JPH0196338A - Manufacture of carbide dispersion-strengthened copper alloy - Google Patents

Manufacture of carbide dispersion-strengthened copper alloy

Info

Publication number
JPH0196338A
JPH0196338A JP25208487A JP25208487A JPH0196338A JP H0196338 A JPH0196338 A JP H0196338A JP 25208487 A JP25208487 A JP 25208487A JP 25208487 A JP25208487 A JP 25208487A JP H0196338 A JPH0196338 A JP H0196338A
Authority
JP
Japan
Prior art keywords
solid solution
copper alloy
alloy
temp
carbide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP25208487A
Other languages
Japanese (ja)
Other versions
JPH05457B2 (en
Inventor
Teruo Takahashi
輝男 高橋
Yasuhiko Hashimoto
橋本 雍彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP25208487A priority Critical patent/JPH0196338A/en
Publication of JPH0196338A publication Critical patent/JPH0196338A/en
Publication of JPH05457B2 publication Critical patent/JPH05457B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To manufacture a carbide dispersion-strengthened copper alloy excellent in mechanical strength by mechanically alloying C, and further, Ti, Zr, Mo, Hf, V, Nb, W, Ta, Cr, etc., with Cu and then applying heat treatment to the above so as to finely precipitate and disperse carbides. CONSTITUTION:Cu, C and the elements which do not form solid solutions with Cu or are extremely reduced in the amounts of solid solutions with Cu are blended in powdered state in the prescribed proportions. The resulting powder mixture is mechanically alloyed in an Ar atmosphere by using an attritor, by which a forced solid solution or a uniform mixture is prepared. The above solid solution or mixture is subjected to heat treatment in a temp. range between about 500 deg.C and the neighborhood of the melting point of Cu. By this method, the compounds of C and the elements, such as Ti and Zr, are finely precipitated and dispersed into Cu, by which the carbide dispersion-strengthened copper alloy remarkably improved in mechanical strength, etc., at a temp. in the range from ordinary temp. to high temp. can be obtained.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は機械的合金化法を応用した炭化物分散強化銅合
金の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a method for producing a carbide dispersion strengthened copper alloy using a mechanical alloying method.

(従来技術) 従来より、高温でも安定である酸化物などの粒子を基質
中に分散させた分散強化合金は耐°熱性・高強度・高導
電性の3つの特性を満足する材料として知ら過ており、
これは基質よりも硬い物質の微細粒子を基質中に均一に
分散させることによる強化であり、基質中に微細に分散
している第2相粒“子が変形に伴う転位の移動を妨げる
ことによる強化である。
(Prior art) Dispersion-strengthened alloys, in which particles such as oxides that are stable even at high temperatures are dispersed in a matrix, have long been known as materials that satisfy the three characteristics of heat resistance, high strength, and high electrical conductivity. Ori,
This reinforcement is achieved by uniformly dispersing fine particles of a substance harder than the substrate into the substrate, and second phase particles finely dispersed in the substrate impede the movement of dislocations due to deformation. It is reinforcement.

この分散強化合金における分散粒子の分散方法には■粉
末混合法、■内部酸化法、■機械的合金化法の他多数あ
るが、特に、内部酸化法と機械的合金化法が比較的有効
であると考えられている。
There are many methods for dispersing dispersed particles in this dispersion-strengthened alloy, including ■powder mixing method, ■internal oxidation method, and ■mechanical alloying method, but the internal oxidation method and mechanical alloying method are particularly effective. It is thought that there is.

ところで、現在、溶接チップ等に用いられている耐熱性
銅合金といえば、AfzO*分散強化銅合金を指してお
り、特に、つぎに説明するような(al内部酸化法、(
b1機械的合金化法などにより作製されている。
By the way, the heat-resistant copper alloy currently used for welding tips and the like refers to AfzO* dispersion-strengthened copper alloy.
b1 It is manufactured by mechanical alloying method.

(a)希薄Cu−AA固溶体合金粉末を内部酸化して得
られた粉末を熱間押出などにより成形する方法。
(a) A method in which a powder obtained by internally oxidizing dilute Cu-AA solid solution alloy powder is molded by hot extrusion or the like.

(b)銅粉と/1203粉を機械的合金化法により混合
撹拌した粉末を熱間押出などにより成形する方法。
(b) A method in which copper powder and /1203 powder are mixed and stirred by a mechanical alloying method and then molded by hot extrusion or the like.

(発明が解決しようとする問題点) しかしながら、上記の方法によれば、つぎのような欠点
がある。
(Problems to be Solved by the Invention) However, the above method has the following drawbacks.

(a)の方法によれば、出発原料の希j41J Cu 
= A j2固溶体合金に必ず結晶粒界が存在し、そこ
には結晶粒内よりも粗大な粒子が析出し、それに伴って
分散強化に貢献する結晶粒内の微細な析出物量が減少す
るため強度が低下する結果となる。なお、−船釣に、内
部酸化法は内部酸化現象の特質上、厚肉の物体には適さ
ないので、処理の対象は粉末、薄板、細線などに限定さ
れ、厚肉形状の部品を製造するにはなんらかの後処理加
工手鰻が必要となる問題がある。
According to method (a), the starting material diluted j41J Cu
= A j2 Grain boundaries always exist in solid solution alloys, where particles coarser than those within the grains precipitate, and as a result, the amount of fine precipitates within the grains that contribute to dispersion strengthening decreases, so the strength increases. This results in a decrease in In addition, for boat fishing, the internal oxidation method is not suitable for thick-walled objects due to the characteristics of the internal oxidation phenomenon, so the processing targets are limited to powder, thin plates, thin wires, etc., and it is not possible to manufacture thick-walled parts. However, there is a problem in that some kind of post-processing is required.

一方、(b)の方法によれば、オロワンの機構から分散
強化に必要なだけの十分に微細なAlgozが得られに
くい、現在は金属アルコキシドから数百人のAltos
が得られるが、機械的合金化法により十分均一に分散す
るかどうか疑問である。
On the other hand, according to method (b), it is difficult to obtain Algoz fine enough for dispersion strengthening due to the Orowan mechanism.
is obtained, but it is questionable whether it can be sufficiently uniformly dispersed by the mechanical alloying method.

そして、(a)ならびに(b)の方法に共通していえる
欠点はAl2O2とCuのぬれ性が良くないことである
。また、上述の(11)及び(b)の方法で作製した/
1z03分散強化合金を高温で加熱すると、ぬれ性が良
くないためにCuとAl2O+が分離を起こし、それは
合金表面上への純Cuの発汗となって現れ、それに伴っ
て合金の硬さは低下する。
A common drawback of methods (a) and (b) is that the wettability of Al2O2 and Cu is poor. In addition, / produced by the above methods (11) and (b)
When 1z03 dispersion strengthened alloy is heated at high temperature, Cu and Al2O+ separate due to poor wettability, which appears as pure Cu sweating on the alloy surface, and the hardness of the alloy decreases accordingly. .

この現象は溶接チップなどのように局部的に高温に曝さ
れるところでは特に問題になる。
This phenomenon is particularly problematic in areas that are locally exposed to high temperatures, such as welding tips.

このような問題を解決すべく、本発明者はこの種研究の
最新技術として、内部酸化法の欠点である結晶粒界をな
くする方法として機械的合金化法を採用するとともにこ
の機械的合金化法における問題点である基質に対する分
散粒子の均一分散性を改善するため、その後の熱処理(
内部酸化、内部炭化、内部硼化など)を組み合わせるこ
とにより、各種の粒子を分散したAβ201分散強化合
金について開発した。すなわち、出発原料として、純C
u粉及びCu −8mass%AA母合金および亜酸化
銅(cuzO)粉を用い、機械的合金化法により均質な
Cu−Al−0固溶体合金粉を作製した後、得られた合
金粉を真空焼鈍(すなわち、この場合、内部酸化になる
)することによりAlと0を反応させCu−A1.02
分散強化合金を作製した(この結果については昭和62
年日本金属学会春期大会で発表済である)。
In order to solve these problems, the present inventor adopted a mechanical alloying method as a cutting-edge technology in this type of research to eliminate grain boundaries, which is a drawback of the internal oxidation method. In order to improve the uniform dispersibility of dispersed particles in the substrate, which is a problem in this method, a subsequent heat treatment (
We have developed an Aβ201 dispersion strengthened alloy in which various particles are dispersed by combining internal oxidation, internal carbonization, internal boronization, etc. That is, as a starting material, pure C
After producing homogeneous Cu-Al-0 solid solution alloy powder by a mechanical alloying method using U powder, Cu-8 mass% AA master alloy, and cuprous oxide (cuzO) powder, the obtained alloy powder was vacuum annealed. (that is, in this case, it becomes internal oxidation) to react with Al and Cu-A1.02
A dispersion-strengthened alloy was prepared (this result was reported in 1982).
(Previously presented at the Spring Meeting of the Japanese Society of Metals).

しかし、上記において得られた分散強化合金は析出する
A It t 03粒子がかなり大きく成長し、かつ、
それらが凝集した。また、酸化物分散強化合金はCuと
AlzOsとのぬれ性が悪いため、熱処理により分離す
る傾向が強く、それにともない軟化した。なお、現在、
一般に市販されているAlltOz分散強化合金でも同
様の現象が認められている。
However, in the dispersion strengthened alloy obtained above, the precipitated A It t 03 particles grew considerably large, and
They aggregated. In addition, since the oxide dispersion strengthened alloy has poor wettability between Cu and AlzOs, it has a strong tendency to separate during heat treatment, resulting in softening. Furthermore, currently,
A similar phenomenon has been observed in commercially available AlltOz dispersion strengthened alloys.

本発明は上述の問題点にかんがみ、発明されたものであ
って、熱処理時にCu  A1z02合金よりも分散粒
子のCuに対するなじみ性が良好であっ5て、常温〜高
温での機械的強度等が飛躍的に向上した炭化物分散強化
銅を提供することを目的とする。
The present invention was invented in view of the above-mentioned problems, and the dispersion particles have better compatibility with Cu than the Cu A1z02 alloy during heat treatment, and the mechanical strength etc. at room temperature to high temperature are dramatically improved. The purpose of this invention is to provide carbide dispersion strengthened copper with improved performance.

(問題点を解決するための手段) 上述の目的を達成するための本発明の構成の要旨とする
ところは、 (a)Cu (b)  C (c)  Ti、Zr、Mo、Hf、V、Nb、W。
(Means for Solving the Problems) The gist of the configuration of the present invention for achieving the above-mentioned objects is as follows: (a) Cu (b) C (c) Ti, Zr, Mo, Hf, V, Nb, W.

TaおよびCrからなる群より選択され、Cuに対して
固溶しないかあるいは固溶量が非常に少ない元素 を機械的合金化することにより強制固溶体もしくは均一
な混合物を作製した後、熱処理によって炭素と(c)に
列挙された元素との化合物を微細に析出分散させること
を特徴とする炭化物分散強化銅合金の製造方法、にある
A forced solid solution or a homogeneous mixture is created by mechanically alloying an element selected from the group consisting of Ta and Cr, which does not dissolve in Cu or has a very small amount of solid solubility, and then heat-treats it with carbon. (c) A method for producing a carbide dispersion-strengthened copper alloy, characterized by finely precipitating and dispersing a compound with the elements listed in (c).

以下、本発明を実験例に基づいて具体的に説明する。Hereinafter, the present invention will be specifically explained based on experimental examples.

(実験) まず、銅合金中で微細に析出分散し、かつCuとぬれ性
の良い分散粒子について検討した。
(Experiment) First, we investigated dispersed particles that are finely precipitated and dispersed in a copper alloy and have good wettability with Cu.

粒子を微細に分散させるためには、Cuと、CUに対し
て固溶しないかあるいは固溶量が非常に少ない元素Aと
、その元素Aに対して親和力の強い元素Bの3者を機械
的合金化することにより強制固溶体もしくは均一な混合
物を作製した後、熱処理によって元素Aと元素Bの化合
物を微細に析出分散させることを考えた。この場合、元
素Aは均一に混合あるいは固溶した後の熱処理により、
化合物ABとしての析出核を多くする作用を有するもの
と考えられる。そのために、元素Aとしては炭素を選択
し、元素BにはTis Zr、Mo、Hf、V、Nb5
W、Taおよび及びCrからなる群より選択されたもの
を用いた。炭素の銅に対する溶解度は1,100℃でO
,0001wt%であり、事実上溶解度は零に等しい。
In order to finely disperse the particles, Cu, element A, which does not dissolve in Cu or has a very small amount of solid solution, and element B, which has a strong affinity for element A, are mechanically dispersed. The idea was to create a forced solid solution or a homogeneous mixture by alloying, and then finely precipitate and disperse the compound of element A and element B by heat treatment. In this case, element A is homogeneously mixed or dissolved in solid solution and then heat-treated.
It is thought that it has the effect of increasing the number of precipitated nuclei as compound AB. For this purpose, carbon is selected as element A, and Tis Zr, Mo, Hf, V, Nb5 is selected as element B.
A material selected from the group consisting of W, Ta and Cr was used. The solubility of carbon in copper is O at 1,100°C.
,0001 wt%, and the solubility is practically equal to zero.

また、元素Bに選んだ元素は周期律表でいえば、IV、
、V、及びVI。
Also, the element selected as element B is IV in the periodic table,
, V, and VI.

の族に属するもので、これらは一般に炭素と結合しやす
く、非常に硬くて高融点の炭化物を形成する。これらの
IV、、vll及びVl、の元素は銅への固溶量は少な
いものが多く、たとえば、Tiの4.3 wt%(共晶
温度885℃)、MOの1.5 wt%以外はわずかの
固溶体があるかあるいはほとんど有せず、Cuと炭化物
間の溶解度もほとんど零に等しい。
They generally combine easily with carbon, forming very hard, high-melting-point carbides. These elements IV, vll, and Vl are mostly dissolved in small amounts in copper, for example, except for 4.3 wt% of Ti (eutectic temperature 885°C) and 1.5 wt% of MO. There is little or no solid solution, and the solubility between Cu and carbide is almost zero.

かくて、上記における合金中に析出分散する炭化物粒子
はTiC,ZrCSMow 0% HfC。
Thus, the carbide particles precipitated and dispersed in the alloy in the above are TiC, ZrCSMow 0% HfC.

VC,、NbC5WC,TaCおよびCr=C3と仮定
し、析出する炭化物の体積率は1.68.2.50.4
.13.10.00及び20.00 vo1%とした。
Assuming VC,, NbC5WC, TaC and Cr=C3, the volume fraction of precipitated carbides is 1.68.2.50.4
.. 13.10.00 and 20.00 vo1%.

更に、出発原料としては純Cu5Tis Zr、Mo、
Hf、■、N b s W s T a s Cr及び
黒鉛(c)粉であり、これらを所定の比に配合した後、
アトライターにより250rpmでアルゴン雰囲気で2
0時間機械的合金化した。
Furthermore, as starting materials pure Cu5Tis Zr, Mo,
Hf, ■, N b s W s T a s Cr and graphite (c) powder, and after mixing these in a predetermined ratio,
2 in an argon atmosphere at 250 rpm with an attritor.
Mechanically alloyed for 0 hours.

ここで、炭化物体積分率4.13volχのCu−Ti
−C系の場合の機械的合金化にともなう経時的な組織変
化を示すと、第1図(a)〜(d)の顕微鏡写真に示す
とおりである。これらの顕微鏡写真から明らかなように
、時間の経過にともない、Tiが均一に分布。
Here, Cu-Ti with a carbide volume fraction of 4.13 volχ
The micrographs of FIGS. 1(a) to 1(d) show the structural changes over time accompanying mechanical alloying in the case of the -C system. As is clear from these micrographs, Ti is distributed uniformly over time.

している状況が明らかである。It is clear that this is the case.

また、20時間機械的合金化して得られた合金粉の添加
元素の分布状態をX線マイクロアナライザーにより調べ
た結果をCu−Ti−CとC−Zr−C系を例として示
せば、第2図(a)・山)はCu−Ti−C系の面分析
結果を示すX線写真(1,000倍)、同図(c)・(
d+はC−Zr−C系の面分析結果を示すX線写真(1
,000倍)であり、特に、同図(b)と(d)とはT
iならびにZrの分布状況を示す。なお、炭化物体積分
率はいずれの系も10.00χである。これらの写真か
ら明らかなように、はぼ均一に混合あるいは固溶体が形
成されていると推定された。さらに、X線回折により格
子定数を測定した結果、Cuの格子定数が大きくなるの
が認められ、これから固溶体が形成されたことが明らか
となった(但し、Wの場合は固溶体にはならなかった)
。このようにして得られた強制固溶体あるいは混合物を
約500℃からCuの融点である1083℃以下の温度
範囲で熱処理すると、非常に微細な炭化物粒子が均一に
析出分散した。
In addition, if the results of examining the distribution state of added elements in alloy powder obtained by mechanical alloying for 20 hours using an X-ray microanalyzer are shown as examples of Cu-Ti-C and C-Zr-C systems, the second Figure (a), mountain) is an X-ray photograph (1,000x magnification) showing the surface analysis results of the Cu-Ti-C system;
d+ is an X-ray photograph (1
,000 times), and in particular, (b) and (d) in the same figure are T
The distribution of i and Zr is shown. Note that the carbide volume fraction is 10.00χ in both systems. As is clear from these photographs, it was assumed that the mixture was homogeneously mixed or a solid solution was formed. Furthermore, as a result of measuring the lattice constant by X-ray diffraction, it was observed that the lattice constant of Cu increased, which revealed that a solid solution was formed (however, in the case of W, it did not become a solid solution. )
. When the thus obtained forced solid solution or mixture was heat-treated in a temperature range from about 500° C. to 1083° C., which is the melting point of Cu, very fine carbide particles were uniformly precipitated and dispersed.

さらに、機械的合金化された後、800℃で1時間真空
加熱されたCu−Ti−C系合金に析出した代表的なT
ic粒子の顕微鏡写真(10万倍)を第3図(alに示
し、制限視野回折図形を第3図(b)に示す。また、機
械的合金化された後、900℃で1時間真空加熱された
Cu−Zr−C系合金に析出した代表的なZrC粒子の
顕微鏡写真(10万倍)を第4図(alに、制限視野回
折図形を第4図(b)にそれぞれ示す。これらの析出物
粒子はCu−Ti−C系ではTiC、Cu−Zr−C系
ではZrCであった。処理温度が低下するにともない、
析出する炭化物粒子はより微細になった。
Furthermore, after being mechanically alloyed, typical T
A micrograph (100,000 times magnification) of the IC particles is shown in Figure 3 (al), and a selected area diffraction pattern is shown in Figure 3 (b). Also, after being mechanically alloyed, they were vacuum heated at 900°C for 1 hour. A micrograph (100,000 times magnification) of typical ZrC particles precipitated in a Cu-Zr-C alloy is shown in Figure 4 (al), and a selected area diffraction pattern is shown in Figure 4 (b). The precipitate particles were TiC in the Cu-Ti-C system and ZrC in the Cu-Zr-C system.As the treatment temperature decreased,
The precipitated carbide particles became finer.

例えば、炭化物の体積率が4.13vo1%であるCu
−Ti−C系合金を800℃で1時間真空焼鈍すること
によって析出する炭化物の平均粒径は5〜20nmであ
った。
For example, Cu with a carbide volume fraction of 4.13 vol%
The average grain size of carbides precipitated by vacuum annealing the -Ti-C alloy at 800° C. for 1 hour was 5 to 20 nm.

現在の炭化物製造技術では最も微細な炭化物でもサブミ
クロン(数百nm)程度であり、本実験で析出したよう
な微細な炭化物を製造することは不可能である。このよ
うに、微細な炭、化物とCuの複合材は機械的合金化に
よるメカノケミカル的な反応と、その後の熱処理、すな
わち、内部炭化を組み合わせることによりはじめて可能
となった。
With current carbide production technology, even the finest carbide is on the order of submicrons (several hundred nanometers), and it is impossible to produce the fine carbide precipitated in this experiment. In this way, a composite material of fine carbon, compound, and Cu was made possible for the first time by combining a mechanochemical reaction through mechanical alloying with a subsequent heat treatment, that is, internal carbonization.

また、第5図(a) ・(b) −(c) (いずれも
1.000倍の顕微鏡写真)に機械的合金化によって得
られたCu−Al−0、Cu−TiC−CならびにCu
−Zr−C系合金を真空焼鈍(1時間加熱)した場合の
合金粉末表面のSEM像を示す。これらの各写真から明
らかなように、Cu−Ti−C及びCu−Zr−C系合
金はCu−Al−0系、すなわち、Cu−Al2oz合
金よりも純銅の発汗が著しく少なく、合金の安定性が優
れていた。なお、上記の(a)は酸化物体積率4.13
%であるCu−Al−0を700℃で1時間真空焼鈍し
、(b)は炭化物体積率4.13%であるCu−Ti−
Cを900℃で1時間真空焼鈍し、(c)については炭
化物体積率が4.13%であるCu−Zr−Cを1 、
000℃で1時間真空焼鈍したものである。
In addition, Fig. 5 (a), (b) - (c) (all micrographs at 1.000x magnification) show Cu-Al-0, Cu-TiC-C and Cu obtained by mechanical alloying.
A SEM image of the surface of the alloy powder when the -Zr-C based alloy is vacuum annealed (heated for 1 hour) is shown. As is clear from each of these photographs, Cu-Ti-C and Cu-Zr-C based alloys exhibit significantly less pure copper perspiration than Cu-Al-0 based, that is, Cu-Al2oz alloys, and the stability of the alloys is lower. was excellent. Note that (a) above has an oxide volume fraction of 4.13
% Cu-Al-0 was vacuum annealed at 700°C for 1 hour, and (b) was Cu-Ti-0 with a carbide volume fraction of 4.13%.
For (c), Cu-Zr-C with a carbide volume fraction of 4.13% was vacuum annealed at 900°C for 1 hour.
It was vacuum annealed at 000°C for 1 hour.

これらの本発明により提供される合金粉末(例示的にC
u−Ti−CとCu−Zr−Cを掲げた)の各温度で所
定時間、真空加熱した場合の常温硬さ測定結果を第6図
のグラフに示した。このグラフよりも明らかなように、
特に、Cu−Ti−C系では900℃で74時間加熱し
ても硬さの変化は見られず、本発明によりもたらされる
分散強化合金の常温硬さは熱処理温度の上昇によってわ
ずかに軟化するのみで優れた耐熱性を有することが明ら
かであった。
These alloy powders provided by the present invention (for example, C
The graph in FIG. 6 shows the room temperature hardness measurement results of u-Ti-C and Cu-Zr-C which were heated under vacuum at various temperatures for a predetermined period of time. As is clear from this graph,
In particular, in the Cu-Ti-C system, no change in hardness is observed even after heating at 900°C for 74 hours, and the room-temperature hardness of the dispersion-strengthened alloy produced by the present invention only slightly softens as the heat treatment temperature increases. It was clear that it had excellent heat resistance.

(発明の効果) 以上のように構成される本発明により提供される炭化物
分散強化銅合金は常温硬さは熱処理温度の上界によって
わずかに軟化するのみで優れた耐熱性を有するので、今
後の各種の耐熱性構造材料とし゛てその用途はきわめて
広い。
(Effects of the Invention) The carbide dispersion-strengthened copper alloy provided by the present invention configured as described above has excellent heat resistance, with room temperature hardness only slightly softening due to the upper limit of heat treatment temperature. Its uses are extremely wide as various heat-resistant structural materials.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図T8)〜(d)はいずれも本発明の実験過程にお
ける機械的合金化に伴う組織変化(炭化物体積分率4.
13volχのCu−Ti−C系の場合)の金属組織を
示す顕微鏡写真(いずれも100倍)、第2図はX線マ
イクロアナライザーによるCu−Ti−C系(a及びb
)及びCu−Zr−C(c及びd)の面分析のX線写真
(LOOO倍)、第3 a (a)は機械的合金化され
た後、800℃で1時間真空加熱されたCu−Ti−C
系合金に析出したTic粒子の顕微鏡写真(10万倍)
、同図(b)は同じ(制限視野回折図形を示すX線写真
、第4図(a)は機械的合金化された後、900℃で1
時間真空加熱されたCu−Zr−C系合金に析出したZ
rC粒子の顕微鏡写真(10万倍)、同図(b)は同じ
く制限視野回折図形を示すX線写真、第5図(a)は機
械的合金化法によって得られたCu−Al−0合金粉末
を真空中で1時間加熱した場合の金属組織の顕微鏡写真
(1、000倍)、同図(blは機械的合金化法によっ
て得られたCu−Ti−C合金粉末を真空中で1時間加
熱した場合の金属組織の顕微鏡写真(1,000倍)、
同図(c)は機械的合金化法によって得られたCu−Z
r−C合金粉末を真空中で1時間加熱した場合の金属組
織の顕微鏡写真(1、000倍)、さらに、第6図は本
発明により提供される炭化物分散強化銅合金(cu−T
i−CやCu−Zr−Cなど)の合金粉末を各温度で所
定時間真空加熱した場合の常温硬さの測定結果を示した
グラフである。
Fig. 1 T8) to (d) all show structural changes due to mechanical alloying during the experimental process of the present invention (carbide volume fraction 4.
A micrograph showing the metal structure of the Cu-Ti-C system (in the case of the Cu-Ti-C system with 13 vol.
) and Cu-Zr-C (c and d). Ti-C
Micrograph of Tic particles precipitated in the alloy system (100,000x magnification)
, Figure 4 (b) is the same (X-ray photograph showing the selected area diffraction pattern, Figure 4 (a) is the same (X-ray photograph showing the selected area diffraction pattern), after mechanical alloying, 1
Z deposited on Cu-Zr-C alloy heated in vacuum for hours
Micrograph of rC particles (100,000 times); Figure 5 (b) is an X-ray photograph also showing the selected area diffraction pattern; Figure 5 (a) is a Cu-Al-0 alloy obtained by mechanical alloying. A micrograph (1,000x magnification) of the metal structure when the powder was heated in vacuum for 1 hour. Micrograph of metal structure when heated (1,000x),
Figure (c) shows Cu-Z obtained by mechanical alloying method.
A micrograph (1,000x magnification) of the metal structure obtained when r-C alloy powder was heated in vacuum for 1 hour, and Fig. 6 shows the carbide dispersion-strengthened copper alloy (cu-T
2 is a graph showing the measurement results of room temperature hardness when alloy powders (i-C, Cu-Zr-C, etc.) are vacuum heated at various temperatures for a predetermined period of time.

Claims (1)

【特許請求の範囲】 (a)Cu (b)C (c)Ti、Zr、Mo、Hf、V、Nb、W、Taお
よびCrからなる群より選択され、 Cuに対して固溶しないかあるいは固溶量 が非常に少ない元素 を機械的合金化することにより強制固溶体もしくは均一
な混合物を作製した後、熱処理によって炭素と(c)に
列挙された元素との化合物を微細に析出分散させること
を特徴とする炭化物分散強化銅合金の製造方法。
[Scope of Claims] (a) Cu (b) C (c) selected from the group consisting of Ti, Zr, Mo, Hf, V, Nb, W, Ta and Cr, and does not form a solid solution in Cu; or After creating a forced solid solution or a homogeneous mixture by mechanically alloying elements with very small amounts of solid solution, a compound of carbon and the elements listed in (c) is finely precipitated and dispersed by heat treatment. A method for producing a characteristic carbide dispersion strengthened copper alloy.
JP25208487A 1987-10-06 1987-10-06 Manufacture of carbide dispersion-strengthened copper alloy Granted JPH0196338A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25208487A JPH0196338A (en) 1987-10-06 1987-10-06 Manufacture of carbide dispersion-strengthened copper alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25208487A JPH0196338A (en) 1987-10-06 1987-10-06 Manufacture of carbide dispersion-strengthened copper alloy

Publications (2)

Publication Number Publication Date
JPH0196338A true JPH0196338A (en) 1989-04-14
JPH05457B2 JPH05457B2 (en) 1993-01-06

Family

ID=17232327

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25208487A Granted JPH0196338A (en) 1987-10-06 1987-10-06 Manufacture of carbide dispersion-strengthened copper alloy

Country Status (1)

Country Link
JP (1) JPH0196338A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04329844A (en) * 1991-04-26 1992-11-18 Agency Of Ind Science & Technol Manufacture of fine carbide dispersed alloy by using mechanical alloying method
CN1109113C (en) * 2000-02-23 2003-05-21 中国科学院金属研究所 High-strength and high-conductivity copper alloy
CN113751707A (en) * 2021-09-14 2021-12-07 郑州磨料磨具磨削研究所有限公司 Method for preparing nano carbide particle dispersion strengthening alloy powder

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04329844A (en) * 1991-04-26 1992-11-18 Agency Of Ind Science & Technol Manufacture of fine carbide dispersed alloy by using mechanical alloying method
CN1109113C (en) * 2000-02-23 2003-05-21 中国科学院金属研究所 High-strength and high-conductivity copper alloy
CN113751707A (en) * 2021-09-14 2021-12-07 郑州磨料磨具磨削研究所有限公司 Method for preparing nano carbide particle dispersion strengthening alloy powder
CN113751707B (en) * 2021-09-14 2023-08-22 郑州磨料磨具磨削研究所有限公司 Method for preparing nano carbide particle dispersion strengthening alloy powder

Also Published As

Publication number Publication date
JPH05457B2 (en) 1993-01-06

Similar Documents

Publication Publication Date Title
JP2843900B2 (en) Method for producing oxide-particle-dispersed metal-based composite material
JP3194184B2 (en) Method for producing ultrafine W / Cu metal composite powder and high-density bulk material by mechanochemical method
JPS61149449A (en) Composite material for lead frame for semiconductor device and its production
US5912399A (en) Chemical synthesis of refractory metal based composite powders
US3069759A (en) Production of dispersion strengthened metals
FR2784690A1 (en) Pre-alloyed tungsten and-or molybdenum and transition metal based powder, useful for sintered parts or cermet binders, comprises micron-size elementary particles
KR101578458B1 (en) TiAl base intermetallic compound and manufacturing method of the same
JPS6154109B2 (en)
JPH0196338A (en) Manufacture of carbide dispersion-strengthened copper alloy
US4737340A (en) High performance metal alloys
KR102040020B1 (en) Metal nano powder including solid solution of Ag and Cu
JPH0820831A (en) Production of metallic porous body
JPS58193335A (en) Dispersion strengthened type nickel base heat resistant sintered alloy and preparation thereof
JP5618364B2 (en) Method for producing ultrafine and homogeneous titanium carbonitride solid solution powder
KR20190103760A (en) Lead free solder composition and manufacturing method of the same, manufacturing method of piezoelectric element using lead free solder composition
JPH0892672A (en) Production of dispersion strengthened alloy
JPS6059195B2 (en) Manufacturing method of hard sintered material with excellent wear resistance and toughness
KR20180128384A (en) High strength aluminum alloy and method of fabricating the same
WO1992013811A1 (en) Method for manufacturing thermoelectric element
JPH09202901A (en) Production of sintered compact of titanium-nickel alloy
JPH10212508A (en) Powder material for electrical contact and its production
JP2971720B2 (en) Manufacturing method of oxide dispersion strengthened Cr-based heat resistant sintered alloy
JP3054698B2 (en) Method for producing particle-dispersed alloy powder
JPS59146918A (en) Production of double carbide
JPH0428805A (en) Method for alloying powder