magnetic permeability versus frequency of a magnetic core (sample 3) subjected to IFI by quenching immediately after the heat treatment temperature in water.

第1図より明らかなように、実施例により得られた磁心
は従来の製造方法によるものに比べ高い透磁率を有する
磁心を得ることができる。
As is clear from FIG. 1, the magnetic core obtained by the example can have a higher magnetic permeability than that obtained by the conventional manufacturing method.

実施例2 巾10IIIll、厚さ18μ−のCOO非晶質合金薄
帯をマグネシアスラリーに浸漬した後、乾燥することに
より薄帯表面にマグネシア(MgO)を約10μmコー
ティングした。その後この薄帯を巻回し、外径30au
+、中径15m(高さ1001111の巻磁心を成形し
、その後約450℃で1時間の熱処理を行い、続けて約
300℃のキューリー点直上まで除冷し、キューリー点
直上から水中急冷を行い所望の磁心を得た。得られた磁
心(試料2)の透磁率の周波数に対する変化を第1図に
併せて示す。
Example 2 A COO amorphous alloy ribbon having a width of 10IIIll and a thickness of 18 μm was immersed in a magnesia slurry and then dried to coat the surface of the ribbon with magnesia (MgO) to a thickness of approximately 10 μm. After that, this thin strip was wound and the outer diameter was 30au.
+, a wound core with a medium diameter of 15 m (height 1001111 mm) was formed, then heat treated at about 450°C for 1 hour, then gradually cooled to about 300°C, just above the Curie point, and then rapidly cooled in water from just above the Curie point. A desired magnetic core was obtained. Figure 1 also shows the change in magnetic permeability of the obtained magnetic core (Sample 2) with respect to frequency.

その結果、薄帯表面にセラミック粉をコーティングした
ものを用いた本実施例による磁心はさらに高い透磁率を
有する。特に本実施例によるものは高周波領域での改善
効果が大ぎい。
As a result, the magnetic core according to this example, in which the surface of the ribbon is coated with ceramic powder, has even higher magnetic permeability. In particular, the improvement effect in the high frequency region is great in this embodiment.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、優れた気持性、特に高透磁率を有する
磁心を安定して得ることができる。
According to the present invention, a magnetic core having excellent feelability, particularly high magnetic permeability, can be stably obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は磁心の透磁率の周波数に対する変化を示すグラ
フである。 代理人弁理士  則 近 憲 佑 同         渇  山  幸  夫第1図
FIG. 1 is a graph showing changes in permeability of a magnetic core with respect to frequency. Representative Patent Attorney Noriyuki Chika Yudo Yukio Yama Figure 1

Claims (4)

【特許請求の範囲】[Claims] (1)磁性合金薄体を巻回してなる磁心を熱処理するに
際し、前記熱処理温度からキューリー点直上までは除冷
を行いその後急冷する磁心の製造方法。
(1) A method for producing a magnetic core, in which a magnetic core formed by winding a magnetic alloy thin body is heat-treated, and the magnetic core is slowly cooled from the heat treatment temperature to just above the Curie point, and then rapidly cooled.
(2)磁性合金薄体表面にはセラミック粉をコーティン
グしている特許請求の範囲第1項に記載の磁心の製造方
法。
(2) The method for manufacturing a magnetic core according to claim 1, wherein the surface of the magnetic alloy thin body is coated with ceramic powder.
(3)磁性合金薄体は非晶質合金薄帯である特許請求の
範囲第1項または第2項に記載の磁心の製造方法。
(3) The method for manufacturing a magnetic core according to claim 1 or 2, wherein the magnetic alloy thin body is an amorphous alloy ribbon.
(4)非晶質合金薄帯はCo系非晶質合金薄帯である特
許請求の範囲第3項に記載の磁心の製造方法。
(4) The method for manufacturing a magnetic core according to claim 3, wherein the amorphous alloy ribbon is a Co-based amorphous alloy ribbon.
JP3505086A 1986-02-21 1986-02-21 Manufacture of magnetic core Pending JPS62194605A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3505086A JPS62194605A (en) 1986-02-21 1986-02-21 Manufacture of magnetic core

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3505086A JPS62194605A (en) 1986-02-21 1986-02-21 Manufacture of magnetic core

Publications (1)

Publication Number Publication Date
JPS62194605A true JPS62194605A (en) 1987-08-27

Family

ID=12431209

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3505086A Pending JPS62194605A (en) 1986-02-21 1986-02-21 Manufacture of magnetic core

Country Status (1)

Country Link
JP (1) JPS62194605A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109994311A (en) * 2019-04-26 2019-07-09 通变电器有限公司 A kind of resistance to shorting amorphous alloy transformer core noise-reduction method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109994311A (en) * 2019-04-26 2019-07-09 通变电器有限公司 A kind of resistance to shorting amorphous alloy transformer core noise-reduction method

Similar Documents

Publication Publication Date Title
US4379004A (en) Method of manufacturing an amorphous magnetic alloy
JPS5841649B2 (en) wound iron core
US4311539A (en) Method of manufacturing a high permeability amorphous magnetic alloy
US4081298A (en) Heat treatment of iron-nickel-phosphorus-boron glassy metal alloys
CA1042323A (en) Process for the preparation of metallic film resistors by heat treating
Makino et al. Induced magnetic anisotropy of Co‐based amorphous alloys
JPS62194605A (en) Manufacture of magnetic core
CN112831641B (en) Heat treatment method for preparing nanocrystalline magnetic core
US2845365A (en) Aluminum iron alloy
JP2583357B2 (en) Method for producing low iron loss unidirectional silicon steel sheet
JPH0375624B2 (en)
JPS6133242B2 (en)
JPS62213107A (en) Manufacture of magnetic core
JPS6181608A (en) Preparation of powder of hexagonal ferrite particle
JPH03116802A (en) Magnetic material and method of manufac- turing the same
JPH0213923B2 (en)
JPS5942069B2 (en) Method for manufacturing amorphous alloy with high effective magnetic permeability
SU1705407A1 (en) Method of producing amorphous magnetic material
SU1355354A1 (en) Method of producing manganese/zinc ferrite
JPS5875824A (en) Manufacture of core for transformer
JPS5935432B2 (en) Heat treatment method for amorphous magnetic materials
JPS5842728A (en) Manufacture of oriented silicon steel having high magnetic characteristics
JPH028006B2 (en)
JP2795450B2 (en) Amorphous magnetic alloy for magnetic head
SU1115098A1 (en) Process for manufacturing record medium