JPS62192528A - Manufacture of maraging steel member having superior wear resistance and fatigue strength - Google Patents

Manufacture of maraging steel member having superior wear resistance and fatigue strength

Info

Publication number
JPS62192528A
JPS62192528A JP3476286A JP3476286A JPS62192528A JP S62192528 A JPS62192528 A JP S62192528A JP 3476286 A JP3476286 A JP 3476286A JP 3476286 A JP3476286 A JP 3476286A JP S62192528 A JPS62192528 A JP S62192528A
Authority
JP
Japan
Prior art keywords
maraging steel
residual stress
wear resistance
fatigue strength
compressive residual
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3476286A
Other languages
Japanese (ja)
Other versions
JPH0582452B2 (en
Inventor
Takatoshi Suzuki
隆敏 鈴木
Yoshihiro Oishi
大石 芳宏
Kazuyuki Nakanishi
和之 中西
Munehisa Matsui
宗久 松井
Takeo Ogasawara
小笠原 武夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Central R&D Labs Inc
Original Assignee
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Central R&D Labs Inc filed Critical Toyota Central R&D Labs Inc
Priority to JP3476286A priority Critical patent/JPS62192528A/en
Publication of JPS62192528A publication Critical patent/JPS62192528A/en
Publication of JPH0582452B2 publication Critical patent/JPH0582452B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Solid-Phase Diffusion Into Metallic Material Surfaces (AREA)
  • Heat Treatment Of Steel (AREA)

Abstract

PURPOSE:To provide superior wear resistance and fatigue strength to a maraging steel member by producing compressive stress in the surface part of the member before nitriding. CONSTITUTION:In the 1st stage, a member having the composition of a maraging steel is subjected to soln. heat treatment and cooled. In the 2nd stage, compressive residual stress is produced in at least a part of the member. In the 3rd stage, the member is heated to 400-480 deg.C in a nitriding atmosphere to age the interior of the member as well as to nitride the surface part including the part having the produced compressive residual stress and then the member is cooled to room temp.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、耐rfl耗性および疲労強度に優れたマルエ
ージング鋼製部材の製造方法に関する。本発明は、例え
ば、CVTベルト用フープの[1に利用することができ
る。ここでCVTベルト用フープとはV溝間隔を変換で
きる一対のプーリを有する無段変速機においてトルクを
伝達する複数個のトルク伝達板の保持に用いる無端の遮
断材をいう。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a method for manufacturing a maraging steel member having excellent RFL wear resistance and fatigue strength. INDUSTRIAL APPLICATION This invention can be utilized for [1 of the hoop for CVT belts, for example. Here, the CVT belt hoop refers to an endless blocking member used to hold a plurality of torque transmission plates that transmit torque in a continuously variable transmission that has a pair of pulleys that can change the V-groove spacing.

[従来の技術] マルエージング鋼は、時効硬化鋼として最も機械的性質
に優れており、高強度で靭性に富み、かつ冷間加工性に
も優れているなどの利点をもつため、種々の分野で利用
されている。
[Prior art] Maraging steel has the best mechanical properties among age-hardened steels, and has advantages such as high strength, high toughness, and excellent cold workability, so it is used in various fields. It is used in

ところで、マルエージング鋼製の部材の耐摩耗性および
疲労強度を向上させるにあたっては、一般に、マルエー
ジング鋼となる組成をもつ部材を800〜1000℃程
度に加熱して溶体化した後冷却する第1工程と、部材を
約500’C程度に加熱して時効処理を行って析出相を
析出させる第2工程と、窒化処理を行い部材の表面部を
窒化させる第3工程とを行うことにしている。
By the way, in order to improve the wear resistance and fatigue strength of a member made of maraging steel, generally speaking, the first step is to heat the member having the composition of maraging steel to about 800 to 1000°C to form a solution, and then cool it. The second step is to heat the component to about 500'C and perform an aging treatment to precipitate the precipitated phase, and the third step is to perform a nitriding treatment to nitride the surface of the component. .

更に産業界では、耐摩耗性および疲労強度に優れたマル
エージング鋼製の部材の開発が要請されている。
Furthermore, there is a demand in industry for the development of members made of maraging steel that have excellent wear resistance and fatigue strength.

[発明が解決しようとする問題点] 本発明は、上記した実情に鑑みなされたものであり、そ
の目的は、耐摩耗性および疲労強度を更に向上させた部
材を製造することができる製造方法を提供するにある。
[Problems to be Solved by the Invention] The present invention has been made in view of the above-mentioned circumstances, and its purpose is to provide a manufacturing method that can manufacture members with further improved wear resistance and fatigue strength. It is on offer.

〔問題点を解決するための手段] 本発明者は、マルエージング鋼について鋭意研究した結
果、窒化処理の前段階として、部材の表面部に圧縮応力
を付与してお番プば、窒化処理が促進され、これにより
表面硬さを硬くし得かつ表面圧縮残留応力を大きくする
ことができ、耐摩耗性および疲労強度を更に向上させ得
ることを発見した。その理由は必ずしも明らかではない
が、表面部の結晶格子が歪むため、原子半径の小さな窒
素原子が表面部に拡散浸透しやすくなり、その結果窒化
が容易になるためであると推察される。
[Means for Solving the Problems] As a result of intensive research on maraging steel, the inventor of the present invention found that, as a pre-stage of nitriding treatment, compressive stress is applied to the surface of the member, and then the nitriding treatment is carried out. It has been discovered that this can increase the surface hardness and increase the surface compressive residual stress, thereby further improving the wear resistance and fatigue strength. The reason for this is not necessarily clear, but it is presumed that the crystal lattice at the surface is distorted, making it easier for nitrogen atoms with a small atomic radius to diffuse into the surface, making nitridation easier.

本発明に係る製造方法は、マルエージング鋼となる組成
をもつ部材を溶体化したのち冷却する第1工程と、 溶体化した部材の表面部の少なくとも一部に圧縮残留応
力を付与する第2工程と、 窒化雰囲気中で400〜480℃に該部材を加熱するこ
とにより、該部材の圧縮残留応力を付与した部分を含む
表面部を窒化すると共に、該部材の内部の時効処理を行
い、その11室温に冷却する第3工程と、を順に実施す
ることを特徴とするものである。
The manufacturing method according to the present invention includes a first step of solutionizing a member having a composition to become maraging steel and then cooling it, and a second step of applying compressive residual stress to at least a part of the surface of the solutionized member. By heating the member to 400 to 480°C in a nitriding atmosphere, the surface portion of the member, including the portion to which compressive residual stress has been applied, is nitrided, and the inside of the member is subjected to aging treatment. A third step of cooling to room temperature is performed in order.

以下、本発明に係る製造方法について更に説明を加える
The manufacturing method according to the present invention will be further explained below.

第1工程では、マルエージング鋼となる組成をもつ部材
を溶体化した後冷却する。ここで部材の組成は、部材の
用途に応じて適宜設定するが、重量%で、ニッケル17
〜26%、アルミニウム0゜05〜0.5%、モリブデ
ン4〜6%、チタン0゜2〜1.6%、コバルト7〜1
2%、残部は鉄とすることができる。部材の厚みは部材
の用達に応じて適宜設定するが0.1〜i、Qs+sと
することができる。第1工程における加熱温度および加
熱&[は、ニッケル、アルミニウム、チタンなどの溶質
原子をオーステナイトに充分溶は込ませる温度に設定す
る必要がある。そのため第1工程における加熱濃度は、
通常、800〜850℃程度である。又第1工程におけ
る加熱時間は通常数時間である。第1工程における冷却
は、通常、空冷によって行う。なお第1工程を実施した
部材の組織はマルテンサイトである。
In the first step, a member having a composition that becomes maraging steel is solution-treated and then cooled. Here, the composition of the member is appropriately set depending on the use of the member, but in weight%, nickel 17
~26%, aluminum 0°05-0.5%, molybdenum 4-6%, titanium 0°2-1.6%, cobalt 7-1
2%, the balance can be iron. The thickness of the member is appropriately set depending on the intended use of the member, and may be 0.1 to i, Qs+s. The heating temperature and heating temperature in the first step must be set at a temperature that allows solute atoms such as nickel, aluminum, and titanium to be sufficiently infiltrated into austenite. Therefore, the heating concentration in the first step is
Usually, the temperature is about 800 to 850°C. Further, the heating time in the first step is usually several hours. Cooling in the first step is usually performed by air cooling. Note that the structure of the member subjected to the first step is martensite.

第2工程では、溶体化した部材の表面部の少なくとも一
部に圧縮残留応力を付与する。圧縮残留応力を付与する
手段としては、例えば、部材を引張りつつ小さな曲率半
径に曲成し、曲成部の外側に圧縮残留応力を付与する方
法、ショットやグリットなどを部材の表面に投射プる方
法、W!造型を揺動させつつ部材の表面部に押圧して据
え込んでいく回転鍛造法などを採用することができる。
In the second step, compressive residual stress is applied to at least a portion of the surface portion of the solution-treated member. Methods for applying compressive residual stress include, for example, stretching the member and bending it to a small radius of curvature and applying compressive residual stress to the outside of the curved part, or projecting shot or grit onto the surface of the member. Method, W! It is possible to employ a rotary forging method in which the mold is oscillated and pressed against the surface of the member to upset it.

圧縮残留応力の値は、要請される耐摩耗性および疲労強
度の値に応じて適宜設定するが、通常、5〜60Kll
l/Im’である。なお、圧縮残留応力を付与する部分
は、部材の表面部の全面であってもよいし、一部分だけ
であってもよい。
The value of compressive residual stress is set appropriately depending on the required values of wear resistance and fatigue strength, but is usually 5 to 60 Kll.
l/Im'. Note that the portion to which the compressive residual stress is applied may be the entire surface of the member, or may be only a portion thereof.

第3工程では、窒化雰囲気中で400〜480℃程度に
部材を加熱することにより、該部材の圧縮残留応力を付
与した部分を含む表面部を窒化すると共に、該部材の内
部の時効処理を行い、その後室温に冷LDする。ここで
通常のアンモニアガス窒化温度は450〜530℃であ
るのに対して、本発明に係る製造方法の窒化温度は40
0〜480℃程度と従来の通常のアンモニアガス窒化温
度に比べて低い温度範囲である。窒化温度が480℃を
超える場合には、第2工程において表面に付与した圧縮
残留応力が緩和され、本発明の目的である表面部の結晶
格子の歪を確保しつつ窒化を行うことができなくなって
しまうからである。特に本発明は部材表面に圧縮残留応
力を付与することにより、通常の処理温度450℃未満
の温度でも一窒化処理ができ、部材の変形を極小にする
ことができることである。又、400℃未満であると、
窒化が充分に行われなくなるからである。窒化雰囲気は
、一般にアンモニアガスを主要成分とする雰囲気であり
、炭素成分即ちRXガス、COガス、COtガスを含ま
ない方が好ましい。400〜480℃に加熱する時間は
、表面部に圧縮残留応力を付与することにより窒化が促
進されるため、通常の窒化時間よりも短時間とすること
ができる。
In the third step, by heating the member to approximately 400 to 480°C in a nitriding atmosphere, the surface portion of the member, including the portion to which compressive residual stress has been applied, is nitrided, and the inside of the member is subjected to aging treatment. , then cool LD to room temperature. Here, the normal ammonia gas nitriding temperature is 450 to 530°C, whereas the nitriding temperature of the manufacturing method according to the present invention is 40°C.
The temperature range is about 0 to 480°C, which is lower than the conventional normal ammonia gas nitriding temperature. If the nitriding temperature exceeds 480°C, the compressive residual stress imparted to the surface in the second step will be relaxed, making it impossible to perform nitriding while ensuring the distortion of the crystal lattice of the surface, which is the objective of the present invention. This is because Particularly, in the present invention, by applying compressive residual stress to the surface of the member, mononitriding treatment can be performed even at a temperature lower than the usual processing temperature of 450° C., and deformation of the member can be minimized. Also, if the temperature is less than 400°C,
This is because nitriding will not be performed sufficiently. The nitriding atmosphere is generally an atmosphere containing ammonia gas as a main component, and preferably does not contain carbon components, that is, RX gas, CO gas, and COt gas. The time for heating to 400 to 480° C. can be shorter than the normal nitriding time because nitriding is promoted by applying compressive residual stress to the surface portion.

例えば、0.1〜10時間程度とすることができる。For example, it can be about 0.1 to 10 hours.

このように第3工程を実施すると、部材の内部は時効処
理され、析出相がマトリックスを構成するマルテンサイ
トの中に析出する。
When the third step is carried out in this manner, the inside of the member is subjected to aging treatment, and a precipitated phase is precipitated into martensite that constitutes the matrix.

ところで、第3工程を実施した後に、連続あるいは時間
開隔をおいて還元性雰囲気中で470〜580℃に部材
を加熱して時効処理を追加する第4工程を実施すること
が好ましい。このように第4工程を実施ずれば、部材の
耐摩耗性および疲労強度を確保しつつ、部材の内部の耐
遅れ破壊性を一層向上させることができる。なお470
〜580℃に加熱する時間は、部材の種類によって適宜
変更するが、通常1〜24時間程度とすることができる
By the way, after carrying out the third step, it is preferable to carry out a fourth step of adding an aging treatment by heating the member to 470 to 580° C. in a reducing atmosphere either continuously or at intervals. By performing the fourth step in this manner, the delayed fracture resistance inside the member can be further improved while ensuring the wear resistance and fatigue strength of the member. In addition, 470
The time for heating to ~580°C is changed as appropriate depending on the type of member, but can usually be about 1 to 24 hours.

ここで、マルエージング鋼(特に18%ニッケルを含む
マルエージング鋼)では、水素イオンを含む雰囲気中で
440℃程度で時効処理を行なうと、部材の内部は遅れ
破壊強度が著しく低下する傾向にある。この点、第3工
程の窒化雰囲気が水素イオンを含む場合であっても、第
3工程後に第4工程を実施1れば、部材の内部の時効処
理を追加することができ、よって部材の内部の耐遅れ破
壊性を向上させることができる。
For maraging steel (particularly maraging steel containing 18% nickel), when aging treatment is performed at around 440°C in an atmosphere containing hydrogen ions, the delayed fracture strength of the interior of the member tends to decrease significantly. . In this regard, even if the nitriding atmosphere in the third step contains hydrogen ions, if the fourth step is performed after the third step, it is possible to add aging treatment to the inside of the member. It is possible to improve the delayed fracture resistance of.

[発明の効果] 本発明に係る製造方法によれば、従来の窒化処理したマ
ルエージング鋼製部材に比べて表面硬さおよび表面圧縮
残留応力を大きくすることができ、そのため、耐摩耗性
および疲労強度に優れたマルエージング鋼製の部材を、
製造することができる。
[Effects of the Invention] According to the manufacturing method of the present invention, the surface hardness and surface compressive residual stress can be increased compared to conventional nitrided maraging steel members, and therefore wear resistance and fatigue resistance can be increased. Maraging steel members with excellent strength,
can be manufactured.

従って、CvTベルトのフープの製造に本発明で得られ
る部材を適用すれば、耐久性があり長寿命のフープを得
ることができる。
Therefore, if the member obtained by the present invention is applied to the manufacture of a hoop for a CvT belt, a hoop that is durable and has a long life can be obtained.

[実施例] 本発明に係る製造方法の実施例について説明する。[Example] Examples of the manufacturing method according to the present invention will be described.

(第1実11 第1工程では、部材を真空炉内に装入し、820℃で加
熱することにより溶体化し、これによりニッケルやチタ
ンなどの溶質原子をオーステナイトに固溶した。そして
その後部材を冷却した。冷却は窒素ガスおよびアルゴン
ガスにJ:って行った。
(First Act 11 In the first step, the member was placed in a vacuum furnace and heated at 820°C to form a solution, thereby solidly dissolving solute atoms such as nickel and titanium into the austenite.Then, the member was Cooling was performed using nitrogen gas and argon gas.

ここで部材の形状は無端フープで、その大きさは、厚み
0.19ma+、幅8.6IIm、内周長224II1
mである。部材の組成は重量%で、ニッケル17.75
%、アルミニウムo、oso%、モリブデン4゜76%
、チタン0.48%、コバルト7.75%、Go、00
54%、Si0.038%、SO,O003%、残部は
鉄である。
Here, the shape of the member is an endless hoop, and its size is 0.19 m thick, 8.6 m wide, and 224 m long in inner circumference.
It is m. The composition of the part is nickel 17.75% by weight.
%, aluminum o, oso%, molybdenum 4゜76%
, Titanium 0.48%, Cobalt 7.75%, Go, 00
54%, Si0.038%, SO, O003%, and the balance is iron.

第2工程では、2個の張力用ローラにより、部材に50
KO/mm2の張力を与えつつ、曲げ用小径ロールで部
材を曲げ加工し、以て部材の外表面部に50K(+/m
+a2の圧縮残留応力を付与した。
In the second step, two tension rollers apply 50
While applying a tension of KO/mm2, the part is bent with a small diameter bending roll, and the outer surface of the part is bent at 50K (+/m2).
A compressive residual stress of +a2 was applied.

なお張力用ローラの直径は70+ani、曲げ用小径ロ
ールの直径は20mmである。
The diameter of the tension roller is 70+ani, and the diameter of the small diameter bending roll is 20 mm.

第3工程では、窒化用のレトルト炉内に部材を挿入し、
そしてレトルト炉内に純度99%以上のアンモニアガス
(NH3)を毎分1.5リツトルで流しつつレトルト炉
内を435℃まで昇温し、その温度に6時間保持して行
なった。そして保持後、室温まで冷却した。
In the third step, the member is inserted into a nitriding retort furnace,
Then, while flowing ammonia gas (NH3) with a purity of 99% or more into the retort furnace at a rate of 1.5 liters per minute, the temperature inside the retort furnace was raised to 435° C., and the temperature was maintained at that temperature for 6 hours. After holding, it was cooled to room temperature.

このように第11程〜第3工程を実施した部材では、ア
ンモニアガスから分解した窒素が部材の表面部に拡散浸
透して窒化がなされ、よって部材の表面部の硬さはHV
1030程度であり、部材の内部の硬さはHV520程
度であった。ここで硬さの測定はマイクロビッカース機
を用い、荷重50aで行った。又部材の表面部の圧縮残
留応力は窒化により160 KIJ /mm2と増大し
ていた。
In the parts that have been subjected to steps 11 to 3 in this way, the nitrogen decomposed from the ammonia gas diffuses into the surface of the part and is nitrided, so that the hardness of the surface of the part is HV.
The hardness of the inside of the member was about HV520. The hardness was measured using a micro Vickers machine under a load of 50a. Furthermore, the compressive residual stress on the surface of the member increased to 160 KIJ/mm2 due to nitriding.

ここで圧縮残留応力の測定はX線側順法で行った。Here, the compressive residual stress was measured by the X-ray lateral method.

上記のようにして第1工程〜第3工程を実施した部材は
、表面部の硬さが硬く、かつ表面部の圧縮残留応力の値
が増大していることから、耐摩耗性および疲労強度に優
れている。
The parts subjected to the first to third steps as described above have a hard surface and an increased value of compressive residual stress on the surface, so they have poor wear resistance and fatigue strength. Are better.

上記のようにして第1工程〜第3工程を実施したフープ
をCVTベルトの一部材として組込んだ。
The hoop that underwent the first to third steps as described above was incorporated as a member of a CVT belt.

なお、第1図はCVTの概略図を示し、第2図はCTV
ベルトの一部を示す。このCVTは、プーリ1と、プー
リ2と、プーリ1および2間に張設されたベルト3とで
構成されている。ツー74は第2図に示すように金属製
のトルク伝達板5の溝に保持され、トルク伝達板5と共
にベルト3を構成している。上記のようにCTVベルト
に組み込んだフープは、耐久性があり、長寿命であった
In addition, Fig. 1 shows a schematic diagram of CVT, and Fig. 2 shows a CTV.
Part of the belt is shown. This CVT includes a pulley 1, a pulley 2, and a belt 3 stretched between the pulleys 1 and 2. As shown in FIG. 2, the tool 74 is held in the groove of the metal torque transmission plate 5, and together with the torque transmission plate 5 constitutes the belt 3. Hoops incorporated into CTV belts as described above were durable and had a long life.

ところで、上記した実施例において、第3工程で窒化お
よび時効処理のために部材を加熱する時間とフープの表
面硬さとの関係について試験した。
By the way, in the above-mentioned example, the relationship between the time for heating the member for nitriding and aging treatment in the third step and the surface hardness of the hoop was tested.

加熱する時間は、1.5.3.6.12時周とした。試
験結果を第3図に黒丸印で示す。第3図に示すように、
加熱時間が3時間のときには表面硬さはHV780程度
であり、加熱時間が6時間のときには窒化が充分になさ
れ、そのため表面硬さはHv1030程度と硬かった。
The heating time was 1,5,3,6,12 hours. The test results are shown in Figure 3 with black circles. As shown in Figure 3,
When the heating time was 3 hours, the surface hardness was about HV780, and when the heating time was 6 hours, nitriding was sufficient, so the surface hardness was about HV1030.

又、第3工程で窒化および時効処理のために部材を加熱
する時間とフープの表面部の圧縮残留応力との関係につ
いて試験した。加熱する時間は1゜5.3.6時間とし
た。試験結果を第4図に黒丸印で示す。第4図に示すよ
うに、加熱時間が3時間のときには残留応力の値は10
8KO/am’程度であり、加p!A時間が6時間のと
きには残留応力の値は152 KIJ /a+m2程度
と飛躍的に増大した。
Furthermore, in the third step, the relationship between the heating time of the member for nitriding and aging treatment and the compressive residual stress on the surface of the hoop was tested. The heating time was 1°5.3.6 hours. The test results are shown in Figure 4 with black circles. As shown in Figure 4, when the heating time was 3 hours, the residual stress value was 10.
It's about 8 KO/am', plus p! When time A was 6 hours, the value of residual stress increased dramatically to about 152 KIJ/a+m2.

なお、残留応力の測定はX線応力測定法であるX線側順
法によって行なった。
Note that the residual stress was measured by the X-ray lateral method, which is an X-ray stress measurement method.

一方、比較例として従来の製造方法について、窒化のた
めに加熱した時間とフープの表面硬さとの関係、窒化の
ために加熱した時間とフープの表面部の圧縮残留応力の
値との関係を試験した。ここで従来の製造方法では、第
1実施例と同じマルエージング鋼となる組成を持つ部材
を第2工程をはふいて、第1実施例と同時に実施して行
なった。
On the other hand, as a comparative example, we tested the relationship between the heating time for nitriding and the surface hardness of the hoop, and the relationship between the heating time for nitriding and the value of compressive residual stress on the surface of the hoop using the conventional manufacturing method. did. Here, in the conventional manufacturing method, a member having the same composition as the maraging steel as in the first embodiment was removed from the second step and carried out simultaneously with the first embodiment.

比較例の試・験結果を第3図の白丸印、第4図の白丸印
に示す。
The test results of the comparative example are shown by white circles in FIG. 3 and white circles in FIG. 4.

さて、第1実施例における試験結果と比較例における試
験結果とを比較すると、第3!!lでは加熱rumが1
.5時間程度までは、硬さの左置はあまり認められない
が、これを越えると両者の硬さの差異が大きくなる。第
4図では比較例では圧縮残留応力の値の増加は第4図の
破線で示すようにほぼ一直線状であるが、第1実施例で
は加熱時間が1.5時間を越えると圧縮rA留応力の値
は飛躍的に増加する。上述の試験結果からして、窒化処
理の前に圧縮残留応力を付与すると、窒化を促進させて
いることが理解される。
Now, when we compare the test results in the first example and the test results in the comparative example, we find that 3rd! ! In l, heating rum is 1
.. Up to about 5 hours, the hardness does not change much, but after this time the difference in hardness between the two becomes large. Fig. 4 shows that in the comparative example, the increase in the value of the compressive residual stress is almost linear as shown by the broken line in Fig. 4, but in the first example, when the heating time exceeds 1.5 hours, the compressive rA residual stress increases. The value of increases dramatically. From the above test results, it is understood that applying compressive residual stress before nitriding promotes nitriding.

又、第3工程で窒化および時効処理のために部材を加熱
した温度とフープの表面硬さとの関係について試験した
。加熱温度は435.450.465.480.495
℃とした。なお、加熱時間は6時間である。試験結果を
第5因に示す。第5図に示すように、加熱温度が高くな
るにつれて表面硬さは低下する。これは通常の窒化温度
と表面硬さとの関係と逆である。即ち、通常の窒化では
窒化温度が上昇すると表面硬さは硬くなるが、本例では
、加熱温度が450℃のときには表面硬さはHv950
41¥度であったのに対し、加熱温度が480℃を越え
ると表面硬さはHv700程度と低下する。この結果か
ら第3工程における加熱温度は480℃を越えないよう
に設定した方がよいことがわかる。
In addition, the relationship between the temperature at which the member was heated for nitriding and aging treatment in the third step and the surface hardness of the hoop was tested. Heating temperature is 435.450.465.480.495
℃. Note that the heating time was 6 hours. The test results are shown in the fifth factor. As shown in FIG. 5, the surface hardness decreases as the heating temperature increases. This is the opposite of the normal relationship between nitriding temperature and surface hardness. That is, in normal nitriding, the surface hardness increases as the nitriding temperature increases, but in this example, when the heating temperature is 450°C, the surface hardness is Hv950.
When the heating temperature exceeds 480°C, the surface hardness decreases to about Hv700. This result shows that it is better to set the heating temperature in the third step so as not to exceed 480°C.

又、第3工程で窒化および時効処理のために部材を加熱
した温度とフープの表面部の圧縮残留応力の値との関係
、該温度とフープの表面部の歪との関係を試験した。試
験結果を第6図および第7図に示す。第6図に示すよう
に温度が^い程圧縮残留応力の値は低下しているのがわ
かる。ここで第6図で示す「表」とは無端フープ形状の
外側をいい、rl[Jとは内側をいう。また、第7図に
示すように温度が高いほど半価幅が小さくなっており、
表面部の歪が小さくなっていることがわかる。
In addition, the relationship between the temperature at which the member was heated for nitriding and aging treatment in the third step and the value of the compressive residual stress on the surface of the hoop, and the relationship between the temperature and the strain on the surface of the hoop were tested. The test results are shown in FIGS. 6 and 7. As shown in Figure 6, it can be seen that the higher the temperature, the lower the value of compressive residual stress. Here, the "front" shown in FIG. 6 refers to the outside of the endless hoop shape, and rl[J refers to the inside. Furthermore, as shown in Figure 7, the higher the temperature, the smaller the half-value width.
It can be seen that the distortion in the surface area is reduced.

(第2実施例) 第2実施例に係る製造方法では、−上記した第1実施例
の第1工程〜第3工程を実施した後、続いて次の第4工
程を行った。第4工程は、部材を収納した上記レトルト
炉内にアルゴンガスを送入し、レトルト炉内のアンモニ
アガスをアルゴンガスに置換え、次にレトルト炉内の部
材を500℃で2時間加熱することにより行った。この
J:うにすれば、部材の内部の時効処理が更に進行する
。そのため、表面部の硬さはHv 1010程度であり
、内部の硬さは、第3工程実施後は前述したようにHv
520程度であったのに対しHv 600程度である。
(Second Example) In the manufacturing method according to the second example, - after implementing the first to third steps of the first example described above, the following fourth step was performed. The fourth step is to introduce argon gas into the retort furnace containing the parts, replace the ammonia gas in the retort furnace with argon gas, and then heat the parts in the retort furnace at 500°C for 2 hours. went. If this J: is done, the aging treatment inside the member will further proceed. Therefore, the hardness of the surface part is about Hv 1010, and the hardness of the inside after the third step is Hv as mentioned above.
While it was about 520, Hv is about 600.

又表面部の圧縮残留応力は150Kg/Im”である。Moreover, the compressive residual stress of the surface portion is 150 Kg/Im''.

上記した測定結果から明らかなように、部材の内部の硬
さが増加している。この結果から、部材の内部の時効効
果が促進されて析出相の析出が増したことがわかる。こ
のように時効効果が促進されると、部材の内部の耐送り
破壊性が向上する。
As is clear from the above measurement results, the internal hardness of the member is increasing. This result shows that the aging effect inside the member was promoted and the precipitation of the precipitated phase increased. When the aging effect is promoted in this way, the internal feed fracture resistance of the member is improved.

(第3実施例) 11!1工程では、マルエージング鋼組成をもち、幅8
−11厚さ0.165m−の部材を用い、この部材を2
個、820℃で30分間加熱して溶体化した。ここで部
材の組成は第1実施例と同じである。
(Third Example) In the 11!1 process, the maraging steel composition is used, and the width is 8.
-11 A member with a thickness of 0.165 m is used, and this member is
The solution was heated at 820° C. for 30 minutes. The composition of the members here is the same as in the first embodiment.

次に第2工程では、2個の部材の表面部にロール加工で
圧縮残留応力を付与した。そして第2工程を行なった部
材の板厚方向の残留応力分布を歪計法により測定した。
Next, in the second step, compressive residual stress was applied to the surface portions of the two members by roll processing. Then, the residual stress distribution in the thickness direction of the member subjected to the second step was measured by a strain meter method.

測定は、長さ60−の部材の片側表面に歪ゲージを貼り
付け、反対側の面を混酸で腐蝕して板厚を減少させ、減
少させた際の歪ゲージの出力から板厚方向深さに相当す
る残留応力を算出して行った。その測定結果を第8図の
曲線△−1に示す。第8図に示すように表面部には20
〜30K(1/am”(本試験片は、切断前のフープ形
状のときの圧縮応力は50KIJ/a+a+ffiであ
ったが、長さ60II11に切断されたため表面圧縮応
力が少し減少したもの)の圧縮残留応力が生じていた。
Measurement was carried out by pasting a strain gauge on one surface of a 60-length member, corroding the other side with mixed acid to reduce the thickness, and calculating the depth in the thickness direction from the output of the strain gauge at the time of reduction. This was done by calculating the residual stress corresponding to . The measurement results are shown in curve Δ-1 in FIG. As shown in Figure 8, there are 20
Compression of ~30K (1/am" (this test piece had a compressive stress of 50KIJ/a+a+ffi when it was hoop-shaped before cutting, but the surface compressive stress was slightly reduced because it was cut to a length of 60II11) Residual stress had occurred.

次に第3工程として、残りの部材をアンモニアガス°雰
囲気中にJ5いて、440℃で4時間加熱して窒化する
と共に、部材の内部の時効処理を行い、その後室温まで
冷却した。第3工程を終えた部材を長さ60111に切
断し、板厚方向の残留応力の値を測定した。測定方法は
前述同様に歪計法によって行った。測定結果を第9図の
曲線A−2に示す。
Next, as a third step, the remaining member was placed in an ammonia gas atmosphere and heated at 440° C. for 4 hours to nitridate, and the inside of the member was subjected to aging treatment, and then cooled to room temperature. After completing the third step, the member was cut into a length of 60111, and the value of residual stress in the thickness direction was measured. The measurement method was the same as described above using the strain meter method. The measurement results are shown in curve A-2 in FIG.

第9図の曲1!A−2に示すように表面部の圧縮残留応
力の値は100KQ/am”近く表面部の圧縮残留応力
の値が窒化前に比べて大幅に増大していることがわかる
Song 1 in Figure 9! As shown in A-2, the value of the compressive residual stress in the surface portion is close to 100 KQ/am'', which indicates that the value of the compressive residual stress in the surface portion is significantly increased compared to before nitriding.

比較例として、同じ組成、同じ大きさをもつ部材につい
て圧縮残留応力を付与しない点のみ異ならせ他の条件は
第3実施例と同様にして、第1工程〜第3工程を行った
。比較例では、第1工程を終えた部材は、第8図に曲線
B−1で示すように圧縮残留応力の値はぼぼ0であり、
一方8113工程を終えた部材は、第9図に曲線B−2
で示すように表面部の圧縮残留応力は精々20Kg/m
m’程度と小さかった。
As a comparative example, the first to third steps were performed on members having the same composition and the same size, except that no compressive residual stress was applied, and the other conditions were the same as in the third example. In the comparative example, the compressive residual stress value of the member after the first step was almost 0, as shown by curve B-1 in FIG.
On the other hand, the part that has undergone the 8113 process is shown in curve B-2 in Figure 9.
As shown in , the compressive residual stress on the surface is at most 20 kg/m.
It was small, about m'.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はCUTベルト全体の側面図、第2図はベルトの
要部の斜視図、第3図は加熱時間とフープの表面硬さと
の関係を示すグラフ、第4図は加熱時間とフープの表面
部の圧縮残留応力との関係を示すグラフ、第5図は加熱
時間とフープの表面硬さとの関係を示すグラフ、第6図
は加熱時間と圧縮3I留応力との関係を示すグラフ、第
7図は加熱時間と半値幅との関係を示すグラフである。 第8図及び第9図は応力分布を示すグラフである。 特許出願人   株式会社Φ田中央研究所代理人   
 弁理士 大川 宏 同     弁理士 丸山明夫 第1図 第2図 第3図 時間(Hr、ズ凍) 第4図 第5図 i   度 (0C) 第6図 過 度 (°C) ア       第7図 ル 星 罠 (°C) $8図
Figure 1 is a side view of the entire CUT belt, Figure 2 is a perspective view of the main parts of the belt, Figure 3 is a graph showing the relationship between heating time and hoop surface hardness, and Figure 4 is a graph showing the relationship between heating time and hoop surface hardness. A graph showing the relationship between the compressive residual stress of the surface portion, Figure 5 is a graph showing the relationship between the heating time and the surface hardness of the hoop, and Figure 6 is a graph showing the relationship between the heating time and the compressive 3I residual stress. FIG. 7 is a graph showing the relationship between heating time and half width. FIGS. 8 and 9 are graphs showing stress distribution. Patent Applicant: Representative of ΦDA Central Research Institute Co., Ltd.
Patent Attorney Hirodo Okawa Patent Attorney Akio Maruyama Figure 1 Figure 2 Figure 3 Time (Hr, Zr) Figure 4 Figure 5 i degree (0C) Figure 6 Excess (°C) A Figure 7 Star Trap (°C) $8 Figure

Claims (7)

【特許請求の範囲】[Claims] (1)マルエージング鋼となる組成をもつ部材を溶体化
したのち冷却する第1工程と、 溶体化した部材の表面部の少なくとも一部に圧縮残留応
力を付与する第2工程と、 窒化雰囲気中で400〜480℃に該部材を加熱するこ
とにより、該部材の圧縮残留応力を付与した部分を含む
表面部を窒化すると共に、該部材の内部の時効処理を行
い、その後室温に冷却する第3工程と、 を順に実施することを特徴とする耐摩耗性および疲労強
度に優れたマルエージング鋼製部材の製造方法。
(1) A first step of solutionizing a member having a composition to become maraging steel and then cooling it; a second step of applying compressive residual stress to at least a portion of the surface of the solutionized member; and a nitriding atmosphere. By heating the member to 400 to 480°C, the surface portion of the member, including the portion to which compressive residual stress has been applied, is nitrided, and the inside of the member is subjected to aging treatment, and then the third step is to cool the member to room temperature. A method for manufacturing a maraging steel member with excellent wear resistance and fatigue strength, characterized by carrying out the following steps in order.
(2)第3工程後に、還元性雰囲気中で470〜580
℃に部材を加熱して時効処理を追加し、該部材の耐遅れ
破壊性を高める第4工程を実施することを特徴とする耐
摩粍性および疲労強度に優れたマルエージング鋼製部材
の製造方法。
(2) After the third step, 470-580 in a reducing atmosphere
A method for manufacturing a maraging steel member with excellent wear resistance and fatigue strength, characterized by carrying out a fourth step of heating the member to a temperature of °C to add an aging treatment and increasing the delayed fracture resistance of the member. .
(3)第2工程では、部材に付与される表面圧縮残留応
力は10Kg/mm^2〜60Kg/mm^2である特
許請求の範囲第1項記載の耐摩耗性および疲労強度に優
れたマルエージング鋼製部材の製造方法。
(3) In the second step, the surface compressive residual stress imparted to the member is 10 Kg/mm^2 to 60 Kg/mm^2. A method for producing aged steel members.
(4)第3工程の窒化雰囲気はアンモニアガスを主要成
分とするガスである特許請求の範囲第1項記載の耐摩耗
性および疲労強度に優れたマルエージング鋼製部材の製
造方法。
(4) The method for manufacturing a maraging steel member having excellent wear resistance and fatigue strength according to claim 1, wherein the nitriding atmosphere in the third step is a gas containing ammonia gas as a main component.
(5)部材の組成は、重量%で、Ni17〜26%、A
l0.05〜0.5%、Mo4〜6%、Ti0.2〜1
.6%、Co7〜12%、残部はFeである特許請求の
範囲第1項記載の耐摩耗性および疲労強度に優れたマル
エージング鋼製部材の製造方法。
(5) The composition of the member is 17 to 26% Ni, A
l0.05-0.5%, Mo4-6%, Ti0.2-1
.. 6% Co, 7 to 12% Co, and the balance is Fe. 2. The method of manufacturing a maraging steel member having excellent wear resistance and fatigue strength according to claim 1.
(6)部材の厚みは0.1〜1.0mmである特許請求
の範囲第1項記載の耐摩耗性および疲労強度に優れたマ
ルエージング鋼製部材の製造方法。
(6) The method for manufacturing a maraging steel member with excellent wear resistance and fatigue strength according to claim 1, wherein the member has a thickness of 0.1 to 1.0 mm.
(7)部材はCVTベルト用のフープに用いられる特許
請求の範囲第1項記載の耐摩耗性および疲労強度に優れ
たマルエージング鋼製部材の製造方法。
(7) A method for manufacturing a maraging steel member having excellent wear resistance and fatigue strength as set forth in claim 1, wherein the member is used for a hoop for a CVT belt.
JP3476286A 1986-02-19 1986-02-19 Manufacture of maraging steel member having superior wear resistance and fatigue strength Granted JPS62192528A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3476286A JPS62192528A (en) 1986-02-19 1986-02-19 Manufacture of maraging steel member having superior wear resistance and fatigue strength

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3476286A JPS62192528A (en) 1986-02-19 1986-02-19 Manufacture of maraging steel member having superior wear resistance and fatigue strength

Publications (2)

Publication Number Publication Date
JPS62192528A true JPS62192528A (en) 1987-08-24
JPH0582452B2 JPH0582452B2 (en) 1993-11-19

Family

ID=12423323

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3476286A Granted JPS62192528A (en) 1986-02-19 1986-02-19 Manufacture of maraging steel member having superior wear resistance and fatigue strength

Country Status (1)

Country Link
JP (1) JPS62192528A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6309474B1 (en) 1999-03-04 2001-10-30 Honda Giken Kogyo Kabushiki Kaisha Process for producing maraging steel
EP1176224A1 (en) * 2000-07-24 2002-01-30 Nissan Motor Co., Ltd. Nitrided maraging steel and method of manufacturing thereof
US6858099B2 (en) 2001-04-06 2005-02-22 Honda Giken Kogyo Kabushiki Kaisha Steel material production method
WO2009056169A1 (en) * 2007-10-31 2009-05-07 Robert Bosch Gmbh Drive belt ring component and manufacturing method therefor

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0733363U (en) * 1993-11-26 1995-06-20 勝則 小山 Sprinkler-head adapter
JPH0733364U (en) * 1993-11-26 1995-06-20 勝則 小山 Sprinkler-head fitting

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6130660A (en) * 1984-07-20 1986-02-12 Toyota Motor Corp Method for subjecting high-alloy steel member to gas soft-nitriding

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6130660A (en) * 1984-07-20 1986-02-12 Toyota Motor Corp Method for subjecting high-alloy steel member to gas soft-nitriding

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6309474B1 (en) 1999-03-04 2001-10-30 Honda Giken Kogyo Kabushiki Kaisha Process for producing maraging steel
EP1176224A1 (en) * 2000-07-24 2002-01-30 Nissan Motor Co., Ltd. Nitrided maraging steel and method of manufacturing thereof
US6733600B2 (en) 2000-07-24 2004-05-11 Nissan Motor Co., Ltd. Nitrided maraging steel and method of manufacture thereof
US6858099B2 (en) 2001-04-06 2005-02-22 Honda Giken Kogyo Kabushiki Kaisha Steel material production method
WO2009056169A1 (en) * 2007-10-31 2009-05-07 Robert Bosch Gmbh Drive belt ring component and manufacturing method therefor
JP2011502214A (en) * 2007-10-31 2011-01-20 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング Ring component of transmission belt and manufacturing method therefor

Also Published As

Publication number Publication date
JPH0582452B2 (en) 1993-11-19

Similar Documents

Publication Publication Date Title
US6631542B1 (en) Method of manufacturing laminated ring and heat treatment apparatus for use in such method
US7763123B2 (en) Spring produced by a process comprising coiling a hard drawn steel wire excellent in fatigue strength and resistance to setting
JP6755106B2 (en) Nitriding steel member and manufacturing method of nitrided steel member
WO2015064202A1 (en) Spring and process for producing spring
JP3421265B2 (en) Metastable austenitic stainless steel sheet for continuously variable transmission belt and method of manufacturing the same
JPS62192528A (en) Manufacture of maraging steel member having superior wear resistance and fatigue strength
WO2015087869A1 (en) Ring member for cvt and method for producing same
JPH0971841A (en) Steel for soft-nitriding
JPH09279295A (en) Steel for soft-nitriding excellent in cold forgeability
JP2001026857A (en) Gas nitriding method for maraging steel
JP3850659B2 (en) Manufacturing method of laminated ring
JP7471206B2 (en) Steel surface treatment method
JP5784144B2 (en) Heat treatment process for manufacturing process of drive belt metal ring components
US20190331197A1 (en) Endless metal ring and method of producing the same
JP2000337453A (en) Manufacture of endless metallic belt
JP2002302715A (en) Method for manufacturing steel product
JP3784774B2 (en) Heat treatment method for metal rings
JP3986996B2 (en) Method for nitriding metal ring
JP2000225567A (en) Shot peening method for metal plate
JPH01142052A (en) Seamless metallic belt and its production
JP2001150074A (en) Method of manufacturing endless metallic belt
JP3744625B2 (en) Martensitic stainless steel sheet with excellent corrosion resistance and fatigue characteristics and method for producing the same
JPH089734B2 (en) Method for producing ultra high strength steel wire with excellent ductility
JP4443673B2 (en) Method for producing endless metal belt
JPH11200010A (en) Surface treatment of metallic multilayered belt for automobile

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees