JPH0582452B2 - - Google Patents

Info

Publication number
JPH0582452B2
JPH0582452B2 JP61034762A JP3476286A JPH0582452B2 JP H0582452 B2 JPH0582452 B2 JP H0582452B2 JP 61034762 A JP61034762 A JP 61034762A JP 3476286 A JP3476286 A JP 3476286A JP H0582452 B2 JPH0582452 B2 JP H0582452B2
Authority
JP
Japan
Prior art keywords
residual stress
compressive residual
nitriding
temperature
hoop
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP61034762A
Other languages
Japanese (ja)
Other versions
JPS62192528A (en
Inventor
Takatoshi Suzuki
Yoshihiro Ooishi
Kazuyuki Nakanishi
Munehisa Matsui
Takeo Ogasawara
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Central R&D Labs Inc
Original Assignee
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Central R&D Labs Inc filed Critical Toyota Central R&D Labs Inc
Priority to JP3476286A priority Critical patent/JPS62192528A/en
Publication of JPS62192528A publication Critical patent/JPS62192528A/en
Publication of JPH0582452B2 publication Critical patent/JPH0582452B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Solid-Phase Diffusion Into Metallic Material Surfaces (AREA)
  • Heat Treatment Of Steel (AREA)

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、耐摩耗性および疲労強度に優れたマ
ルエージング鋼製部材の製造方法に関する。本発
明は、例えば、CVTベルト用フープの製造に利
用することができる。ここでCVTベルト用フー
プとはV溝間隔を変換できる一対のプーリを有す
る無段変速機においてトルクを伝達する複数個の
トルク伝達板の保持に用いる無端の遮断材をい
う。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a method of manufacturing a maraging steel member having excellent wear resistance and fatigue strength. The present invention can be used, for example, to manufacture hoops for CVT belts. Here, the CVT belt hoop refers to an endless blocking member used to hold a plurality of torque transmission plates that transmit torque in a continuously variable transmission that has a pair of pulleys that can change the V-groove spacing.

[従来の技術] マルエージング鋼は、時効硬化鋼として最も機
械的性質に優れており、高強度で靭性に富み、か
つ冷間加工性にも優れているなどの利点をもつた
め、種々の分野で利用されている。
[Prior art] Maraging steel has the best mechanical properties among age-hardened steels, and has advantages such as high strength, high toughness, and excellent cold workability, so it is used in various fields. It is used in

ところで、マルエージング鋼製の部材の耐摩耗
性および疲労強度を向上させるにあたつては、一
般に、マルエージング鋼となる組成をもつ部材を
800〜1000℃程度に加熱して溶体化した後冷却す
る第1工程と、部材を約500℃程度に加熱して時
効処理を行つて析出相を析出させる第2工程と、
窒化処理を行い部材の表面部を窒化させる第3工
程とを行うことにしている。
By the way, in order to improve the wear resistance and fatigue strength of maraging steel members, it is common to use members with a composition that is maraging steel.
A first step in which the member is heated to about 800 to 1000°C to form a solution and then cooled; a second step in which the member is heated to about 500°C and subjected to aging treatment to precipitate a precipitated phase;
A third step of nitriding the surface portion of the member is performed.

更に産業界では、耐摩耗性および疲労強度に優
れたマルエージング鋼製の部材の開発が要請され
ている。
Furthermore, there is a demand in industry for the development of members made of maraging steel that have excellent wear resistance and fatigue strength.

[発明が解決しようとする問題点] 本発明は、上記した実情に鑑みなされたもので
あり、その目的は、耐摩耗性および疲労強度を更
に向上させた部材を製造することができる製造方
法を提供するにある。
[Problems to be Solved by the Invention] The present invention has been made in view of the above-mentioned circumstances, and its purpose is to provide a manufacturing method that can manufacture members with further improved wear resistance and fatigue strength. It is on offer.

[問題点を解決するための手段] 本発明者は、マルエージング鋼について鋭意研
究した結果、窒化処理の前段階として、部材の表
面部に圧縮応力を付与しておけば、窒化処理が促
進され、これにより表面硬さを硬くし得かつ表面
圧縮残留応力を大きくすることができ、耐摩耗性
および疲労強度を更に向上させ得ることを発見し
た。その理由は必ずしも明らかではないが、表面
部の結晶格子が歪むため、原子半径の小さな窒素
原子が表面部に拡散浸透しやすくなり、その結果
窒化が容易になるためであると推察される。
[Means for Solving the Problems] As a result of intensive research on maraging steel, the present inventor has found that nitriding can be accelerated by applying compressive stress to the surface of the member as a pre-nitriding step. It has been discovered that this makes it possible to increase the surface hardness and increase the surface compressive residual stress, thereby further improving wear resistance and fatigue strength. The reason for this is not necessarily clear, but it is presumed that the crystal lattice at the surface is distorted, making it easier for nitrogen atoms with a small atomic radius to diffuse into the surface, making nitridation easier.

本発明に係る製造方法は、マルエージング鋼と
なる組成をもつ部材を溶体化したのち冷却する第
1工程と、溶体化した部材の表面部の少なくとも
一部に5Kg/mm2〜60Kg/mm2の圧縮残留応力を付与
する第2工程と、窒化雰囲気中で400〜480℃に部
材を加熱することにより、部材の圧縮残留応力を
付与した部分を含む表面部を窒化すると共に、部
材の内部の時効処理を行い、その後室温に冷却す
る第3工程と、を順に実施することを特徴とする
ものである。
The manufacturing method according to the present invention includes a first step of solutionizing a member having a composition to become maraging steel and then cooling it, and applying 5Kg/mm 2 to 60Kg/mm 2 to at least a part of the surface of the solutionized member. The second step is to apply a compressive residual stress of A third step of performing aging treatment and then cooling to room temperature is performed in order.

以下、本発明に係る製造方法について更に説明
を加える。
The manufacturing method according to the present invention will be further explained below.

第1工程では、マルエージング鋼となる組成を
もつ部材を溶体化した後冷却する。ここで部材の
組成は、部材の用途に応じて適宜設定するが、重
量%で、ニツケル17〜26%、アルミニウム0.05〜
0.5%、モリブデン4〜6%、チタン0.2〜1.6%、
コバルト7〜12%、残部は鉄とすることができ
る。部材の厚みは部材の用途に応じて適宜設定す
るが0.1〜1.0mmとすることができる。第1工程に
おける加熱温度および加熱時間は、ニツケル、ア
ルミニウム、チタンなどの溶質原子をオーステナ
イトに充分溶け込ませる温度に設定する必要があ
る。そのため第1工程における加熱温度は、通
常、800〜850℃程度である。又第1工程における
加熱時間は通常数時間である。第1工程における
冷却は、通常、空冷によつて行う。なお第1工程
を実施した部材の組織はマルテンサイトである。
In the first step, a member having a composition that becomes maraging steel is solution-treated and then cooled. Here, the composition of the component is set appropriately depending on the use of the component, but in terms of weight percent, nickel is 17-26%, aluminum is 0.05-26%.
0.5%, molybdenum 4-6%, titanium 0.2-1.6%,
It can be 7-12% cobalt, the balance iron. The thickness of the member is appropriately set depending on the use of the member, and can be 0.1 to 1.0 mm. The heating temperature and heating time in the first step must be set at a temperature that allows solute atoms such as nickel, aluminum, titanium, etc. to sufficiently dissolve into austenite. Therefore, the heating temperature in the first step is usually about 800 to 850°C. Further, the heating time in the first step is usually several hours. Cooling in the first step is usually performed by air cooling. Note that the structure of the member subjected to the first step is martensite.

第2工程では、溶体化した部材の表面部の少な
くとも一部に圧縮残留応力を付与する。圧縮残留
応力を付与する手段としては、例えば、部材を引
張りつつ小さな曲率半径に曲成し、曲成部の外側
に圧縮残留応力を付与する方法、シヨツトやグリ
ツトなどを部材の表面に投射する方法、鋳造型を
揺動させつつ部材の表面部に押圧して据え込んで
いく回転鍛造法などを採用することができる。圧
縮残留応力の値は、要請される耐摩耗性および疲
労強度の値に応じて適宜設定するが、5〜60Kg/
mm2である。なお、圧縮残留応力を付与する部分
は、部材の表面部の全面であつてもよいし、一部
分だけであつてもよい。
In the second step, compressive residual stress is applied to at least a portion of the surface portion of the solution-treated member. Examples of methods for applying compressive residual stress include methods of bending the member to a small radius of curvature while stretching it and applying compressive residual stress to the outside of the curved part, and methods of projecting shot, grit, etc. onto the surface of the member. Alternatively, a rotary forging method may be employed in which the casting mold is oscillated and pressed onto the surface of the member to upset it. The value of compressive residual stress is set appropriately depending on the required wear resistance and fatigue strength, but it is 5 to 60 kg/
mm2 . Note that the portion to which compressive residual stress is applied may be the entire surface of the member, or may be only a portion thereof.

第3工程では、窒化雰囲気中で400〜480℃程度
に部材を加熱することにより、該部材の圧縮残留
応力を付与した部分を含む表面部を窒化すると共
に、該部材の内部の時効処理を行い、その後室温
に冷却する。ここで通常のアンモニアガス窒化温
度は450〜530℃であるのに対して、本発明に係る
製造方法の窒化温度は400〜480℃程度と従来の通
常のアンモニアガス窒化温度に比べて低い温度範
囲である。窒化温度が480℃を超える場合には、
第2工程において表面に付与した圧縮残留応力が
緩和され、本発明の目的である表面部の結晶格子
の歪を確保しつつ窒化を行うことができなくなつ
てしまうからである。特に本発明は部材表面に圧
縮残留応力を付与することにより、通常の処理温
度450℃未満の温度でも窒化処理ができ、部材の
変形を極小にすることができることである。又、
400℃未満であると、窒化が充分に行われなくな
るからである。窒化雰囲気は、一般にアンモニア
ガスを主要成分とする雰囲気であり、炭素成分即
ちRXガス、COガス、CO2ガスを含まない方が好
ましい。400〜480℃に加熱する時間は、表面部に
圧縮残留応力を付与することにより窒化が促進さ
れるため、通常の窒化時間よりも短時間とするこ
とができる。例えば、0.1〜10時間程度とするこ
とができる。
In the third step, by heating the member to approximately 400 to 480°C in a nitriding atmosphere, the surface portion of the member, including the portion to which compressive residual stress has been applied, is nitrided, and the inside of the member is aged. , then cool to room temperature. Here, while the normal ammonia gas nitriding temperature is 450 to 530°C, the nitriding temperature of the manufacturing method according to the present invention is about 400 to 480°C, which is a lower temperature range than the conventional normal ammonia gas nitriding temperature. It is. If the nitriding temperature exceeds 480℃,
This is because the compressive residual stress imparted to the surface in the second step is relaxed, making it impossible to perform nitriding while ensuring the distortion of the crystal lattice of the surface portion, which is the object of the present invention. Particularly, the present invention is capable of performing nitriding treatment even at a temperature lower than the usual treatment temperature of 450° C. by applying compressive residual stress to the surface of the member, thereby making it possible to minimize deformation of the member. or,
This is because if the temperature is less than 400°C, nitriding will not be performed sufficiently. The nitriding atmosphere is generally an atmosphere containing ammonia gas as a main component, and preferably does not contain carbon components, ie, RX gas, CO gas, and CO 2 gas. The time for heating to 400 to 480° C. can be shorter than the normal nitriding time because nitriding is promoted by applying compressive residual stress to the surface portion. For example, it can be about 0.1 to 10 hours.

このように第3工程を実施すると、部材の内部
は時効処理され、析出相がマトリツクスを構成す
るマルテンサイトの中に析出する。
When the third step is carried out in this manner, the interior of the member is subjected to aging treatment, and a precipitated phase is precipitated into martensite that constitutes the matrix.

ところで、第3工程を実施した後に、連続ある
いは時間間隔をおいて還元性雰囲気中で470〜580
℃に部材を加熱して時効処理を追加する第4工程
を実施することが好ましい。このように第4工程
を実施すれば、部材の耐摩耗性および疲労強度を
確保しつつ、部材の内部の耐遅れ破壊性を一層向
上させることができる。なお470〜580℃に加熱す
る時間は、部材の種類によつて適宜変更するが、
通常1〜24時間程度とすることができる。
By the way, after carrying out the third step, 470 to 580
It is preferable to carry out a fourth step of heating the member to a temperature of 0.degree. C. to add an aging treatment. By performing the fourth step in this manner, the delayed fracture resistance inside the member can be further improved while ensuring the wear resistance and fatigue strength of the member. The time for heating to 470 to 580°C will vary depending on the type of material, but
Usually, it can be about 1 to 24 hours.

ここで、マルエージング鋼(特に18%ニツケル
を含むマルエージング鋼)では、水素イオンを含
む雰囲気中で440℃程度で時効処理を行なうと、
部材の内部は遅れ破壊強度が著しく低下する傾向
にある。この点、第3工程の窒化雰囲気が水素イ
オンを含む場合であつても、第3工程後に第4工
程を実施すれば、部材の内部の時効処理を追加す
ることができ、よつて部材の内部の耐遅れ破壊性
を向上させることができる。
For maraging steel (particularly maraging steel containing 18% nickel), when aging treatment is performed at approximately 440°C in an atmosphere containing hydrogen ions,
The delayed fracture strength of the interior of the member tends to decrease significantly. In this regard, even if the nitriding atmosphere in the third step contains hydrogen ions, if the fourth step is performed after the third step, it is possible to add aging treatment to the inside of the member. It is possible to improve the delayed fracture resistance of.

[発明の効果] 本発明に係る製造方法によれば、従来の窒化処
理したマルエージング鋼製部材に比べて表面硬さ
および表面圧縮残留応力を大きくすることがで
き、そのため、耐摩耗性および疲労強度に優れた
マルエージング鋼製の部材を、製造することがで
きる。従つて、CVTベルトのフープの製造に本
発明で得られる部材を適用すれば、耐久性があり
長寿命のフープを得ることができる。
[Effects of the Invention] According to the manufacturing method of the present invention, the surface hardness and surface compressive residual stress can be increased compared to conventional nitrided maraging steel members, and therefore wear resistance and fatigue resistance can be increased. A member made of maraging steel with excellent strength can be manufactured. Therefore, if the member obtained by the present invention is applied to the manufacture of a hoop for a CVT belt, a hoop that is durable and has a long life can be obtained.

[実施例] 本発明に係る製造方法の実施例について説明す
る。
[Example] An example of the manufacturing method according to the present invention will be described.

(第1実施例) 第1工程では、部材を真空炉内に装入し、820
℃で加熱することにより溶体化し、これによりニ
ツケルやチタンなどの溶質原子をオーステナイト
に固溶した。そしてその後部材を冷却した。冷却
は窒素ガスおよびアルゴンガスによつて行つた。
ここで部材の形状は無端フープで、その大きさ
は、厚み0.19mm、幅8.6mm、内周長224mmである。
部材の組成は重量%で、ニツケル17.75%、アル
ミニウム0.080%、モリブデン4.76%、チタン0.48
%、コバルト7.75%、C0.0054%、Si0.038%、
S0.0003%、残部は鉄である。
(First Example) In the first step, the member is charged into a vacuum furnace and
It was converted into a solution by heating at ℃, thereby solidly dissolving solute atoms such as nickel and titanium into austenite. The member was then cooled. Cooling was performed with nitrogen gas and argon gas.
Here, the shape of the member is an endless hoop, and its dimensions are 0.19 mm thick, 8.6 mm wide, and 224 mm in inner circumference length.
The composition of the component is 17.75% nickel, 0.080% aluminum, 4.76% molybdenum, and 0.48% titanium.
%, Cobalt 7.75%, C0.0054%, Si0.038%,
S0.0003%, the balance is iron.

第2工程では、2個の張力用ローラにより、部
材に50Kg/mm2の張力を与えつつ、曲げ用小径ロー
ルで部材を曲げ加工し、以て部材の外表面部に50
Kg/mm2の圧縮残留応力を付与した。なお張力用ロ
ーラの直径は70mm、曲げ用小径ロールの直径は20
mmである。
In the second step, two tension rollers apply a tension of 50 kg/mm 2 to the member, while a small diameter bending roll bends the member.
A compressive residual stress of Kg/mm 2 was applied. The diameter of the tensioning roller is 70mm, and the diameter of the small diameter roll for bending is 20mm.
mm.

第3工程では、窒化用のレトルト炉内に部材を
挿入し、そしてレトルト炉内に純度99%以上のア
ンモニアガス(NH3)を毎分1.5リツトルで流し
つつレトルト炉内を435℃まで昇温し、その温度
に6時間保持して行なつた。そして保持後、室温
まで冷却した。
In the third step, the member is inserted into a nitriding retort furnace, and the temperature inside the retort furnace is raised to 435°C while flowing ammonia gas (NH 3 ) with a purity of 99% or higher at a rate of 1.5 liters per minute into the retort furnace. The temperature was then maintained for 6 hours. After holding, it was cooled to room temperature.

このように第1工程〜第3工程を実施した部材
では、アンモニアガスから分解した窒素が部材の
表面部に拡散浸透して窒化がなされ、よつて部材
の表面部の硬さはHv1030程度であり、部材の内
部の硬さはHv520程度であつた。ここで硬さの測
定はマイクロビツカース機を用い、荷重50gで行
つた。又部材の表面部の圧縮残留応力は窒化によ
り160Kg/mm2と増大していた。ここで圧縮残留応
力の測定はX線側傾法で行つた。上記のようにし
て第1工程〜第3工程を実施した部材は、表面部
の硬さが硬く、かつ表面部の圧縮残留応力の値が
増大していることから、耐摩耗性および疲労強度
に優れている。
In the parts that have undergone the first to third steps in this way, nitrogen decomposed from the ammonia gas diffuses into the surface of the part and nitrides it, so the hardness of the surface of the part is about Hv1030. The internal hardness of the member was approximately Hv520. The hardness was measured using a micro-Vickers machine under a load of 50 g. Furthermore, the compressive residual stress on the surface of the member increased to 160 kg/mm 2 due to nitriding. Here, the compressive residual stress was measured by the X-ray side tilt method. The parts subjected to the first to third steps as described above have a hard surface and an increased value of compressive residual stress on the surface, so they have poor wear resistance and fatigue strength. Are better.

上記のようにして第1工程〜第3工程を実施し
たフープをCVTベルトの一部材として組込んだ。
なお、第1図はCVTの概略図を示し、第2図は
CTVベルトの一部を示す。このCVTは、プーリ
1と、プーリ2と、プーリ1および2間に張設さ
れたベルト3とで構成されている。フープ4は第
2図に示すように金属製のトルク伝達板5の溝に
保持され、トルク伝達板5と共にベルト3を構成
している。上記のようにCTVベルトに組み込ん
だフープは、耐久性があり、長寿命であつた。
The hoop that underwent the first to third steps as described above was incorporated as a member of a CVT belt.
In addition, Figure 1 shows a schematic diagram of CVT, and Figure 2 shows a schematic diagram of CVT.
A portion of the CTV belt is shown. This CVT includes a pulley 1, a pulley 2, and a belt 3 stretched between the pulleys 1 and 2. As shown in FIG. 2, the hoop 4 is held in a groove of a metal torque transmission plate 5, and together with the torque transmission plate 5 constitutes the belt 3. The hoops incorporated into the CTV belt as described above were durable and had a long life.

ところで、上記した実施例において、第3工程
で窒化および時効処理のために部材を加熱する時
間とフープの表面硬さとの関係について試験し
た。加熱する時間は、1.5、3、6、12時間とし
た。試験結果を第3図に黒丸印で示す。第3図に
示すように、加熱時間が3時間のときには表面硬
さはHv780程度であり、加熱時間が6時間のとき
には窒化が充分になされ、そのため表面硬さは
Hv1030程度と硬かつた。
By the way, in the above-mentioned example, the relationship between the time for heating the member for nitriding and aging treatment in the third step and the surface hardness of the hoop was tested. The heating time was 1.5, 3, 6, and 12 hours. The test results are shown in Figure 3 with black circles. As shown in Figure 3, when the heating time is 3 hours, the surface hardness is about Hv780, and when the heating time is 6 hours, the nitriding is sufficient, so the surface hardness is
It was hard, about Hv1030.

又、第3工程で窒化および時効処理のために部
材を加熱する時間とフープの表面部の圧縮残留応
力との関係について試験した。加熱する時間は
1.5、3、6時間とした。試験結果を第4図に黒
丸印で示す。第4図に示すように、加熱時間が3
時間のときには残留応力の値は108Kg/mm2程度で
あり、加熱時間が6時間のときには残留応力の値
は152Kg/mm2程度と飛躍的に増大した。なお、残
留応力の測定はX線応力測定法であるX線側傾法
によつて行なつた。
In addition, in the third step, the relationship between the heating time of the member for nitriding and aging treatment and the compressive residual stress on the surface of the hoop was tested. The heating time is
The duration was 1.5, 3, and 6 hours. The test results are shown in Figure 4 with black circles. As shown in Figure 4, the heating time is 3.
When the heating time was 6 hours, the residual stress value was about 108 Kg/mm 2 , and when the heating time was 6 hours, the residual stress value increased dramatically to about 152 Kg/mm 2 . Note that the residual stress was measured by the X-ray side tilt method, which is an X-ray stress measurement method.

一方、比較例として従来の製造方法について、
窒化のために加熱した時間とフープの表面硬さと
の関係、窒化のために加熱した時間とフープの表
面部の圧縮残留応力の値との関係を試験した。こ
こで従来の製造方法では、第1実施例と同じマル
エージング鋼となる組成を持つ部材を第2工程を
はぶいて、第1実施例と同時に実施して行なつ
た。比較例の試験結果を第3図の白丸印、第4図
の白丸印に示す。
On the other hand, as a comparative example, regarding the conventional manufacturing method,
The relationship between the heating time for nitriding and the surface hardness of the hoop, and the relationship between the heating time for nitriding and the value of compressive residual stress on the surface of the hoop were tested. Here, in the conventional manufacturing method, a member having the same composition as the maraging steel as in the first embodiment was carried out at the same time as the first embodiment, skipping the second step. The test results of the comparative example are shown as white circles in FIG. 3 and white circles in FIG. 4.

さて、第1実施例における試験結果と比較例に
おける試験結果とを比較すると、第3図では加熱
時間が1.5時間程度までは、硬さの差異はあまり
認められないが、これを越えると両者の硬さの差
異が大きくなる。第4図では比較例では圧縮残留
応力の値の増加は第4図の破線で示すようにほぼ
一直線状であるが、第1実施例では加熱時間が
1.5時間を越えると圧縮残留応力の値は飛躍的に
増加する。上述の試験結果からして、窒化処理の
前に圧縮残留応力を付与すると、窒化を促進させ
ていることが理解される。
Now, when comparing the test results in the first example and the test results in the comparative example, in Fig. 3, there is not much difference in hardness until the heating time is about 1.5 hours, but after this, the difference in hardness between the two is found. The difference in hardness increases. In Fig. 4, in the comparative example, the increase in the value of compressive residual stress is almost linear as shown by the broken line in Fig. 4, but in the first example, the heating time is
When the time exceeds 1.5 hours, the value of compressive residual stress increases dramatically. From the above test results, it is understood that applying compressive residual stress before nitriding promotes nitriding.

又、第3工程で窒化および時効処理のために部
材を加熱した温度とフープの表面硬さとの関係に
ついて試験した。加熱温度は435、450、465、
480、495℃とした。なお、加熱時間は6時間であ
る。試験結果を第5図に示す。第5図に示すよう
に、加熱温度が高くなるにつれて表面硬さは低下
する。これは通常の窒化温度と表面硬さとの関係
と逆である。即ち、通常の窒化では窒化温度が上
昇すると表面硬さは硬くなるが、本例では、加熱
温度が450℃のときには表面硬さはHv950程度で
あつたのに対し、加熱温度が480℃を越えると表
面硬さはHv700程度と低下する。この結果から第
3工程における加熱温度は480℃を越えないよう
に設定した方がよいことがわかる。
In addition, the relationship between the temperature at which the member was heated for nitriding and aging treatment in the third step and the surface hardness of the hoop was tested. Heating temperature is 435, 450, 465,
The temperature was 480 and 495℃. Note that the heating time was 6 hours. The test results are shown in Figure 5. As shown in FIG. 5, the surface hardness decreases as the heating temperature increases. This is the opposite of the normal relationship between nitriding temperature and surface hardness. That is, in normal nitriding, the surface hardness increases as the nitriding temperature increases, but in this example, when the heating temperature was 450°C, the surface hardness was about Hv950, but when the heating temperature exceeded 480°C. and the surface hardness decreases to about Hv700. This result shows that it is better to set the heating temperature in the third step so as not to exceed 480°C.

又、第3工程で窒化および時効処理のために部
材を加熱した温度とフープの表面部の圧縮残留応
力の値との関係、該温度とフープの表面部の歪と
の関係を試験した。試験結果を第6図および第7
図に示す。第6図に示すように温度が高い程圧縮
残留応力の値は低下しているのがわかる。ここで
第6図で示す「表」とは無端フープ形状の外側を
いい、「裏」とは内側をいう。また、第7図に示
すように温度が高いほど半価幅が小さくなつてお
り、表面部の歪が小さくなつていることがわか
る。
In addition, the relationship between the temperature at which the member was heated for nitriding and aging treatment in the third step and the value of the compressive residual stress on the surface of the hoop, and the relationship between the temperature and the strain on the surface of the hoop were tested. The test results are shown in Figures 6 and 7.
As shown in the figure. As shown in FIG. 6, it can be seen that the higher the temperature, the lower the value of compressive residual stress. Here, the "front" shown in FIG. 6 refers to the outside of the endless hoop shape, and the "back" refers to the inside. Furthermore, as shown in FIG. 7, the higher the temperature, the smaller the half width, which indicates that the strain on the surface area becomes smaller.

(第2実施例) 第2実施例に係る製造方法では、上記した第1
実施例の第1工程〜第3工程を実施した後、続い
て次の第4工程を行つた。第4工程は、部材を収
納した上記レトルト炉内にアルゴンガスを送入
し、レトルト炉内のアンモニアガスをアルゴンガ
スに置換え、次にレトルト炉内の部材を500℃で
2時間加熱することにより行つた。このようにす
れば、部材の内部の時効処理が更に進行する。そ
のため、表面部の硬さはHv1010程度であり、内
部の硬さは、第3工程実施後は前述したように
Hv520程度であつたのに対しHv600程度である。
又表面部の圧縮残留応力は150Kg/mm2である。上
記した測定結果から明らかなように、部材の内部
の硬さが増加している。この結果から、部材の内
部の時効効果が促進されて析出相の析出が増した
ことがわかる。このように時効効果が促進される
と、部材の内部の耐送り破壊性が向上する。
(Second Example) In the manufacturing method according to the second example, the above-mentioned first
After carrying out the first to third steps of the example, the following fourth step was carried out. The fourth step is to introduce argon gas into the retort furnace containing the parts, replace the ammonia gas in the retort furnace with argon gas, and then heat the parts in the retort furnace at 500°C for 2 hours. I went. In this way, the aging treatment inside the member further progresses. Therefore, the hardness of the surface part is about Hv1010, and the hardness of the inside after the third process is as described above.
It was about Hv520, but it is about Hv600.
Also, the compressive residual stress in the surface area is 150Kg/mm 2 . As is clear from the above measurement results, the internal hardness of the member is increasing. This result shows that the aging effect inside the member was promoted and the precipitation of the precipitated phase increased. When the aging effect is promoted in this way, the internal feed fracture resistance of the member is improved.

(第3実施例) 第1工程では、マルエージング鋼組成をもち、
幅8mm、厚さ0.165mmの部材を用い、この部材を
2個、820℃で30分間加熱して溶体化した。ここ
で部材の組成は第1実施例と同じである。次に第
2工程では、2個の部材の表面部にロール加工で
圧縮残留応力を付与した。そして第2工程を行な
つた部材の板厚方向の残留応力分布を歪計法によ
り測定した。測定は、長さ60mmの部材の片側表面
に歪ゲージを貼り付け、反対側の面を混酸で腐蝕
して板厚を減少させ、減少させた際の歪ゲージの
出力から板厚方向深さに相当する残留応力を算出
して行つた。その測定結果を第8図の曲線A−1
に示す。第8図に示すように表面部には20〜30
Kg/mm2(本試験片は、切断前のフープ形状のとき
の圧縮応力は50Kg/mm2であつたが、長さ60mmに切
断されたため表面圧縮応力が少し減少したもの)
の圧縮残留応力が生じていた。
(Third Example) In the first step, having a maraging steel composition,
Two members with a width of 8 mm and a thickness of 0.165 mm were heated at 820° C. for 30 minutes to form a solution. The composition of the members here is the same as in the first embodiment. Next, in the second step, compressive residual stress was applied to the surface portions of the two members by roll processing. Then, the residual stress distribution in the thickness direction of the member subjected to the second step was measured by a strain meter method. Measurements were made by attaching a strain gauge to one surface of a 60 mm long member, corroding the other side with a mixed acid to reduce the thickness, and measuring the depth in the thickness direction from the output of the strain gauge at the time of reduction. The corresponding residual stress was calculated. The measurement results are curve A-1 in Figure 8.
Shown below. As shown in Figure 8, there are 20 to 30
Kg/mm 2 (This test piece had a compressive stress of 50 Kg/mm 2 in its hoop shape before cutting, but the surface compressive stress decreased slightly because it was cut to a length of 60 mm.)
A compressive residual stress of 100% was generated.

次に第3工程として、残りの部材をアンモニア
ガス雰囲気中において、440℃で4時間加熱して
窒化すると共に、部材の内部の時効処理を行い、
その後室温まで冷却した。第3工程を終えた部材
を長さ60mmに切断し、板厚方向の残留応力の値を
測定した。測定方法は前述同様に歪計法によつて
行つた。測定結果を第9図の曲線A−2に示す。
第9図の曲線A−2に示すように表面部の圧縮残
留応力の値は100Kg/mm2近く表面部の圧縮残留応
力の値が窒化前に比べて大幅に増大していること
がわかる。
Next, as a third step, the remaining members are heated at 440°C for 4 hours in an ammonia gas atmosphere to nitride them, and the inside of the members is aged.
It was then cooled to room temperature. After completing the third step, the member was cut to a length of 60 mm, and the value of residual stress in the thickness direction was measured. The measurement method was the same as described above using the strain meter method. The measurement results are shown in curve A-2 in FIG.
As shown by curve A-2 in FIG. 9, it can be seen that the value of the compressive residual stress in the surface area is close to 100 Kg/mm 2 and the value of the compressive residual stress in the surface area is significantly increased compared to before nitriding.

比較例として、同じ組成、同じ大きさをもつ部
材について圧縮残留応力を付与しない点のみ異な
らせ他の条件は第3実施例と同様にして、第1工
程〜第3工程を行つた。比較例では、第1工程を
終えた部材は、第8図に曲線B−1で示すように
圧縮残留応力の値はほぼ0であり、一方第3工程
を終えた部材は、第9図に曲線B−2で示すよう
に表面部の圧縮残留応力は精々20Kg/mm2程度と小
さかつた。
As a comparative example, the first to third steps were performed on members having the same composition and size, except that no compressive residual stress was applied, and the other conditions were the same as in the third example. In the comparative example, the compressive residual stress value of the member that completed the first step was almost 0, as shown by curve B-1 in FIG. 8, while the value of the compressive residual stress of the member that completed the third step was shown in FIG. As shown by curve B-2, the compressive residual stress in the surface portion was as small as about 20 kg/mm 2 at most.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はCUTベルト全体の側面図、第2図は
ベルトの要部の斜視図、第3図は加熱時間とフー
プの表面硬さとの関係を示すグラフ、第4図は加
熱時間とフープの表面部の圧縮残留応力との関係
を示すグラフ、第5図は加熱時間とフープの表面
硬さとの関係を示すグラフ、第6図は加熱時間と
圧縮残留応力との関係を示すグラフ、第7図は加
熱時間と半値幅との関係を示すグラフである。第
8図及び第9図は応力分布を示すグラフである。 図中、1および2はプーリ、3はベルト、4は
フープ、5はトルク伝達板を示す。
Figure 1 is a side view of the entire CUT belt, Figure 2 is a perspective view of the main parts of the belt, Figure 3 is a graph showing the relationship between heating time and hoop surface hardness, and Figure 4 is a graph showing the relationship between heating time and hoop surface hardness. A graph showing the relationship between the compressive residual stress of the surface portion, Figure 5 is a graph showing the relationship between the heating time and the surface hardness of the hoop, Figure 6 is a graph showing the relationship between the heating time and the compressive residual stress, and Figure 7 is a graph showing the relationship between the heating time and the compressive residual stress. The figure is a graph showing the relationship between heating time and half width. FIGS. 8 and 9 are graphs showing stress distribution. In the figure, 1 and 2 are pulleys, 3 is a belt, 4 is a hoop, and 5 is a torque transmission plate.

Claims (1)

【特許請求の範囲】 1 マルエージング鋼となる組成をもつ部材を溶
体化したのち冷却する第1工程と、 溶体化した部材の表面部の少なくとも一部に5
Kg/mm2〜60Kg/mm2の圧縮残留応力を付与する第2
工程と、 窒化雰囲気中で400〜480℃に該部材を加熱する
ことにより、該部材の圧縮残留応力を付与した部
分を含む表面部を窒化すると共に、該部材の内部
の時効処理を行い、その後室温に冷却する第3工
程と、 を順に実施することを特徴とする耐摩耗性および
疲労強度に優れたマルエージング鋼製部材の製造
方法。
[Claims] 1. A first step of solutionizing a member having a composition to become maraging steel and then cooling it;
The second one imparts a compressive residual stress of Kg/ mm2 to 60Kg/ mm2 .
step, by heating the member to 400 to 480°C in a nitriding atmosphere, the surface portion of the member, including the portion to which compressive residual stress has been applied, is nitrided, and the inside of the member is aged, and then A method for manufacturing a maraging steel member having excellent wear resistance and fatigue strength, characterized by carrying out the following in order: a third step of cooling to room temperature; and a third step of cooling to room temperature.
JP3476286A 1986-02-19 1986-02-19 Manufacture of maraging steel member having superior wear resistance and fatigue strength Granted JPS62192528A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3476286A JPS62192528A (en) 1986-02-19 1986-02-19 Manufacture of maraging steel member having superior wear resistance and fatigue strength

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3476286A JPS62192528A (en) 1986-02-19 1986-02-19 Manufacture of maraging steel member having superior wear resistance and fatigue strength

Publications (2)

Publication Number Publication Date
JPS62192528A JPS62192528A (en) 1987-08-24
JPH0582452B2 true JPH0582452B2 (en) 1993-11-19

Family

ID=12423323

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3476286A Granted JPS62192528A (en) 1986-02-19 1986-02-19 Manufacture of maraging steel member having superior wear resistance and fatigue strength

Country Status (1)

Country Link
JP (1) JPS62192528A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0733364U (en) * 1993-11-26 1995-06-20 勝則 小山 Sprinkler-head fitting
JPH0733363U (en) * 1993-11-26 1995-06-20 勝則 小山 Sprinkler-head adapter

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10010383B4 (en) 1999-03-04 2004-09-16 Honda Giken Kogyo K.K. Process for the production of maraging steel
EP1176224B1 (en) 2000-07-24 2014-04-16 Dowa Thermotech Co., Ltd. Nitrided maraging steel and method of manufacturing thereof
JP3677460B2 (en) 2001-04-06 2005-08-03 本田技研工業株式会社 Steel manufacturing method
JP5528347B2 (en) * 2007-10-31 2014-06-25 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング Ring component of transmission belt and manufacturing method therefor

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6130660A (en) * 1984-07-20 1986-02-12 Toyota Motor Corp Method for subjecting high-alloy steel member to gas soft-nitriding

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6130660A (en) * 1984-07-20 1986-02-12 Toyota Motor Corp Method for subjecting high-alloy steel member to gas soft-nitriding

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0733364U (en) * 1993-11-26 1995-06-20 勝則 小山 Sprinkler-head fitting
JPH0733363U (en) * 1993-11-26 1995-06-20 勝則 小山 Sprinkler-head adapter

Also Published As

Publication number Publication date
JPS62192528A (en) 1987-08-24

Similar Documents

Publication Publication Date Title
US7763123B2 (en) Spring produced by a process comprising coiling a hard drawn steel wire excellent in fatigue strength and resistance to setting
EP3276040A1 (en) Nitrided or soft nitrided part with excellent wear resistance and pitting resistance, and nitriding and soft nitriding methods
EP3524708A1 (en) Nitrided component and method for producing same
JP2016211069A (en) Nitrided steel member and manufacturing method of nitrided steel member
JP3421265B2 (en) Metastable austenitic stainless steel sheet for continuously variable transmission belt and method of manufacturing the same
JP2017160517A (en) Nitrided steel member and manufacturing method of nitrided steel member
JP6374399B2 (en) CVT ring member and manufacturing method thereof
JPH0582452B2 (en)
JPH0971841A (en) Steel for soft-nitriding
JP3114973B1 (en) Gas nitriding method for maraging steel
JPH09279295A (en) Steel for soft-nitriding excellent in cold forgeability
JP7471206B2 (en) Steel surface treatment method
US6858099B2 (en) Steel material production method
US20190331197A1 (en) Endless metal ring and method of producing the same
JP2000073156A (en) Production of nitrided stainless steel
JP2002053936A (en) Austenitic stainless steel plate for continuously variable transmission belt metallic ring and its production method
JP7063070B2 (en) Carburized parts
JP2000337453A (en) Manufacture of endless metallic belt
JP3784774B2 (en) Heat treatment method for metal rings
JP2002060848A (en) Manufacturing method of layered ring
WO2016182013A1 (en) Nitride steel member and method for manufacturing nitride steel member
JPH1025539A (en) Press formed member with high fatigue strength
JP3744625B2 (en) Martensitic stainless steel sheet with excellent corrosion resistance and fatigue characteristics and method for producing the same
JP4443673B2 (en) Method for producing endless metal belt
JP7063071B2 (en) Carburized parts

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees