JPS62192548A - Dispersion strengthening heat resistant copper alloy material - Google Patents

Dispersion strengthening heat resistant copper alloy material

Info

Publication number
JPS62192548A
JPS62192548A JP3612986A JP3612986A JPS62192548A JP S62192548 A JPS62192548 A JP S62192548A JP 3612986 A JP3612986 A JP 3612986A JP 3612986 A JP3612986 A JP 3612986A JP S62192548 A JPS62192548 A JP S62192548A
Authority
JP
Japan
Prior art keywords
particle size
dispersion
alloy material
copper alloy
particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3612986A
Other languages
Japanese (ja)
Inventor
Shigeki Ochi
越智 茂樹
Atsushi Kuroishi
黒石 農士
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP3612986A priority Critical patent/JPS62192548A/en
Publication of JPS62192548A publication Critical patent/JPS62192548A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To provide superior alloy strength, high electric conductivity and high thermal diffusivity by dispersing hard particles of an intermetallic compound having a specified particle size and ceramic particles having a specified particle size in a Cu matrix. CONSTITUTION:Hard particles of an intermetallic compound such as Cu-Fe having <=1mum particle size and particles of ceramics such as TaC, TiCN, B4C, Al2O3 or TiB2 having <=1,000Angstrom average particle size are dispersed in a Cu matrix to obtain a dispersion strengthening heat resistant Cu alloy material. This dispersion stengthening alloy material is produced by applying mechanical alloying technique. The alloy material has superior characteristics of both of conventional precipitation hardening and dispersion hardening alloys and can be utilized as a material for an electrode, electronic parts, etc.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、電極材料、電子部品44料等に用いられる分
散強化型耐熱銅合金材料に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a dispersion-strengthened heat-resistant copper alloy material used for electrode materials, electronic component materials, and the like.

[従来の技術および発明が解決しようとする問題点] 一般に、電極材料、高熱伝導度材fi、高強度材料とし
て用いられる銅合金には、析出硬化型と分散強化型があ
り、合金特性やコストの面から使い・分けられている。
[Prior art and problems to be solved by the invention] In general, copper alloys used as electrode materials, high thermal conductivity materials, and high strength materials are classified into precipitation hardening type and dispersion hardening type. It is used and divided based on the following.

析出硬化型銅合金としては、Cu −Or 、 Cu 
−Cr −2r 、 Cu −1”e 、 Cu−Cd
などの合金が使われている。これらの析出硬化型銅合金
では、時効熱処理によって金属間化合物析出粒子を銅マ
トリツクス中に均一に分散析出させ、高い合金強度と良
い導電率を付与している。
Precipitation hardening copper alloys include Cu-Or, Cu
-Cr-2r, Cu-1"e, Cu-Cd
Alloys such as are used. In these precipitation hardening copper alloys, intermetallic compound precipitated particles are uniformly dispersed and precipitated in the copper matrix by aging heat treatment, thereby imparting high alloy strength and good electrical conductivity.

しかしながら、合金強度を高めるため添加元素を加えて
いるので、高い熱伝導率および導電率は望めない。また
、400℃までは優れた引張弾度を有するが、それ以上
の高温になると析出粒子の溶解によって合金が軟化し、
強度が著しく低下するという欠点を有している。
However, since additive elements are added to increase the alloy strength, high thermal conductivity and electrical conductivity cannot be expected. In addition, it has excellent tensile elasticity up to 400°C, but at higher temperatures the alloy softens due to the dissolution of precipitated particles.
It has the disadvantage that the strength is significantly reduced.

一方、分散強化型合金は、微細なビラミックス粒子を銅
マトリツクス中に一様に分散させたもので、合金の融点
近傍まで優れIC強度を有し、また導電性および熱伝導
率においてら優れている。しかしながら、比較的高温域
の300〜600℃で良好な耐熱性および強度を有する
反面、強度・伸び・絞り・疲労強度などの機械的特性は
その製造方法によって大きく影響されるという問題点を
有している。
On the other hand, dispersion-strengthened alloys are made by uniformly dispersing fine Viramix particles in a copper matrix, and have excellent IC strength up to near the melting point of the alloy, as well as excellent electrical conductivity and thermal conductivity. There is. However, while it has good heat resistance and strength in the relatively high temperature range of 300 to 600°C, it has the problem that mechanical properties such as strength, elongation, reduction of area, and fatigue strength are greatly affected by the manufacturing method. ing.

この分散強化型合金の一般的な製法としては、内部酸化
法、機械的合金化法、化学的共沈法などが知られている
As general methods for manufacturing this dispersion-strengthened alloy, internal oxidation methods, mechanical alloying methods, chemical coprecipitation methods, etc. are known.

内部酸化法は、分散粒子を均一に分散させることは可能
であるが、製造可能な合金系が限定されるとともに添加
合金元素の種類および同に著しい制限がある。機械的合
金化法は、合金成分や添加はなとの制限がほとんどなく
比較的量産に適する製造方法であるが、原料として微細
な分散粒子を必要とするという欠点がある。また、化学
的共沈法は均一分散は容易であるが、不純物混入、廃液
処理および合金成分の制限などの問題を右している。
Although it is possible to uniformly disperse dispersed particles using the internal oxidation method, the alloy systems that can be produced are limited, and there are significant restrictions on the types of alloying elements to be added. The mechanical alloying method has almost no restrictions on alloy components or additions, and is a manufacturing method that is relatively suitable for mass production, but it has the drawback of requiring fine dispersed particles as raw materials. Furthermore, although the chemical coprecipitation method facilitates uniform dispersion, it poses problems such as contamination with impurities, waste liquid treatment, and restrictions on alloy components.

上記の各!lI造方法で製造される分散強化型銅合金は
優れた耐熱強度を有しているが、室温から300℃付近
までの温度域において引張強度、伸び、加工性J3よび
疲労強度などの特性が上述の析出硬化型合金より6やや
劣る傾向にある。
Each of the above! Dispersion-strengthened copper alloys manufactured using the II manufacturing method have excellent heat resistance, but the properties such as tensile strength, elongation, workability J3, and fatigue strength do not improve in the temperature range from room temperature to around 300°C. 6 tends to be slightly inferior to precipitation hardening type alloys.

したがって、従来の銅合金材料では、室温から高温まで
の広範な温度領域で一様に高い強度を示すものは存在し
なかった。
Therefore, no conventional copper alloy material exhibits uniformly high strength over a wide temperature range from room temperature to high temperature.

それゆえに、本発明の目的は、室温から高温度まで優れ
た合金強度を有し、さらに高い導電率、熱拡散率を有す
る分散強化型耐熱銅合金材料を提供することにある。
Therefore, an object of the present invention is to provide a dispersion-strengthened heat-resistant copper alloy material that has excellent alloy strength from room temperature to high temperature, and also has high electrical conductivity and thermal diffusivity.

[問題点を解決するだめの手段および作用]本発明者等
は、上記の問題を解消すべく柵々検討した結果、室温か
ら300℃付近までの温度領域で高強度、優れた加工性
、伸びを示す析出硬化型合金の特性と、300℃以上の
高温度域での良好な耐熱性、高い熱伝導性および導電性
を示す分散強化型合金の特性とを、メカニカルアロイン
グ技術の応用で結合させることによって、高強度、高熱
伝導度、高導電性銅合金が得られることを見出した。
[Means and effects for solving the problem] As a result of various studies to solve the above problem, the inventors of the present invention have found that the present inventors have achieved high strength, excellent workability, and elongation in the temperature range from room temperature to around 300°C. By applying mechanical alloying technology, we have combined the characteristics of precipitation hardening alloys, which exhibit a It has been found that a copper alloy with high strength, high thermal conductivity, and high electrical conductivity can be obtained by

本発明は、銅マリックス中に粒径1μl以下の金属゛間
化合物硬質粒子と平均粒径1oOoÅ以下のセラミック
ス粒子を含むことを特徴とする分散強化型耐熱銅合金材
料である。また、好ましくは、セラミックス粒子が炭化
物、窒化物、酸化物および硼化物の1種または2種以上
からなることを特徴とりる分散強化型耐熱銅合金材料で
ある。
The present invention is a dispersion-strengthened heat-resistant copper alloy material characterized by containing intermetallic compound hard particles with a particle size of 1 μl or less and ceramic particles with an average particle size of 1000 Å or less in a copper matrix. Preferably, the dispersion-strengthened heat-resistant copper alloy material is characterized in that the ceramic particles are made of one or more of carbides, nitrides, oxides, and borides.

以下、本発明について詳細に説明する。The present invention will be explained in detail below.

銅合金の熱伝導率、導電率を損うことなく、その強度を
高め、高温になっても優れた合金強度を維持するために
は、合金添加元素を選択し、その添加量および固溶量を
低下させることが重要である。しかしながら、添加aお
よび固溶量を低下させると合金強度が低下する。そこで
、熱伝導率および導電率を1t1うことなく強度を高め
る添加物を検討した結果、セラミックス粒子、好ましく
は炭化物、窒化物、酸化物および硼化物の1種°または
2種以上のセラミックス粒子を添加することにより、導
電率および熱伝導率を旧わずに強度が高められることを
見出した。
In order to increase the strength of a copper alloy without impairing its thermal conductivity and electrical conductivity, and to maintain excellent alloy strength even at high temperatures, it is necessary to select alloying elements, their addition amount, and solid solution amount. It is important to reduce the However, when the addition a and the amount of solid solution are reduced, the alloy strength is reduced. Therefore, as a result of investigating additives that increase strength without increasing thermal conductivity and electrical conductivity by 1t1, we found that ceramic particles, preferably ceramic particles of one or more of carbides, nitrides, oxides, and borides. It has been found that by adding it, strength can be increased without impairing electrical conductivity and thermal conductivity.

一方、これらの添加物を微細にかつ均一に分散すること
により強度を高めることができるが、あまり多聞に加え
ると加工性および伸びの低下を招く。また、V温から約
300℃までの温度域では金属間化合物の析出粒子によ
る硬化の方が優れている。そこで、この析出硬化型銅合
金と分散強化型銅合金の双方の長所を併せ持つ銅合金を
作ることが有効である。すなわち、室温から300℃ま
での温度域では主として析出物による強化機構を作用さ
せ、300℃以上の高温域ではセラミックス粒子の分散
強化機構を作用さけ、両との組合わせにより熱伝導率お
よび導電率の向上を図ることが有効であることを見出し
た。
On the other hand, the strength can be increased by finely and uniformly dispersing these additives, but if too many are added, workability and elongation will be reduced. Further, in the temperature range from V temperature to about 300° C., hardening by precipitated particles of intermetallic compounds is better. Therefore, it is effective to create a copper alloy that combines the advantages of both the precipitation hardening type copper alloy and the dispersion strengthening type copper alloy. In other words, in the temperature range from room temperature to 300°C, the strengthening mechanism by precipitates is mainly used, and in the high temperature range above 300°C, the dispersion strengthening mechanism of ceramic particles is avoided, and the combination of both improves thermal conductivity and electrical conductivity. We found that it is effective to improve the

また、両者の強化機構を有効なものとづるためには、金
属間化合物の粒径を1μl以下とし、セラミックス粒子
の平均粒径を1000Δ以下にすることが必要である。
In addition, in order to make both of the strengthening mechanisms effective, it is necessary to make the particle size of the intermetallic compound 1 μl or less and the average particle size of the ceramic particles 1000Δ or less.

ここで、セラミックス粒子の平均粒径を1000A以下
にするのは、微細になるほど強化に対して有効に動くこ
と、および1000Aより大きくなると疲労破壊、破断
などの起点となり、ざらには加工性が悪化するためであ
る。金ff間化合物粒子の平均粒径を1μm以下とした
のは、粒径が1mより大きくなると圧延、伸線などの加
工性が悪くなるからである。しかし、あまりに粒径が小
さくなると、強度低下の問題が生じるため、最適な粒径
としては2000A〜5000Aが好ましい。
Here, the reason why the average particle size of the ceramic particles should be 1000A or less is because the finer the particle size, the more effective it is for strengthening, and if it becomes larger than 1000A, it becomes a starting point for fatigue fracture, rupture, etc., and workability deteriorates. This is to do so. The reason why the average particle size of the gold inter-ff compound particles is set to 1 μm or less is because when the particle size is larger than 1 m, workability in rolling, wire drawing, etc. becomes poor. However, if the particle size becomes too small, there will be a problem of reduced strength, so the optimum particle size is preferably 2000A to 5000A.

以上のような析出硬化と分散強化の双方の強化機構を有
する分散強化合金の製造方法としては、メカニカルアロ
イング技術を応用した製造方法が適jノでいることもさ
らに見出した。内部酸化法および化学的共沈法は共に用
いることのできる合金系が限られているので、複雑な成
分を有する合金の製造には適していない。これに対しメ
カニカル70イング法は合金の制約が少なく種々の合金
に適用することができる。
We have further discovered that a manufacturing method applying mechanical alloying technology is suitable as a method for manufacturing a dispersion-strengthened alloy having both precipitation hardening and dispersion strengthening mechanisms as described above. The internal oxidation method and the chemical coprecipitation method are not suitable for producing alloys with complex components because the alloy systems that can be used together are limited. In contrast, the mechanical 70ing method has fewer restrictions on alloys and can be applied to various alloys.

本発明の場合、平均粒径1000A以下のセラミックス
粉末とCu合金粉末を混合し固化した後、時効処理によ
って粒径1μm以下の析出物粒子を均一に分散させて製
造することもできる。まlこ、内部酸化法あるいは化学
的共沈法により2元系銅−酸化物合金を作り、これに銅
合金粉を添加しメカニカルアロイング処理をしてらにい
In the case of the present invention, it can also be manufactured by mixing and solidifying ceramic powder with an average particle size of 1000 A or less and Cu alloy powder, and then uniformly dispersing precipitate particles with a particle size of 1 μm or less by aging treatment. First, a binary copper-oxide alloy is made by an internal oxidation method or a chemical coprecipitation method, and then copper alloy powder is added to it and mechanical alloying is performed.

なお、メカニカル70イング法によるセラミックス粒子
の分散をざらに均一にするため、処理時間は飽和硬度に
達する時間より長くすることが望ましい。また、容器や
ボールなどからの不純物の混入を避けるため、容器やボ
ールを洗浄し、容器内の温度を低下させることが望まし
い。
Note that in order to make the dispersion of ceramic particles by the mechanical 70ing method more uniform, it is desirable that the treatment time be longer than the time required to reach saturated hardness. Furthermore, in order to avoid contamination by impurities from the container or ball, it is desirable to wash the container or ball and lower the temperature inside the container.

[実施例] 以下、本発明の実施例を詳細に説明する。[Example] Examples of the present invention will be described in detail below.

えLL二 第1表に示プセラミックス粉末とArガスアトマイズに
よる銅合金粉末とを、乾式アトライタ装置でメカニカル
アロイング処理した。Ar +Q。
ELL2 Ceramic powders shown in Table 1 and copper alloy powders produced by Ar gas atomization were mechanically alloyed using a dry attritor device. Ar+Q.

5%02雰囲気中で、アジテータ回転数135rl)m
72時間処理した。得られた複合粉末を篩分けして一1
種メツシュとし、1種2還元(450℃×1時間)後、
銅のパイプへ真空封入し押出加工した。押出加工の条件
は、押出温度880℃、保持時間2時間、押出比12:
1の条件で行なった。
In a 5%02 atmosphere, agitator rotation speed 135rl)m
Treated for 72 hours. The obtained composite powder was sieved and
Seed mesh and after 1 type 2 reduction (450℃ x 1 hour),
It was vacuum sealed and extruded into a copper pipe. The extrusion conditions were: extrusion temperature 880°C, holding time 2 hours, extrusion ratio 12:
The test was carried out under the conditions of 1.

次に、ローラダイスで約20%の加工を行なって、10
0mφの線材を1また。さらに時効処理し、得られた銅
合金の機械的特性、物理的特性を測定した。
Next, process about 20% with a roller die and
One 0mφ wire rod. Further aging treatment was performed, and the mechanical and physical properties of the resulting copper alloy were measured.

得られた結果を第2表に示す。なお、比較のためCu 
−Cr−Zr系析出硬化型銅合金(Cu−0゜5Cr−
0,22Zr )の測定値を比較例として第2表に併V
て示づ。
The results obtained are shown in Table 2. For comparison, Cu
-Cr-Zr precipitation hardening copper alloy (Cu-0゜5Cr-
0,22Zr) are included in Table 2 as a comparative example.
Show.

第2表の実験番@1〜4の合金は、1べて1000A以
下のセラミックス粒子を含んでJ3す、また含有してい
る金属間化合物析出粒子の平均粒径はずべて0.8μJ
11以下であった。
The alloys with experiment numbers @1 to 4 in Table 2 all contain ceramic particles of 1000A or less, and the average particle size of the intermetallic compound precipitated particles is 0.8 μJ.
It was 11 or less.

第2表から明らかなように、本発明の分散強化型耐熱銅
合金材料は、優れた強瓜、熱伝導率および電気伝導度を
示すことがわかった。
As is clear from Table 2, the dispersion-strengthened heat-resistant copper alloy material of the present invention was found to exhibit excellent strength, thermal conductivity, and electrical conductivity.

えi九り 平均粒径740△のΔ旦、○2、平均粒径530AのB
、CおよびArガスアトマイズ法による銅合金粉末Cu
 −7r−Crを乾式ボールミル装置で、120時間メ
カニカルアロイング処理をした。得られた粉末の組成は
、Cu−0,6Or −0,2Zr−0,5△Q20−
 0.23− C11%)であり、平均粒径は約260
μmであった。次に過剰な酸化物を還元するため、50
0℃H2ガス中で約1時間熱処理をした31次に真空ホ
ットプレスで厚み約20111111の板とした。真空
度10−3〜−4、圧力0.5t /c+a2、温度9
00℃の条件で、ホットプレスした。次に860℃で熱
間圧延して約50%の加工を行なった。この板から試験
試料を切出し、組織観察、機械的性質および物理的性質
を測定した。この結果を第3表に示づ。
Δdan with an average particle size of 740△, ○2, B with an average particle size of 530A
, C and Ar gas atomization method copper alloy powder Cu
-7r-Cr was mechanically alloyed for 120 hours using a dry ball mill. The composition of the obtained powder was Cu-0,6Or-0,2Zr-0,5ΔQ20-
0.23-C11%), and the average particle size is approximately 260
It was μm. Next, in order to reduce excess oxide, 50
31 was heat-treated in H2 gas at 0° C. for about 1 hour, and then vacuum hot pressed to form a plate with a thickness of about 201111111. Vacuum degree 10-3 to -4, pressure 0.5t/c+a2, temperature 9
Hot pressing was carried out at 00°C. Next, it was hot rolled at 860° C. to achieve about 50% processing. A test sample was cut from this plate, and its structure was observed and its mechanical properties and physical properties were measured. The results are shown in Table 3.

第3艮から明らかなように本発明の銅合金材料は熱伝導
度および電気伝導度に優れかつ高強度であることがわか
った。また優れた耐熱性をも有するものであった。
As is clear from the third example, the copper alloy material of the present invention was found to have excellent thermal conductivity and electrical conductivity, and high strength. It also had excellent heat resistance.

以上の実施例では、本発明の銅合金材料を製造する方法
としてメカニカルアロイング処理による方法を例示した
が、本発明はこの方法により製造されるものに限定され
ることはなく、他の方法により製造されるしのであって
もよいことをここで明らかにしておく。
In the above examples, a method using a mechanical alloying process was exemplified as a method for producing the copper alloy material of the present invention, but the present invention is not limited to products produced by this method, and may be produced by other methods. It should be made clear here that it may be manufactured.

[発明の効果] 本発明は以上の説明のように、従来の析出型硬化合金と
分散型強化合金の両畠の侵れた特徴を併、有しており、
高強度でかつ高熱伝導度、高電気伝導度を示り゛もので
ある。したがつて、本発明の銅合金材料は、電極材、料
および電子部品材料等に幅広く有効に利用され得るしの
である。
[Effects of the Invention] As explained above, the present invention has the characteristics of both conventional precipitation-hardened alloys and dispersion-strengthened alloys,
It exhibits high strength, high thermal conductivity, and high electrical conductivity. Therefore, the copper alloy material of the present invention can be widely and effectively used as electrode materials, materials, electronic component materials, and the like.

Claims (2)

【特許請求の範囲】[Claims] (1)銅マトリクス中に粒径1μm以下の金属間化合物
硬質粒子と平均粒径1000Å以下のセラミックス粒子
を含むことを特徴とする、分散強化型耐熱銅合金材料。
(1) A dispersion-strengthened heat-resistant copper alloy material characterized by containing intermetallic compound hard particles with a particle size of 1 μm or less and ceramic particles with an average particle size of 1000 Å or less in a copper matrix.
(2)前記セラミックス粒子が炭化物、窒化物、酸化物
および硼化物の1種または2種以上からなることを特徴
とする、特許請求の範囲第1項記載の分散強化型耐熱銅
合金材料。
(2) The dispersion-strengthened heat-resistant copper alloy material according to claim 1, wherein the ceramic particles are made of one or more of carbides, nitrides, oxides, and borides.
JP3612986A 1986-02-19 1986-02-19 Dispersion strengthening heat resistant copper alloy material Pending JPS62192548A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3612986A JPS62192548A (en) 1986-02-19 1986-02-19 Dispersion strengthening heat resistant copper alloy material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3612986A JPS62192548A (en) 1986-02-19 1986-02-19 Dispersion strengthening heat resistant copper alloy material

Publications (1)

Publication Number Publication Date
JPS62192548A true JPS62192548A (en) 1987-08-24

Family

ID=12461174

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3612986A Pending JPS62192548A (en) 1986-02-19 1986-02-19 Dispersion strengthening heat resistant copper alloy material

Country Status (1)

Country Link
JP (1) JPS62192548A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0196343A (en) * 1987-10-08 1989-04-14 Agency Of Ind Science & Technol Dispersed particle-reinforced copper for electric material and its production
US5017250A (en) * 1989-07-26 1991-05-21 Olin Corporation Copper alloys having improved softening resistance and a method of manufacture thereof
US5039478A (en) * 1989-07-26 1991-08-13 Olin Corporation Copper alloys having improved softening resistance and a method of manufacture thereof
JP2008057034A (en) * 2006-08-04 2008-03-13 Sumitomo Electric Ind Ltd Dispersion reinforced copper
CN111349841A (en) * 2018-12-24 2020-06-30 攀枝花学院 Ti(C,N)/TiB2/Sn/Cu electric contact material and preparation method and application thereof
CN114752808A (en) * 2022-04-19 2022-07-15 有研工程技术研究院有限公司 High-strength high-conductivity copper alloy composite material and preparation method thereof

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5162105A (en) * 1974-11-18 1976-05-29 Suwa Seikosha Kk TAINETSUTAISANKASEICHOKOGOKIN

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5162105A (en) * 1974-11-18 1976-05-29 Suwa Seikosha Kk TAINETSUTAISANKASEICHOKOGOKIN

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0196343A (en) * 1987-10-08 1989-04-14 Agency Of Ind Science & Technol Dispersed particle-reinforced copper for electric material and its production
JPH0341535B2 (en) * 1987-10-08 1991-06-24
US5017250A (en) * 1989-07-26 1991-05-21 Olin Corporation Copper alloys having improved softening resistance and a method of manufacture thereof
US5039478A (en) * 1989-07-26 1991-08-13 Olin Corporation Copper alloys having improved softening resistance and a method of manufacture thereof
US5336342A (en) * 1989-07-26 1994-08-09 Olin Corporation Copper-iron-zirconium alloy having improved properties and a method of manufacture thereof
JP2008057034A (en) * 2006-08-04 2008-03-13 Sumitomo Electric Ind Ltd Dispersion reinforced copper
CN111349841A (en) * 2018-12-24 2020-06-30 攀枝花学院 Ti(C,N)/TiB2/Sn/Cu electric contact material and preparation method and application thereof
CN114752808A (en) * 2022-04-19 2022-07-15 有研工程技术研究院有限公司 High-strength high-conductivity copper alloy composite material and preparation method thereof

Similar Documents

Publication Publication Date Title
JPS61149449A (en) Composite material for lead frame for semiconductor device and its production
CN106048275A (en) Preparation method of ceramic phase dispersion strengthening copper alloy
CN109576529B (en) High-performance dispersion copper alloy and preparation method thereof
JP2016074950A (en) Copper alloy and manufacturing method therefor
JPS62192548A (en) Dispersion strengthening heat resistant copper alloy material
JPS62502813A (en) New alloys with high electrical and mechanical properties, processes for their production and their use in particular in electrical, electronic and related fields
CN109722561B (en) High-performance Cu-Cr alloy and preparation method thereof
JPS6345338A (en) Copper alloy for electronic and electric appliance and its production
Fuschillo et al. Electrical and tensile properties of Cu-ThO 2, Au-ThO 2, Pt-ThO 2 and Au-Al 2 O 3, Pt-Al 2 O 3 alloys
DE2341729C3 (en) Process for the production of an electrically conductive composite powder
AU2003277656B2 (en) Electrode material for electric discharge machining and method for production thereof
JPS6048578B2 (en) electrical contact materials
US5149498A (en) Method of producing tarnish-resistant and oxidation-resistant alloys using zr and b
KR100473812B1 (en) Fabricating method of dispersion reinforced Cu-Alumina alloys by selective internal oxidation and Cu-Alumina alloys manufactured by using the same
JPS62199743A (en) High strength copper alloy and its manufacture
JPH0356294B2 (en)
JP2013091816A (en) Copper alloy material and method for producing the same
KR100267810B1 (en) The manufacturing method of cu-alloy with lead frame material
JPH0196338A (en) Manufacture of carbide dispersion-strengthened copper alloy
US3107998A (en) Copper-zirconium-arsenic alloys
JPH02274849A (en) Production of oxide dispersion-strengthened copper alloy stock
JPH08296012A (en) Production of copper alloy
JPH09143597A (en) Copper alloy for lead frame and its production
JPH0649881B2 (en) Method for producing copper-oxide dispersion strengthening material
JP2501290B2 (en) Lead material