JPH028006B2 - - Google Patents

Info

Publication number
JPH028006B2
JPH028006B2 JP55108322A JP10832280A JPH028006B2 JP H028006 B2 JPH028006 B2 JP H028006B2 JP 55108322 A JP55108322 A JP 55108322A JP 10832280 A JP10832280 A JP 10832280A JP H028006 B2 JPH028006 B2 JP H028006B2
Authority
JP
Japan
Prior art keywords
temperature
heat treatment
alloy
metal
metal ribbon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP55108322A
Other languages
Japanese (ja)
Other versions
JPS5735633A (en
Inventor
Hideo Suzuki
Sadami Tomita
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Shingijutsu Kaihatsu Jigyodan
Proterial Ltd
Original Assignee
Hitachi Ltd
Hitachi Metals Ltd
Shingijutsu Kaihatsu Jigyodan
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd, Hitachi Metals Ltd, Shingijutsu Kaihatsu Jigyodan filed Critical Hitachi Ltd
Priority to JP10832280A priority Critical patent/JPS5735633A/en
Publication of JPS5735633A publication Critical patent/JPS5735633A/en
Publication of JPH028006B2 publication Critical patent/JPH028006B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/52Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for wires; for strips ; for rods of unlimited length

Description

【発明の詳細な説明】 [発明の対象] 本発明は、Fe−Ni−Si−Bの合金からなる金
属薄帯の熱処理法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Object of the Invention] The present invention relates to a method of heat treating a metal ribbon made of an alloy of Fe-Ni-Si-B.

[従来技術] 非晶質合金からなる金属薄帯の磁気特性を改善
する一般的な方法としては、該金属薄帯をキユリ
ー温度〜結晶化転移温度の範囲で加熱処理する方
法がある。該熱処理は、磁場中で行なわれること
もある。
[Prior Art] A general method for improving the magnetic properties of a metal ribbon made of an amorphous alloy is to heat-treat the metal ribbon at a temperature ranging from the Curie temperature to the crystallization transition temperature. The heat treatment may also be performed in a magnetic field.

しかし、前記熱処理はFe−Ni−Si−Bの合金
からなる金属薄帯に対しては効果がないことが本
発明者等の検討で明らかとなつた。
However, studies conducted by the present inventors have revealed that the above heat treatment has no effect on a metal ribbon made of an alloy of Fe--Ni--Si--B.

Fe−Ni−Si−Bの合金からなる非晶質金属の
薄帯は、磁束密度が大きく、かつ、保磁力が小さ
いと云う特性を有する。これらの特性を更に改良
することにより、用途の拡大を図ることができ
る。
An amorphous metal ribbon made of an alloy of Fe-Ni-Si-B has the characteristics of high magnetic flux density and low coercive force. By further improving these properties, it is possible to expand the range of uses.

Fe−Ni−Si−Bの合金からなる金属薄帯に前
記の熱処理を施すと、磁束密度、角型比および保
磁力がかえつて悪くなる問題があつた。
When a metal ribbon made of an alloy of Fe--Ni--Si--B is subjected to the heat treatment described above, there is a problem in that the magnetic flux density, squareness ratio, and coercive force are worsened.

[発明の目的] 本発明の目的は、前記課題を解決するためにな
されたもので、Fe−Ni−Si−Bの合金からなる
金属薄帯の磁束密度、角型比を高め、かつ保磁力
を小さくする熱処理法を提供することにある。
[Object of the Invention] The object of the present invention has been made to solve the above-mentioned problems, and is to increase the magnetic flux density and squareness ratio of a metal ribbon made of an alloy of Fe-Ni-Si-B, and to increase the coercive force. The object of the present invention is to provide a heat treatment method that reduces the

[発明の要点] 本発明は、B6〜14原子%、Si8〜14原子%、
Ni4〜12原子%、Fe残部の組成を有し、少なくと
も一方の面が非晶質の合金からなる金属薄帯を、
前記金属のキユリー温度よりも低く、かつ、加熱
示差熱量曲線の示差熱吸収開始温度±25℃で加熱
した後、徐冷することを特徴とする金属薄帯の熱
処理法にある。
[Summary of the invention] The present invention provides B6 to 14 atom%, Si8 to 14 atom%,
A metal ribbon consisting of an alloy with a composition of 4 to 12 atomic percent Ni and the balance Fe and at least one surface is amorphous,
The present invention provides a method for heat treatment of a metal ribbon, which comprises heating at a temperature lower than the Curie temperature of the metal and ±25° C. at a temperature at which differential heat absorption starts in a heating differential calorific value curve, and then slowly cooling.

まず、前記金属薄帯が非晶質合金であるか否か
を判別する簡略な手段としては、金属薄帯を180
度に折り曲げ、折曲げ部分の両面に割れが生じた
ら非晶質合金ではなく、片面にのみ割れが生じた
ら割れが生じなかつた面が非晶質合金であると判
断する方法がある。本発明は、この方法によつ
て、少なくとも一方の面が非晶質合金であると判
断した金属に対して実施しても、効果が得られる
ものである。
First, as a simple means of determining whether or not the metal ribbon is an amorphous alloy, the metal ribbon is
There is a method to determine that if a material is bent repeatedly, and cracks occur on both sides of the bent portion, it is not an amorphous alloy, but if a crack occurs only on one side, the surface on which no cracks occur is an amorphous alloy. The present invention can be effective even if this method is applied to a metal determined to have at least one surface an amorphous alloy.

本発明の前記合金の組成において、Bを6原子
%未満、Siを8原子%未満にすると、薄帯の作成
と非晶質化が難しくなる。また、Bを14原子%よ
り多く、Siを14原子%より多くすると、磁気特性
が悪くなり、本発明の目的が達成されない。Ni
は4原子%未満にすると薄帯の作成を難しくし、
12原子%よりも多くしてもそれ以上の磁気特性の
改善は望めない。
In the composition of the alloy of the present invention, if B is less than 6 atomic % and Si is less than 8 atomic %, it becomes difficult to create a ribbon and make it amorphous. Furthermore, if the B content exceeds 14 atomic % and the Si content exceeds 14 atomic %, the magnetic properties deteriorate and the object of the present invention cannot be achieved. Ni
If it is less than 4 atomic percent, it becomes difficult to create a thin ribbon.
Even if the amount is increased to more than 12 atomic %, no further improvement in magnetic properties can be expected.

金属薄帯の製造方法は特に限定されないが、一
例として、高速回転するロールの表面に薄帯とす
る金属の溶湯を流延接触させて冷却し凝固させる
ことによつて製造することができる。
The method for producing the metal ribbon is not particularly limited, but as an example, it can be produced by bringing a molten metal to be made into a ribbon into contact with the surface of a roll rotating at high speed, and cooling and solidifying the metal.

薄帯の厚さも特に限定されない。前記回転ロー
ルによる方法では、通常10〜50μmの厚さの薄帯
を製造することができるが、本発明はこのような
厚さのものに対して十分に適用することができ
る。
The thickness of the ribbon is also not particularly limited. The method using a rotating roll can normally produce a ribbon with a thickness of 10 to 50 μm, and the present invention can be fully applied to ribbons with such thickness.

Fe−Ni−Si−B合金からなる金属薄帯の加熱
示差熱量曲線の一例を第1図に示す。
An example of the heating differential calorific value curve of a metal ribbon made of Fe-Ni-Si-B alloy is shown in FIG.

示差熱吸収開始温度Taおよび示差熱放出開始
温度Tb1は、合金の組成によつて多少異なるが大
差はない。
The differential heat absorption start temperature Ta and the differential heat release start temperature Tb 1 differ somewhat depending on the composition of the alloy, but there is no major difference.

第1図の合金は、後述の実施例1と同じもので
あるが、該合金の示差熱吸収開始温度Taは358
℃、示差熱放出開始温度Tb1は435℃、結晶化開
始温度Tb2は493℃である。
The alloy shown in Figure 1 is the same as Example 1 described later, but the differential heat absorption starting temperature Ta of this alloy is 358
℃, the differential heat release starting temperature Tb 1 is 435°C, and the crystallization starting temperature Tb 2 is 493°C.

また、別に測定したキユリー温度は478℃であ
る。
In addition, the Curie temperature measured separately was 478°C.

本発明は、前記示差熱吸収開始温度Ta±25℃
の温度範囲内で加熱した後、徐冷するものであ
り、従来一般に行なわれていたキユリー温度以上
で加熱するものとは熱処理の条件が全く異なるも
のである。
The present invention provides the differential heat absorption starting temperature Ta±25°C.
The heat treatment conditions are completely different from the conventional heat treatment which involves heating above the Curie temperature.

本発明の熱処理温度は、前記示差熱吸収開始温
度Taが最も望ましいが、該温度の±25℃であれ
ば十分に効果がある。Ta+25℃よりも高温側で
は保磁力が急激に増加する。また、Ta−25℃よ
りも低温側では磁束密度および各型比が熱処理し
ないものに比べて効果がそれほど得られない。
The heat treatment temperature of the present invention is most preferably the differential heat absorption start temperature Ta, but a temperature of ±25° C. is sufficiently effective. At temperatures higher than Ta + 25°C, the coercive force increases rapidly. Further, at temperatures lower than Ta-25°C, the magnetic flux density and each mold ratio are not as effective as those without heat treatment.

また、熱処理温度の違いによる磁気特性のばら
つきは、前記示差熱吸収開始温度Ta±25℃で熱
処理するよりも±10℃の範囲内で熱処理した方が
小さい。従つて、熱処理温度としてはなるべく示
差熱吸収開始温度に近い方がよい。
Further, variations in magnetic properties due to differences in heat treatment temperature are smaller when heat treatment is performed within the range of ±10°C than when heat treatment is performed at the differential heat absorption start temperature Ta ±25°C. Therefore, it is preferable that the heat treatment temperature be as close to the differential heat absorption starting temperature as possible.

本発明の熱処理法により熱処理された前記合金
からなる非晶質の金属薄帯は、IC演算用絶縁ト
ランスのコア等に用いることができる。該金属薄
帯を用いたものは、磁極N、Sの変換に対する応
答性がよいため、前記演算器の応答の高速化を図
ることができる。
The amorphous metal ribbon made of the alloy heat-treated by the heat treatment method of the present invention can be used for the core of an isolation transformer for IC calculation, etc. Since the device using the metal thin strip has good responsiveness to the conversion of the magnetic poles N and S, it is possible to increase the response speed of the arithmetic unit.

[発明の実施例と効果] 実施例 1 Fe70原子%、Ni8原子%、Si10原子%、B12原
子%よりなる金属薄帯を製造し、温度を変えて熱
処理を行なつた。
[Embodiments and Effects of the Invention] Example 1 A metal ribbon consisting of 70 atomic % Fe, 8 atomic % Ni, 10 atomic % Si, and 12 atomic % B was produced and heat-treated at varying temperatures.

金属薄帯の製造は、上記組成の1270℃に加熱溶
融した溶湯をノズルより噴出させて、2000rpmで
回転する鋼製のロール表面に落下し、該ロールを
冷却媒体として急速凝固させることにより行なつ
た。上記ノズル内の溶湯は、0.3気圧に加圧して
ノズルより噴出させた。
The metal ribbon is manufactured by ejecting molten metal having the above composition heated to 1270°C from a nozzle, falling onto the surface of a steel roll rotating at 2000 rpm, and rapidly solidifying the metal using the roll as a cooling medium. Ta. The molten metal in the nozzle was pressurized to 0.3 atmospheres and spouted from the nozzle.

前記鋼製ロールは、直径300mmでロール幅40mm
である。製造された金属薄帯は、厚さ20μm、幅
が5mm、長さ20mである。
The steel roll has a diameter of 300mm and a roll width of 40mm.
It is. The manufactured metal ribbon has a thickness of 20 μm, a width of 5 mm, and a length of 20 m.

熱処理は、上記金属薄帯をトロイダル状に巻い
た測定用試料を8個作成し、これを270℃〜450℃
で加熱し、該トロイダルコアの磁芯に対して平行
方向に磁場20Oeを印加しながら、それぞれ所定
の温度で1時間保持した後、100℃/時間の速度
で室温まで冷却させた。
For the heat treatment, eight measurement samples were prepared by winding the metal ribbons in a toroidal shape, and the samples were heated at 270℃ to 450℃.
While applying a magnetic field of 20 Oe parallel to the magnetic core of the toroidal core, each sample was maintained at a predetermined temperature for 1 hour, and then cooled to room temperature at a rate of 100° C./hour.

磁気特性は、直流における磁束密度(B100
B10、B1)と角型比(Br/Bm)および保磁力
(Hc)を測定した。
Magnetic properties are determined by the magnetic flux density (B 100 ,
B 10 , B 1 ), squareness ratio (Br/Bm), and coercive force (Hc) were measured.

第1図は、前記合金の加熱示差熱量曲線であ
る。
FIG. 1 is a heating differential calorific value curve of the alloy.

上記の加熱示差熱量曲線は、金属薄帯を直径5
mmの円板に切り抜いて、重さ40mgになるまで積層
し、これを加熱装置に設置して5℃/分で加熱
し、標準試料と比較することによつて求めた。標
準試料にはアルミニウムを用いた。
The heating differential calorific value curve above shows a metal ribbon with a diameter of 5 mm.
It was determined by cutting out disks of mm in size and stacking them until the weight reached 40 mg, placing them in a heating device and heating them at 5° C./min, and comparing them with standard samples. Aluminum was used as the standard sample.

第2図に金属薄帯の熱処理温度と磁気特性との
関係を示す。
FIG. 2 shows the relationship between the heat treatment temperature and magnetic properties of the metal ribbon.

磁気特性を縦軸にとり、熱処理温度を横軸にと
つて、熱処理温度の違いによる磁気特性の変化を
みたものである。
The graph shows changes in magnetic properties due to differences in heat treatment temperature, with magnetic properties plotted on the vertical axis and heat treatment temperature plotted on the horizontal axis.

保磁力は約300℃から次第に改善され350℃で熱
処理したもので30mOe以下の値を示す。熱処理
温度が示差熱吸収開始温度Taよりも高くなりと
保磁力は増大し始めるが、375℃ではまだ熱処理
する前よりは若干小さい値を示している。そし
て、400℃以上になると保磁力は急激に増大する。
The coercive force gradually improves from about 300℃ and shows a value of 30mOe or less when heat treated at 350℃. When the heat treatment temperature becomes higher than the differential heat absorption start temperature Ta, the coercive force starts to increase, but at 375°C, it still shows a slightly smaller value than before the heat treatment. When the temperature exceeds 400°C, the coercive force increases rapidly.

磁束密度、角型比は325℃〜400℃の熱処理温度
範囲では熱処理しないときよりも依然として高い
値を有する。
The magnetic flux density and squareness ratio are still higher than those without heat treatment in the heat treatment temperature range of 325°C to 400°C.

本実施例から熱処理温度は示差熱吸収開始温度
Taの近傍が最も望ましいことが分かる。なお、
キユリー温度になると前よりもかえつて悪くなる
ことがわかる。
From this example, the heat treatment temperature is the temperature at which differential heat absorption starts.
It can be seen that the vicinity of Ta is the most desirable. In addition,
It can be seen that when the temperature reaches the Kyrie temperature, it becomes even worse than before.

実施例 2 Fe73原子%、Ni8原子%、Si10原子%、B9%
原子%よりなる金属薄帯を実施例1と同様に製造
し、同じくトロイダルコアを作成して磁気特性を
測定した。
Example 2 Fe73 at%, Ni8 at%, Si10 at%, B9%
A metal thin strip consisting of atomic % was produced in the same manner as in Example 1, and a toroidal core was similarly produced and its magnetic properties were measured.

第3図に上記組成の合金からなる金属薄帯の加
熱示差熱量曲線図を、また、第4図に該金属薄帯
の磁気特性と熱処理温度との関係を示す。
FIG. 3 shows a heating differential calorific value curve of a metal ribbon made of an alloy having the above composition, and FIG. 4 shows the relationship between the magnetic properties of the metal ribbon and the heat treatment temperature.

示差熱吸収開始温度Taは300℃、示差熱放出開
始温度Tb1は408℃、結晶化開始温度Tb2は470℃
およびキユリー温度は452℃であつた。
Differential heat absorption start temperature Ta is 300°C, differential heat release start temperature Tb 1 is 408°C, crystallization start temperature Tb 2 is 470°C
and the Kyrie temperature was 452°C.

第4図から磁気特性は、示差熱吸収開始温度
Taで熱処理したときに最良の特性を示している。
From Figure 4, the magnetic properties are the temperature at which differential heat absorption starts.
It shows the best characteristics when heat treated with Ta.

以上の実施例から明らかなように、本発明の熱
処理を施すことにより、Fe−Ni−Si−Bの合金
からなる非晶質金属薄帯の磁束密度、角型比も増
大し、保磁力を下げることができる。これによつ
て、該金属薄帯を用いたIC演算装置の演算速度
を10〜20%高めることができる。
As is clear from the above examples, by applying the heat treatment of the present invention, the magnetic flux density and squareness ratio of the amorphous metal ribbon made of the Fe-Ni-Si-B alloy also increase, and the coercive force increases. Can be lowered. As a result, the calculation speed of an IC calculation device using the metal thin strip can be increased by 10 to 20%.

【図面の簡単な説明】[Brief explanation of drawings]

第1図および第3図は、本発明のFe−Ni−Si
−Bの合金の加熱示差熱量を示す曲線図、第2図
および第4図は本発明のFe−Ni−Si−Bの合金
の金属薄帯の磁気特性と熱処理温度との関係を示
すグラフである。
Figures 1 and 3 show Fe-Ni-Si of the present invention.
2 and 4 are graphs showing the relationship between the magnetic properties of the metal ribbon of the Fe-Ni-Si-B alloy of the present invention and the heat treatment temperature. be.

Claims (1)

【特許請求の範囲】[Claims] 1 B6〜14原子%、Si8〜14原子%、Ni4〜12原
子%、Fe残部の組成を有し、少なくとも一方の
面が非晶質の合金からなる金属薄帯を、前記金属
のキユリー温度よりも低く、かつ、加熱示差熱量
曲線の示差熱吸収開始温度±25℃で加熱した後、
徐冷することを特徴とする金属薄帯の熱処理法。
1. A metal ribbon made of an alloy having a composition of 6 to 14 atomic percent B, 8 to 14 atomic percent Si, 4 to 12 atomic percent Ni, and the balance of Fe, with at least one surface being amorphous, is heated to a temperature lower than the Curie temperature of the metal. After heating at a temperature that is low and the temperature at which differential heat absorption starts on the heating differential calorific value curve ±25°C,
A heat treatment method for metal ribbon characterized by gradual cooling.
JP10832280A 1980-08-08 1980-08-08 Heat treatment of metallic thin strip Granted JPS5735633A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10832280A JPS5735633A (en) 1980-08-08 1980-08-08 Heat treatment of metallic thin strip

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10832280A JPS5735633A (en) 1980-08-08 1980-08-08 Heat treatment of metallic thin strip

Publications (2)

Publication Number Publication Date
JPS5735633A JPS5735633A (en) 1982-02-26
JPH028006B2 true JPH028006B2 (en) 1990-02-22

Family

ID=14481763

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10832280A Granted JPS5735633A (en) 1980-08-08 1980-08-08 Heat treatment of metallic thin strip

Country Status (1)

Country Link
JP (1) JPS5735633A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58158647A (en) * 1982-03-16 1983-09-20 Canon Inc Photoconductive material
JPS5961731A (en) * 1983-06-06 1984-04-09 Toshiba Corp Torque sensor

Also Published As

Publication number Publication date
JPS5735633A (en) 1982-02-26

Similar Documents

Publication Publication Date Title
CA1142066A (en) Method of manufacturing an amorphous magnetic alloy
US4475962A (en) Annealing method for amorphous magnetic alloy
US5138393A (en) Magnetic core
JPS6132388B2 (en)
US2801942A (en) Method of rendering an aluminum-iron alloy ductile
JPS6324016A (en) Achievement of flat magnetization curve in manetic core of amorphous material
JPH028006B2 (en)
Luborsky et al. The Fe-BC ternary amorphous alloys
JPH0315323B2 (en)
JPS5834162A (en) Manufacture of amorphous alloy having high magnetic aging resistance and its thin strip
JPH0219172B2 (en)
JPS5942069B2 (en) Method for manufacturing amorphous alloy with high effective magnetic permeability
JPS61129803A (en) Production of high permiability magnetic steel sheet without internal defect
JPS6323242B2 (en)
Tiberto et al. Hysteresis properties of conventionally annealed and Joule-heated nanocrystalline Fe73. 5Cu1Nb3Si13. 5B9 alloys
JPS6133242B2 (en)
JPS5837147A (en) Amorphous alloy
JPS6256203B2 (en)
JPS5825433A (en) Directional property silicon steel band
JPS6159815B2 (en)
JPS60128211A (en) Production of low iron loss amorphous alloy
JPS6144933B2 (en)
JP2795450B2 (en) Amorphous magnetic alloy for magnetic head
JPS619520A (en) Manufacture of rapidly cooled thin strip having high tensile strength and non-orientation
JPH0151540B2 (en)