JPS6219275B2 - - Google Patents

Info

Publication number
JPS6219275B2
JPS6219275B2 JP6637082A JP6637082A JPS6219275B2 JP S6219275 B2 JPS6219275 B2 JP S6219275B2 JP 6637082 A JP6637082 A JP 6637082A JP 6637082 A JP6637082 A JP 6637082A JP S6219275 B2 JPS6219275 B2 JP S6219275B2
Authority
JP
Japan
Prior art keywords
welding
segregation
cracking
hydrogen
heating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP6637082A
Other languages
Japanese (ja)
Other versions
JPS58184089A (en
Inventor
Toyofumi Kitada
Yutaka Osanawa
Nobutaka Takigawa
Sadayuki Abe
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Kokan Ltd filed Critical Nippon Kokan Ltd
Priority to JP6637082A priority Critical patent/JPS58184089A/en
Publication of JPS58184089A publication Critical patent/JPS58184089A/en
Publication of JPS6219275B2 publication Critical patent/JPS6219275B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/235Preliminary treatment

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Mechanical Engineering (AREA)
  • Arc Welding In General (AREA)
  • Butt Welding And Welding Of Specific Article (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明はラインパイプの現地円周溶接における
偏析割れ防止法に係り、セルローズ系溶接棒によ
るラインパイプの現地溶接時における溶接部偏析
割れを適切に防止することのできる方法を提供し
ようとするものである。 ラインパイプを形成するに当つては現地溶接が
不可欠であることは明かである。ところでこのラ
インパイプの現地溶接は伝統的にStove Pipe溶
接工法と称される高能率なパイプ敷設可能な方法
によつて大半が行われている。即ちこの方法は高
水素含有のセルローズ系被覆溶接棒、即ち溶着金
属100g当りの水素含有量が30〜50c.c.のものを用
いるものであつて、上記のように高能率なパイプ
敷設施工が可能である半面において水素に起因し
た母材割れが発生し種々のトラブルを有すること
は公知の通りである。蓋しその典型例は第1図に
示すようなルート割れ12と偏析割れ11であ
り、ルート割れ12については古くから知られて
いるものであつて予熱、ルートパス後の第2パス
を当該溶接部が適当な高温にある間に行うホツト
パス、低炭素当量鋼材の使用によつて防止でき
る。ところが後者の偏析割れ11はその多くが連
続鋳造によつて製造された鋼板に内在する中央偏
析に起因するものであつて該偏析は現状の製鋼技
術では防止不可能なものであり、その実際の発生
状態は第2,3図に顕微鏡写真を以て示す通りの
ものである。然してこのような偏析割れに関して
溶接施工面からみると、溶着金属100g当りの水
素含有量が4〜5c.c.の低水素溶接棒を採用し、炭
酸ガス溶接を適用することはこの割れ防止に効果
を有するが、前者は作業能率低下をもたらし、又
後者の溶接法変更はイニシヤルコストの上昇、溶
接工の再教育を必要とし、適用パイプ径も限定さ
れることとなる。ところでセルローズ系溶接棒を
使用する場合において、150℃以上の層間温度に
保つことは割れ低減に効果があることが実験室的
に確められているが、実施工においてこのような
層間温度に保つことは前層溶接のスラグ除去作業
などの関係から不可能であり、又仮にこれを可能
にしたとしても完全に割れを防止することができ
ない。 本発明は上記したような実情に鑑み高水素含有
のセルローズ系被覆アーク溶接棒をパイプ円周溶
接に用いたときに発生する前記偏析割れ11を完
全且つ容易に防止すべく仔細に研究を重ねた結
果、創案されたものであつて、溶接前に管端部を
600〜900℃の特定熱処理することにより有効に防
止することに成功した。 即ち斯かる本発明について説明すると、本発明
者等は上記したような偏析割れについて第4図に
示すように試験片1,1を鋸歯状受台2上におい
て上方から拘束ボルト3で夫々拘束すると共に各
試験片1,1の端部をも受けボルト4で保持した
条件で行うSchnadt―Fisco試験により再現試験
し検討をなした結果、前記のような割れの大半は
第2,3図に典型例にみられるように熱影響部
(HAZ)5と母材原質部6の境界より発生してい
ることが明かになつた。又この割れは偏析部のミ
クロ硬さが高いときに発生する傾向が大きく、当
該偏析部の硬度をHv300とすれば有効に防止し
得ることが確認された。従つてこの種の割れは偏
析部の硬化性と溶接部から拡散して来た水素がか
らんで発生する水素遅れ割れの1種であり、特に
HAZと母材原質部からの発生するのは第5図に
示した割れ発生機構の模式図から解るように正常
部の硬さ分布曲線に対してミクロ硬さ分布曲線が
原質部6とHAZ部5と境界線で急激に高くなつ
ており、一方水素分布曲線はHAZ部5で高く、
これらの両要因が重畳して厳しい条件にあるため
と考えられる。又HAZ部5から割れが発生しな
いのは多層盛によつて焼戻し熱サイクルを受け、
その硬さは原質部における偏析の硬さより低くな
るためである。 上記したような検討結果より母材偏析部硬化組
織の軟化を図るべく試験材を各加熱温度に熱処理
し、その後次の第1表の試験条件に従つて前記
Schadt―Fisco試験を実施した。
The present invention relates to a method for preventing segregation cracking in on-site circumferential welding of line pipes, and aims to provide a method that can appropriately prevent segregation cracking in welds during on-site welding of line pipes using cellulose welding rods. be. It is clear that on-site welding is essential when forming line pipes. By the way, most on-site welding of line pipes has traditionally been carried out using a highly efficient pipe-laying method called the Stove Pipe welding method. That is, this method uses a cellulose coated welding rod with a high hydrogen content, that is, one with a hydrogen content of 30 to 50 c.c. per 100 g of weld metal, and as mentioned above, it is possible to perform highly efficient pipe laying work. Although this is possible, it is well known that cracks in the base material occur due to hydrogen, causing various troubles. Typical examples of such cracks are root cracks 12 and segregation cracks 11 as shown in Fig. 1. Root cracks 12 have been known for a long time, and the second pass after the root pass is performed by preheating and by performing a second pass after the root pass. This can be prevented by a hot pass performed while the steel is at a moderately high temperature, and by the use of low carbon equivalent steel. However, most of the latter segregation cracks 11 are caused by central segregation inherent in steel sheets manufactured by continuous casting, and this segregation cannot be prevented with the current steelmaking technology. The state of occurrence is as shown in the micrographs in Figures 2 and 3. However, from the perspective of welding operations regarding such segregation cracking, it is effective to use a low hydrogen welding rod with a hydrogen content of 4 to 5 c.c. per 100 g of weld metal and apply carbon dioxide welding to prevent this cracking. Although effective, the former results in a decrease in work efficiency, and the latter change in welding method increases the initial cost, requires retraining of the welder, and limits the applicable pipe diameter. By the way, when using cellulose welding rods, it has been confirmed in the laboratory that keeping the interlayer temperature above 150°C is effective in reducing cracking, but it is not necessary to maintain the interlayer temperature at such a temperature during actual work. This is impossible due to the work involved in removing slag from the previous layer welding, and even if it were possible, it would not be possible to completely prevent cracking. In view of the above-mentioned circumstances, the present invention has been made through detailed research in order to completely and easily prevent the segregation cracks 11 that occur when a cellulose coated arc welding rod containing high hydrogen content is used for circumferential welding of pipes. As a result, it was invented, and the tube end was
We succeeded in effectively preventing this by carrying out a specific heat treatment at 600-900℃. That is, to explain the present invention, the present inventors fixed the test specimens 1 and 1 from above with restraint bolts 3 on a serrated pedestal 2, as shown in FIG. At the same time, we performed a reproduction test using the Schnadt-Fisco test, which was conducted under the condition that the ends of each test piece 1 and 1 were also held with support bolts 4. As a result, most of the cracks described above were typical as shown in Figures 2 and 3. As seen in the example, it has become clear that the heat is generated from the boundary between the heat affected zone (HAZ) 5 and the base material matrix 6. It was also confirmed that this cracking tends to occur when the microhardness of the segregated part is high, and that it can be effectively prevented by setting the hardness of the segregated part to Hv300. Therefore, this type of cracking is a type of hydrogen delayed cracking that occurs due to the interaction between the hardenability of the segregated part and the hydrogen that has diffused from the welded part.
As can be seen from the schematic diagram of the crack generation mechanism shown in Figure 5, the micro-hardness distribution curve is different from the hardness distribution curve of the normal part in the matrix part 6. The hydrogen distribution curve is high at HAZ part 5 and the boundary line, while the hydrogen distribution curve is high at HAZ part 5.
This is thought to be due to the combination of these two factors creating harsh conditions. Also, cracks do not occur in the HAZ part 5 because it undergoes a tempering heat cycle due to the multi-layered structure.
This is because its hardness is lower than that of segregation in the protoplasm. Based on the above study results, the test material was heat treated to various heating temperatures in order to soften the hardened structure of the segregated part of the base material, and then the test material was heated according to the test conditions shown in Table 1 below.
Schadt-Fisco test was conducted.

【表】【table】

【表】 即ちこの試験結果は次の第2表に示す通りであ
り、600〜900℃、特に600〜800℃の加熱温度にお
いて著しく割れ率が低減される。
[Table] That is, the test results are as shown in Table 2 below, and the cracking rate is significantly reduced at heating temperatures of 600 to 900°C, particularly 600 to 800°C.

【表】 加熱方法としてはガス加熱、誘導加熱、抵抗加
熱などの何れによつても同等の効果が得られ、
600℃以下では何れの場合においても焼戻し効果
が不充分であり、又900℃を超えるときはオース
テナイト化するために硬さは低減しないので好ま
しい結果が得られず、しかも加熱、冷却中に変形
が大きくなる。加熱時間については当該温度域に
おいて余り長くなると炭窒化物の析出などをもた
らし材質的劣化を来す危険性もあるので10分以内
とすることが好ましい。更に加熱領域については
溶接時に溶けてしまう部分を含めて一般的に管端
部から50mm以下の範囲内で本発明の効果を充分に
得しめることができる。又対象鋼種としては第2
表のNb―V系のX70の他、一般的にラインパイプ
鋼材として用いられているX52〜X100の何れのも
のに対しても有効であつて前記したところと同様
の効果が得られることが認められている。 なおパイプ円周溶接の熱処理としては溶接終了
後に水素放散、HAZ部硬化低減を目的とした
PWHTと称される溶接後熱処理、水素放散を主
目的とした50〜250℃の予熱操作があるが、本発
明は、溶接前に管端の溶接部分を600〜900℃の特
定温度に加熱して、加熱前の母材中央偏析部分の
硬化組織を軟化させ溶接低温割れ感受性を低める
ことを目的とし、前述の溶接後熱処理及び予熱操
作とは異なる。 以上説明したような本発明によるときはライン
パイプの現地溶接に当り、一般的且つ高能率なセ
ルローズ系高水素含有溶接棒を用いて偏析割れの
発生を的確に防止し有利な溶接をなし得るもので
あつて工業的にその効果の大きい発明である。
[Table] The same effect can be obtained by any heating method such as gas heating, induction heating, or resistance heating.
Below 600°C, the tempering effect is insufficient in any case, and above 900°C, the hardness does not decrease due to austenitization, so favorable results cannot be obtained, and furthermore, the tempering effect is insufficient during heating and cooling. growing. The heating time is preferably within 10 minutes because if it is too long in the temperature range, there is a risk of precipitation of carbonitrides and material deterioration. Furthermore, regarding the heating region, the effects of the present invention can be fully obtained generally within a range of 50 mm or less from the tube end, including the portion that melts during welding. Also, it is the second target steel type.
In addition to the Nb-V series X70 listed in the table, it has been found that it is effective for any of the X52 to X100 steels that are generally used as line pipe steel materials, and that the same effects as described above can be obtained. It is being The heat treatment for circumferential welding of pipes was performed after welding with the aim of dissipating hydrogen and reducing hardening of the HAZ area.
There is a post-weld heat treatment called PWHT, which is a preheating operation of 50 to 250℃ with the main purpose of hydrogen dissipation, but in the present invention, the welded part of the pipe end is heated to a specific temperature of 600 to 900℃ before welding. This is different from the post-weld heat treatment and preheating operations described above, as the purpose is to soften the hardened structure of the central segregated part of the base metal before heating and lower the weld cold cracking susceptibility. According to the present invention as described above, when performing on-site welding of line pipes, it is possible to accurately prevent the occurrence of segregation cracks and achieve advantageous welding using a general and highly efficient cellulose-based high hydrogen content welding rod. This is an invention with great industrial effects.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は本発明の技術的内容を示すものであつ
て、第1図はセルローズ系溶接棒による水素割れ
発生状態を示した断面図、第2図はその偏析割れ
についての具体的な発生状態を示した倍率5倍の
金属組織を示した顕微鏡写真、第3図はその偏析
割れ部分の倍率50倍による金属組織の顕微鏡写
真、第4図はSchnadt―Fisco試験の説明図、第
5図は偏析割れ発生機構についての模式的説明図
である。 然してこれらの図面において、11は偏析割
れ、5はHAZ部、6は鋼材原質部を示すもので
ある。
The drawings show the technical contents of the present invention, and Fig. 1 is a cross-sectional view showing the state in which hydrogen cracking occurs due to a cellulose welding rod, and Fig. 2 shows the specific state in which segregation cracking occurs. Figure 3 is a micrograph showing the metal structure of the segregation crack at 50x magnification, Figure 4 is an explanatory diagram of the Schnadt-Fisco test, and Figure 5 is the segregation crack. FIG. 2 is a schematic explanatory diagram of the generation mechanism. In these drawings, numeral 11 indicates a segregation crack, 5 indicates a HAZ portion, and 6 indicates a steel material portion.

Claims (1)

【特許請求の範囲】[Claims] 1 高水素含有セルローズ系溶接棒を用いライン
パイプを現地円周溶接をなすに当り、当該溶接前
に鋼管端部を600〜900℃に加熱することを特徴と
するラインパイプ現地円周溶接における偏析割れ
防止法。
1. Segregation in on-site circumferential welding of line pipes, which is characterized by heating the ends of the steel pipes to 600 to 900°C before welding when performing on-site circumferential welding of line pipes using cellulose-based welding rods containing high hydrogen content. How to prevent cracking.
JP6637082A 1982-04-22 1982-04-22 Method for preventing segregation cracking in site welding of line pipe Granted JPS58184089A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6637082A JPS58184089A (en) 1982-04-22 1982-04-22 Method for preventing segregation cracking in site welding of line pipe

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6637082A JPS58184089A (en) 1982-04-22 1982-04-22 Method for preventing segregation cracking in site welding of line pipe

Publications (2)

Publication Number Publication Date
JPS58184089A JPS58184089A (en) 1983-10-27
JPS6219275B2 true JPS6219275B2 (en) 1987-04-27

Family

ID=13313876

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6637082A Granted JPS58184089A (en) 1982-04-22 1982-04-22 Method for preventing segregation cracking in site welding of line pipe

Country Status (1)

Country Link
JP (1) JPS58184089A (en)

Also Published As

Publication number Publication date
JPS58184089A (en) 1983-10-27

Similar Documents

Publication Publication Date Title
CN101622365B (en) Method for improving the performance of seam-welded joints using post-weld heat treatment
US20080115863A1 (en) Method for improving the performance of seam-welded joints using post-weld heat treatment
CN104858555A (en) Pressure pipeline welding process
CN109865955B (en) Welding method combining manual tungsten electrode argon arc welding and shielded metal arc welding for G115 large-diameter pipe
US20150202710A1 (en) Method of welding structural steel and welded steel structure
CN111451615A (en) Welding process method for dissimilar steel
Cui et al. The effects of post-weld aging and cryogenic treatment on self-fusion welded austenitic stainless steel
CN109530849B (en) Welding construction method for carbon steel pipeline in acidic environment
JPS6219275B2 (en)
Maruyama Arc welding technology for dissimilar joints
CN115121918A (en) Welding method for reducing delta-ferrite harmful phase in martensitic heat-resistant steel weld joint with 12% of Cr in nuclear reactor core
CN112388195A (en) Welding method of medium carbon quenched and tempered cast steel
Kumar et al. Effect of post weld heat treatment on impact toughness of SA 516 GR. 70 Low Carbon Steel Welded by Saw Process
JPS58153731A (en) Method of reducing residual weld stress
CN102941399A (en) Gas-shielded welding method for pearlite heat-resistant steel structural members
JP3674085B2 (en) Heat treatment method for reactor pressure vessel nozzle
JPS63176434A (en) Heat treatment for welding zone
SU1217896A1 (en) Method of machining weld joints of steel strips
JPS59107068A (en) Treatment in weld zone of nickel alloy
JPS59163094A (en) Method for preventing weld cracking in heat and corrosion resistant alloy steel
JPS5832594A (en) Welding method
US2146315A (en) Method of making welded ferrous metal articles
Pascoe Welding
Liu et al. Welding defects of SUPER304H steel and their countermeasures
JPS58163575A (en) Back shielding method of melt welding