JP3850659B2 - Manufacturing method of laminated ring - Google Patents

Manufacturing method of laminated ring Download PDF

Info

Publication number
JP3850659B2
JP3850659B2 JP2000384180A JP2000384180A JP3850659B2 JP 3850659 B2 JP3850659 B2 JP 3850659B2 JP 2000384180 A JP2000384180 A JP 2000384180A JP 2000384180 A JP2000384180 A JP 2000384180A JP 3850659 B2 JP3850659 B2 JP 3850659B2
Authority
JP
Japan
Prior art keywords
ring
aging
treatment
circumference
point
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000384180A
Other languages
Japanese (ja)
Other versions
JP2002060848A (en
Inventor
仁司 今井
克幸 中島
友次 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2000384180A priority Critical patent/JP3850659B2/en
Publication of JP2002060848A publication Critical patent/JP2002060848A/en
Application granted granted Critical
Publication of JP3850659B2 publication Critical patent/JP3850659B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Solid-Phase Diffusion Into Metallic Material Surfaces (AREA)
  • Heat Treatment Of Articles (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、無段変速機の動力伝達に用いられる無段変速機用ベルトを構成する積層リングの製造方法に関するものである。
【0002】
【従来の技術】
無段変速機の動力伝達に用いられる無段変速機用ベルトは、金属製の複数のリングを積層した積層リングと、該積層リングに組み付けられる多数の金属製エレメントとにより構成されている。
【0003】
従来、前記積層リングは、次のような方法により製造されている。まず、超極力鋼であるマルエージング鋼の薄板の端部同士を溶接して円筒状のドラムを形成し、該ドラムに対して前記溶接時の熱により部分的に硬くなった硬度ムラを均質化するために第1の溶体化を行う。次に、前記溶体化後のドラムを所定幅に裁断してリングを形成し、該リングを圧延する。次に、圧延されたリングに対し、圧延組織を再結晶させ、圧延により変形された金属組織の形状を復元するために、第2の溶体化を行う。そして、前記溶体化後のリングを所定の周長に補正し、時効及び窒化処理を施して硬度を向上させた後、少しずつ周長の異なる複数のリングを相互に積層して積層リングを形成する。
【0004】
前記積層リングは、前記無段変速機用ベルトに用いるために、優れた耐摩耗性及び耐疲労強度性と共に、優れた表面硬さを備えることが望まれる。そこで、特公平5−82452号公報には、前記リングを1対のローラ間に張り渡して回転駆動しつつ、該リングを伸張して周長補正を行なうことにより前記リングの外側表面に5〜60kg/mm2 の圧縮残留応力を付与する製造方法が記載されている。前記公報の記載によれば、前記圧縮残留応力を付与したリングに対し、前記周長補正後、他の処理を行うことなく直ちに、純アンモニア雰囲気下400〜480℃の温度に所定時間保持して時効処理及び窒化処理を同時に行なうことにより、耐摩耗性及び耐疲労強度性に優れたリングを得ることができるとされている。
【0005】
しかしながら、前記公報記載の製造方法によるときには、前記周長補正後の前記窒化処理において、窒素が金属組織内部に拡散しにくく、十分な表面硬さが得られないことがあるとの不都合がある。また、前記公報記載の製造方法によるときには、前記窒化処理を純アンモニア雰囲気で行うために、製造コストが高くなるとの不都合がある。
【0006】
【発明が解決しようとする課題】
本発明は、かかる不都合を解消して、優れた表面硬さを備えるリングを安価に得ることができる積層リングの製造方法を提供することを目的とする。
【0007】
【課題を解決するための手段】
本発明者らは、特公平5−82452号公報記載の製造方法において、十分な表面硬さが得られないことがある理由について種々検討した。その結果、前記周長補正後、他の処理を行うことなく直ちに窒化処理を行うと、前記リングの表面近傍にはマルエージング鋼に時効強化元素として固溶しているAl,Ti等が存在しているため、窒素がAl,Tiと反応して消費される一方、該反応により形成されるAlN,TiN等の窒化物が窒素の金属組織内部への拡散を妨げるとの知見を得た。本発明者らは、前記知見に基づいてさらに検討を重ねた結果、周長補正後、窒化処理に先立って時効処理を行い、前記Al,Ti等の時効強化元素をNi3 AlTiのような金属間化合物として析出させて固定することにより、後続の窒化処理において窒素が金属組織内部に十分に拡散し優れた表面硬さが得られることを見出し、本発明を完成した。
【0008】
そこで、本発明の積層リングの製造方法は、Niを含有すると共に時効強化元素としてAl,Tiを含有するマルエージング鋼の薄板の端部同士を溶接して形成された円筒状のドラムを所定幅に裁断してリングを形成する工程と、該リングを圧延する工程と、圧延されたリングに対する溶体化を行う工程と、該溶体化が施されたリングを所定の周長に周長補正する工程と、周長補正されたリングに時効処理及び窒化処理を施す工程とを備える積層リングの製造方法において、前記周長補正されたリングを時効処理して、Al,Tiを金属間化合物であるNi AlTiとして析出させて固定する工程と、時効処理終了後、リングを冷却する工程と、次いで該時効処理が施されたリングに対し不活性気体とアンモニアとの混合雰囲気下で窒化処理を施す工程とを備え、前記時効処理はリングの時効硬度が最大値未満となる亜時効にとどめ、前記窒化処理によりリングの時効硬度が最大値に達するようにすることを特徴とする。
【0009】
本発明の製造方法では、前記溶体化が施されたリングを所定の周長に周長補正した後、まず、時効処理を行う。マルエージング鋼には、時効強化元素としてAl,Ti等が固溶しているが、前記時効処理により前記Al,Ti等が、Ni3 AlTiのような金属間化合物として析出し、固定される。
【0010】
そこで、前記時効処理が施されたリングに窒化処理を施すと、窒素がAl,Ti等と反応することがなくAlN,TiN等の窒化物が形成されないので、前記窒素は前記窒化物に妨げられることなく金属組織内に深く浸透して、マルエージング鋼の母材である鉄と窒化物を形成することができる。
【0011】
この結果、前記時効処理及び窒化処理との作用により優れた表面硬さを得ることができる。
【0012】
また、本発明の製造方法によれば、前記窒化処理において、窒素がAl,Ti等との反応に消費されることなく、金属組織内に深く浸透することができる。従って、本発明の製造方法では、前記時効処理を行なった後、不活性気体とアンモニアとの混合雰囲気下に前記窒化処理を行えばよく、アンモニアの所要量を削減して製造コストを低減することができる。
【0013】
また、本発明の製造方法では、優れた耐摩耗性及び耐疲労強度性を付与するために、前記周長補正は、前記溶体化が施されたリングに対し0.2〜0.9%の範囲の周長補正率で行なうことが好ましい。前記周長補正率は次式(1)で示される。
【0014】
周長補正率(%)=(補正後の周長−補正前の周長)/補正前の周長×100・・・(1)前記周長補正率が0.2%未満では、圧縮残留応力は発生するものの、永久歪みが得られないので周長補正を行うことができない。また、前記周長補正率が0.9%を超えると、前記リングが破断する虞があり好ましくない。
【0015】
【発明の実施の形態】
次に、添付の図面を参照しながら本発明の実施の形態についてさらに詳しく説明する。図1は本実施形態の積層リングの製造方法を模式的に示す工程図であり、図2はリングの周長補正率と該リング表面に付与される圧縮残留応力との関係を示す線図である。
【0016】
本実施形態の製造方法では、まず、図1示のようにマルエージング鋼の薄板1をベンディングしてループ化したのち、端部同士を溶接して円筒状のドラム2を形成する。前記マルエージング鋼は、Cが0.03%以下、Siが0.10%以下、Mnが0.10%以下、Pが0.01%以下、Sが0.01%以下の低炭素鋼であり、18〜19%のNi、4.7〜5.2%のMo、0.05〜0.15%のAl、0.50〜0.70%のTi、8.5〜9.5%のCoを含む18%のNi鋼である。このとき、前記マルエージング鋼は溶接の熱により時効硬化を示すので、ドラム2の溶接部分の両側に硬度の高い部分が出現する。
【0017】
そこで、次に、ドラム2を真空炉3に収容して820〜830℃の温度に20〜60分間保持することにより第1の溶体化処理を行い、硬度ムラを除去する。前記第1の溶体化処理が終了したならば、ドラム2を真空炉3から搬出し、所定幅に裁断してリング4を形成する。
【0018】
前記のようにして形成されたリング4は、次に圧下率40〜50%で圧延される。圧延されたリング4には、表面から30μm程度の厚さで圧延組織が形成されている。そこで、圧延されたリング4を、加熱炉5に収容して第2の溶体化を行うことにより、前記圧延組織を消滅させると共に、均一な金属結晶粒を形成させる。
【0019】
本実施形態では、次に、溶体化されたリング4を0.2〜0.9%の範囲の周長補正率で周長補正する。前記周長補正率は、前記式(1)で示される。また、図2にリング4を伸張したときの歪み率と圧縮残留応力との関係を示す。
【0020】
図2において、太実線Pはリング4を伸ばしたときの歪み率と公称引張応力(MPa)との関係を示し、実線Qは前記歪み率とリング4の厚さの中心部における引張応力(MPa)との関係を示し、実線Rは前記歪み率とリング4の最表層の引張応力(MPa)との関係を示す。実線P,Q,Rは前記歪み率が小さい範囲では1本の直線OSとなり、該直線OSはリング4のヤング率を示す。また、太実線Pの末端Tはリング4の破断限界点を示し、リング4は歪み率がT(%)を超えると破断する。
【0021】
リング4は、荷重をかけて伸ばしたときの引張応力が図2におけるOS間の直線部にある範囲では、前記荷重を解除すると直線OSに沿って縮み、元の長さに戻るので、伸び率が得られない。しかし、リング4は、直線OSが実線P,Q,Rに分岐する範囲まで、例えば、太実線P上の点B1まで伸ばした後で荷重を解除すると、点B1から直線OSと平行な直線に沿って縮み、引張応力が0になったとき横軸上の点A1に相当する伸び率が得られる。従って、前記歪み率(伸び率)は、周長補正されたリング4においては周長補正率に等しい。
【0022】
このことは、逆に、横軸上の点A1に相当する伸び率を得るためには、点A1から直線OSと平行な直線を引いて、該直線が太実線Pと交わる点B1の引張応力相当する荷重をかける必要があることを示している。
【0023】
また、リング4を太実線P上の点B1まで伸ばした後で荷重を解除すると、点B1と同一の歪み率に対応する直線Q上の点B1’から直線OSと平行な直線を引いたときに、該直線上で点A1と同一の歪み率に対応する点A1’に相当する残留引張応力がリング4の内部に生じる。このとき、リング4の最表層には、点B1と同一の歪み率に対応する直線R上の点B1’’から直線OSと平行な直線を引いたときに、該直線上で点A1と同一の歪み率に対応する点A1’’に相当する残留圧縮応力が生じる。
【0024】
図2では、点A1は歪み率0.2%であるので、リング4を点A1に対応する0.2%の周長補正率で周長補正するためには、リング4を太実線P上の点B1まで伸ばす必要があることがわかる。また、リング4を太実線P上の点B1まで伸ばした後、荷重を解除すると、リング4の最表層部で点A1’’に相当する約−150MPaの圧縮応力を生じることが明らかである。
【0025】
同様に、リング4を点A2に対応する0.4%の周長補正率で周長補正するためには、リング4を太実線P上の点B2まで伸ばす必要があり、この後、荷重を解除すると、リング4の最表層部で点A2’’に相当する約−200MPaの圧縮応力を生じることが明らかである。また、リング4を点A3に対応する0.9%の周長補正率で周長補正するためには、リング4を太実線P上の点B3まで伸ばす必要があり、この後、荷重を解除すると、リング4の最表層部で点A3’’に相当する約−300MPaの圧縮応力を生じることが明らかである。
【0026】
さらに、図2からは、リング4を0.9%を超える周長補正率で周長補正しようとすると、このような伸び率(歪み率)に対応する横軸上の点から直線OSと平行な直線を引いたときに、該直線と太実線Pとの交点がリング4の破断限界点Tに接近し、リング4が破断する虞があることが明らかである。また、リング4を0.2%未満の周長補正率で周長補正しようとすると、このような伸び率(歪み率)に対応する横軸上の点から直線OSと平行な直線を引いたときに、該直線が直線OSに近似するものとなり、実質的に永久歪みが発生しないので、リング4の周長を補正することができないことが明らかである。
【0027】
そこで、本実施形態の製造方法では、前記0.2〜0.9%の範囲の周長補正率で周長補正することにより、リング4の表面に約150〜300MPaの圧縮残留応力を付与することができ、該圧縮残留応力によりリング4に優れた耐摩耗性及び耐疲労強度性を付与することができる。
【0028】
本実施形態では、次に、図1に示すように前記周長補正が施されたリング4を図示しない加熱炉に収容し、所定温度に所定時間保持して時効処理を行う。
【0029】
次に、前記所定時間が経過して前記時効処理が終了したならば、リング4を加熱炉内で冷却し、窒化装置に移送する。そして、窒素等の不活性気体とアンモニアガスとの混合雰囲気下、前記窒化装置内でリング4を所定温度に所定時間保持してガス窒化処理を行う。前記所定時間が経過し、前記ガス窒化処理が終了したならば、リング4を前記窒化装置内で冷却する。
【0030】
前記ガス窒化処理によれば、前記周長補正を行っていないリング4に対しても該リング4の最表層に−800MPaの圧縮残留応力を付与することができる。しかし、本実施形態の方法では、前記周長補正によってもリング4の最表層に圧縮残留応力が付与されているので、前記ガス窒化処理により付与される圧縮応力と合わせて、さらに大きな圧縮応力を付与することができる。
【0031】
前記ガス窒化処理後のリング4の最表層に付与される圧縮応力は、0.4%の周長補正率で周長補正したリング4では−1000MPaとなり、0.9%の周長補正率で周長補正したリング4では−1100MPaに達する。従って、本実施形態の方法では、前記圧縮残留応力により、リング4にさらに優れた耐摩耗性及び耐疲労強度性を付与することができる。
【0032】
本実施形態の方法では、前記時効処理により、リング4に含まれるAl,Ti等の時効強化元素がNi3 AlTiのような金属間化合物として析出し、固定されているので、前記窒化処理では窒素がAl,Ti等との反応に消費されることがない。従って、前記アンモニアガスは、リング4の窒化に要する量を用いればよく、過剰に用いる必要はない。
【0033】
次に、前記窒化処理が施されたリング4は、少しずつ周長の異なる複数のリング4を相互に積層することにより、図示しない積層リングが形成される。
【0034】
尚、前記窒化処理では、加熱によりリング4の時効が進行する。そこで、前記時効処理ではリング4の時効硬度が最大値未満となる亜時効にとどめ、前記窒化処理によりリング4の時効硬度が最大値に達するようにする
【0035】
また、本実施形態の製造方法では、前記時効処理終了後、一旦リング4を冷却した方が表面硬さに優れたリング4を得ることができる。
【図面の簡単な説明】
【図1】本発明の積層リングの製造方法の一実施形態を模式的に示す工程図。
【図2】リングの周長補正率と該リング表面に付与される圧縮残留応力との関係を示す線図。
【符号の説明】
1…マルエージング鋼の薄板、 2…ドラム、 4…リング。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method of manufacturing a laminated ring constituting a continuously variable transmission belt used for power transmission of a continuously variable transmission.
[0002]
[Prior art]
A continuously variable transmission belt used for power transmission of a continuously variable transmission is configured by a stacked ring in which a plurality of metal rings are stacked and a number of metal elements assembled to the stacked rings.
[0003]
Conventionally, the laminated ring is manufactured by the following method. First, the ends of the maraging steel thin plates, which are super-extreme steels, are welded together to form a cylindrical drum, and the hardness unevenness that is partially hardened by the heat during the welding to the drum is homogenized. In order to do so, the first solution treatment is performed. Next, the solution-treated drum is cut into a predetermined width to form a ring, and the ring is rolled. Next, in order to recrystallize the rolled structure on the rolled ring and restore the shape of the metal structure deformed by rolling, a second solution treatment is performed. Then, the ring after the solution treatment is corrected to a predetermined circumference, subjected to aging and nitriding treatment to improve the hardness, and then a plurality of rings having different circumferences are laminated to form a laminated ring. To do.
[0004]
In order to use the laminated ring for the continuously variable transmission belt, it is desirable that the laminated ring has excellent surface hardness as well as excellent wear resistance and fatigue resistance. In Japanese Patent Publication No. 5-82452, the ring is stretched between a pair of rollers and rotated, and the ring is stretched to correct the circumferential length. A production method is described which imparts a compressive residual stress of 60 kg / mm 2 . According to the description in the above publication, the ring to which the compressive residual stress is applied is maintained at a temperature of 400 to 480 ° C. for a predetermined time in a pure ammonia atmosphere immediately after the circumference correction without performing other processing. It is said that a ring excellent in wear resistance and fatigue strength can be obtained by performing aging treatment and nitriding treatment simultaneously.
[0005]
However, according to the manufacturing method described in the above publication, there is a disadvantage in that in the nitriding treatment after the circumference correction, nitrogen is difficult to diffuse into the metal structure and sufficient surface hardness may not be obtained. Moreover, when the manufacturing method described in the above publication is used, the nitriding treatment is performed in a pure ammonia atmosphere, which disadvantageously increases the manufacturing cost.
[0006]
[Problems to be solved by the invention]
An object of the present invention is to provide a method for manufacturing a laminated ring that can eliminate such disadvantages and obtain a ring having excellent surface hardness at low cost.
[0007]
[Means for Solving the Problems]
The present inventors have made various studies on the reason why sufficient surface hardness may not be obtained in the production method described in JP-B-5-82452. As a result, when the nitriding treatment is performed immediately after the circumference correction without performing other treatments, Al, Ti, etc., which are solid-solutioned as an aging strengthening element, are present in the maraging steel near the surface of the ring. Therefore, while nitrogen is reacted and consumed with Al and Ti, it has been found that nitrides such as AlN and TiN formed by the reaction prevent diffusion of nitrogen into the metal structure. As a result of further investigation based on the above findings, the present inventors have performed aging treatment prior to nitriding treatment after circumference correction, and the aging strengthening elements such as Al and Ti are made of a metal such as Ni 3 AlTi. It was found that by precipitating and fixing as an intercalation compound, nitrogen was sufficiently diffused into the metal structure in the subsequent nitriding treatment, and excellent surface hardness was obtained, and the present invention was completed.
[0008]
Therefore, the method for manufacturing a laminated ring according to the present invention comprises a cylindrical drum formed by welding ends of thin sheets of maraging steel containing Ni and containing Al and Ti as aging strengthening elements. Forming a ring by cutting into a ring, a step of rolling the ring, a step of forming a solution on the rolled ring, and a step of correcting the circumference of the ring subjected to the solution formation to a predetermined circumference And aging treatment and nitriding treatment on the ring whose circumference has been corrected, in the method of manufacturing a laminated ring, the ring whose calibration is corrected is subjected to aging treatment , and Al and Ti are intermetallic compounds. 3 and fixing to precipitate as AlTi, after aging treatment completion, nitride and cooling the ring, then in a mixed atmosphere of an inert gas and ammonia to the ring to which the aging process has been performed And a step of performing management, the aging treatment is kept to a sub Aging aging hardness of the ring is less than the maximum value, the aging hardness of the ring by the nitriding treatment, characterized in that to reach the maximum value.
[0009]
In the manufacturing method of the present invention, after the circumference of the solution-treated ring is corrected to a predetermined circumference, an aging treatment is first performed. In the maraging steel, Al, Ti and the like are dissolved as aging strengthening elements, but the Al, Ti and the like are precipitated and fixed as an intermetallic compound such as Ni 3 AlTi by the aging treatment.
[0010]
Therefore, when the ring subjected to the aging treatment is subjected to nitriding treatment, nitrogen does not react with Al, Ti, etc., and nitrides such as AlN, TiN are not formed, so that the nitrogen is hindered by the nitride. It can penetrate deeply into the metal structure without forming iron and nitride, which are base materials of maraging steel.
[0011]
As a result, excellent surface hardness can be obtained by the effects of the aging treatment and nitriding treatment.
[0012]
Further, according to the production method of the present invention, in the nitriding treatment, nitrogen can penetrate deeply into the metal structure without being consumed in the reaction with Al, Ti or the like. Therefore, in the production method of the present invention, after performing the aging treatment, the nitriding treatment may be performed in a mixed atmosphere of an inert gas and ammonia, and the production cost can be reduced by reducing the required amount of ammonia. Can do.
[0013]
Further, in the production method of the present invention, in order to provide excellent wear resistance and fatigue strength resistance, the circumference correction is performed in an amount of 0.2 to 0.9% with respect to the solution-treated ring. It is preferable to carry out with a circumference correction factor in the range. The circumference correction factor is expressed by the following equation (1).
[0014]
Perimeter correction ratio (%) = (perimeter after correction−perimeter before correction) / perimeter before correction × 100 (1) When the perimeter correction ratio is less than 0.2%, compression residual Although a stress is generated, the permanent length cannot be obtained, and the circumference cannot be corrected. Moreover, if the circumference correction rate exceeds 0.9%, the ring may be broken, which is not preferable.
[0015]
DETAILED DESCRIPTION OF THE INVENTION
Next, embodiments of the present invention will be described in more detail with reference to the accompanying drawings. FIG. 1 is a process diagram schematically showing a method for manufacturing a laminated ring of the present embodiment, and FIG. 2 is a diagram showing a relationship between a ring circumference correction factor and a compressive residual stress applied to the ring surface. is there.
[0016]
In the manufacturing method of this embodiment, first, as shown in FIG. 1, the maraging steel thin plate 1 is bent to form a loop, and then the ends are welded to form a cylindrical drum 2. The maraging steel is a low carbon steel having C of 0.03% or less, Si of 0.10% or less, Mn of 0.10% or less, P of 0.01% or less, and S of 0.01% or less. Yes, 18-19% Ni, 4.7-5.2% Mo, 0.05-0.15% Al, 0.50-0.70% Ti, 8.5-9.5% 18% Ni steel containing Co. At this time, since the maraging steel exhibits age hardening by the heat of welding, high hardness portions appear on both sides of the welded portion of the drum 2.
[0017]
Therefore, next, the drum 2 is accommodated in the vacuum furnace 3 and held at a temperature of 820 to 830 ° C. for 20 to 60 minutes to perform a first solution treatment to remove hardness unevenness. When the first solution treatment is completed, the drum 2 is unloaded from the vacuum furnace 3 and cut into a predetermined width to form the ring 4.
[0018]
The ring 4 formed as described above is then rolled at a rolling reduction of 40 to 50%. A rolled structure is formed on the rolled ring 4 with a thickness of about 30 μm from the surface. Therefore, the rolled ring 4 is accommodated in the heating furnace 5 and subjected to the second solution, thereby eliminating the rolled structure and forming uniform metal crystal grains.
[0019]
In the present embodiment, next, the circumference of the solution-formed ring 4 is corrected with a circumference correction factor in the range of 0.2 to 0.9%. The circumference correction factor is expressed by the above equation (1). FIG. 2 shows the relationship between the strain rate and the compressive residual stress when the ring 4 is expanded.
[0020]
In FIG. 2, the thick solid line P shows the relationship between the strain rate when the ring 4 is stretched and the nominal tensile stress (MPa), and the solid line Q shows the strain rate and the tensile stress (MPa at the center of the thickness of the ring 4). The solid line R indicates the relationship between the strain rate and the tensile stress (MPa) of the outermost layer of the ring 4. The solid lines P, Q, and R become one straight line OS in the range where the distortion rate is small, and the straight line OS indicates the Young's modulus of the ring 4. The end T of the thick solid line P indicates the breaking limit point of the ring 4, and the ring 4 breaks when the strain rate exceeds T (%).
[0021]
In the range in which the tensile stress when the ring 4 is stretched under a load is in the straight line portion between the OSs in FIG. 2, when the load is released, the ring 4 contracts along the straight line OS and returns to the original length. Cannot be obtained. However, the ring 4 is parallel to the straight line OS from the point B 1 when the load is released after extending the straight line OS to the range where the straight line OS branches to the solid lines P, Q, R, for example, to the point B 1 on the thick solid line P. When shrinking along the straight line and the tensile stress becomes zero, an elongation corresponding to the point A 1 on the horizontal axis is obtained. Therefore, the distortion rate (elongation rate) is equal to the circumference correction rate in the ring 4 subjected to circumference correction.
[0022]
Conversely, in order to obtain the elongation corresponding to the point A 1 on the horizontal axis, a straight line parallel to the straight line OS is drawn from the point A 1 , and the point B 1 where the straight line intersects the thick solid line P This indicates that it is necessary to apply a load corresponding to the tensile stress.
[0023]
Further, when releasing the load after stretching the ring 4 to the point B 1 on the thick solid line P, and parallel straight lines OS from the point B 1 'on the straight line Q corresponding to the point B 1 and the same strain rate When pulled, a residual tensile stress corresponding to the point A 1 ′ corresponding to the same strain rate as the point A 1 on the straight line is generated inside the ring 4. In this case, the outermost layer of the ring 4, when drawn parallel straight lines OS from the point B 1 on the straight line R corresponding to the point B 1 and the same strain rate '', points with straight lines A residual compressive stress corresponding to one same a 1 point corresponding to the distortion rate 'and' occurs.
[0024]
In FIG. 2, the point A 1 has a distortion rate of 0.2%. Therefore, in order to correct the circumference of the ring 4 with a circumference correction rate of 0.2% corresponding to the point A 1 , the ring 4 is a thick solid line. It can be seen that it is necessary to extend to point B 1 on P. Further, when the load is released after the ring 4 is extended to the point B 1 on the thick solid line P, it is clear that a compressive stress of about −150 MPa corresponding to the point A 1 ″ is generated in the outermost layer portion of the ring 4. is there.
[0025]
Similarly, in order to correct the circumference of ring 4 with a circumference correction factor of 0.4% corresponding to point A 2 , it is necessary to extend ring 4 to point B 2 on thick solid line P, and thereafter When the load is released, it is apparent that a compressive stress of about −200 MPa corresponding to the point A 2 ″ is generated in the outermost layer portion of the ring 4. Further, in order to correct the circumference of the ring 4 with the circumference correction factor of 0.9% corresponding to the point A 3 , it is necessary to extend the ring 4 to the point B 3 on the thick solid line P, and then the load When is released, it is apparent that a compressive stress of about −300 MPa corresponding to the point A 3 ″ is generated in the outermost layer portion of the ring 4.
[0026]
Further, from FIG. 2, when the circumference of the ring 4 is corrected with a circumference correction factor exceeding 0.9%, it is parallel to the straight line OS from a point on the horizontal axis corresponding to such an elongation rate (distortion rate). When a straight line is drawn, it is clear that the intersection of the straight line and the thick solid line P approaches the breaking limit point T of the ring 4 and the ring 4 may be broken. Further, when trying to correct the circumference of the ring 4 with a circumference correction factor of less than 0.2%, a straight line parallel to the straight line OS was drawn from a point on the horizontal axis corresponding to such an elongation rate (distortion rate). Sometimes, the straight line approximates the straight line OS, and no permanent distortion occurs, so it is clear that the circumference of the ring 4 cannot be corrected.
[0027]
Therefore, in the manufacturing method of the present embodiment, the circumferential length is corrected with the circumferential length correction rate in the range of 0.2 to 0.9%, thereby applying a compressive residual stress of about 150 to 300 MPa to the surface of the ring 4. The ring 4 can be provided with excellent wear resistance and fatigue resistance due to the compressive residual stress.
[0028]
In this embodiment, next, as shown in FIG. 1, the ring 4 subjected to the circumference correction is accommodated in a heating furnace (not shown), and is kept at a predetermined temperature for a predetermined time to perform an aging treatment.
[0029]
Next, when the predetermined time has elapsed and the aging treatment is completed, the ring 4 is cooled in a heating furnace and transferred to a nitriding apparatus. Then, in a mixed atmosphere of an inert gas such as nitrogen and ammonia gas, the gas nitriding process is performed by holding the ring 4 at a predetermined temperature for a predetermined time in the nitriding apparatus. When the predetermined time has elapsed and the gas nitriding process is completed, the ring 4 is cooled in the nitriding apparatus.
[0030]
According to the gas nitriding treatment, a compressive residual stress of −800 MPa can be applied to the outermost layer of the ring 4 even for the ring 4 that has not been subjected to the circumference correction. However, in the method of the present embodiment, since the compressive residual stress is applied to the outermost layer of the ring 4 even by the circumference correction, a larger compressive stress is applied together with the compressive stress applied by the gas nitriding treatment. Can be granted.
[0031]
The compressive stress applied to the outermost layer of the ring 4 after the gas nitriding treatment is −1000 MPa in the ring 4 whose circumference is corrected with a circumference correction factor of 0.4%, and with a circumference correction factor of 0.9%. In the ring 4 whose circumference is corrected, it reaches −1100 MPa. Therefore, in the method of the present embodiment, the ring 4 can be provided with further superior wear resistance and fatigue resistance due to the compressive residual stress.
[0032]
In the method of this embodiment, the aging strengthening element such as Al and Ti contained in the ring 4 is precipitated and fixed as an intermetallic compound such as Ni 3 AlTi by the aging treatment. Is not consumed in the reaction with Al, Ti or the like. Accordingly, the ammonia gas may be used in an amount required for nitriding the ring 4, and need not be used excessively.
[0033]
Next, the ring 4 subjected to the nitriding treatment is formed by laminating a plurality of rings 4 having different circumferential lengths little by little to form a laminated ring (not shown).
[0034]
In the nitriding treatment, the aging of the ring 4 proceeds by heating. Therefore, in the aging treatment, only the sub-aging where the aging hardness of the ring 4 is less than the maximum value is limited, and the aging hardness of the ring 4 reaches the maximum value by the nitriding treatment .
[0035]
Further, in the manufacturing method of the present embodiment, after the pre-Symbol aging treatment ended, once can better to cool the ring 4 to obtain a ring 4 which is excellent in surface hardness.
[Brief description of the drawings]
FIG. 1 is a process chart schematically showing an embodiment of a method for producing a laminated ring of the present invention.
FIG. 2 is a diagram showing a relationship between a ring circumference correction factor and a compressive residual stress applied to the ring surface.
[Explanation of symbols]
1 ... thin plate of maraging steel, 2 ... drum, 4 ... ring.

Claims (1)

Niを含有すると共に時効強化元素としてAl,Tiを含有するマルエージング鋼の薄板の端部同士を溶接して形成された円筒状のドラムを所定幅に裁断してリングを形成する工程と、該リングを圧延する工程と、圧延されたリングに対する溶体化を行う工程と、該溶体化が施されたリングを所定の周長に周長補正する工程と、周長補正されたリングに時効処理及び窒化処理を施す工程とを備える積層リングの製造方法において、
前記周長補正されたリングを時効処理して、Al,Tiを金属間化合物であるNi AlTiとして析出させて固定する工程と、時効処理終了後、リングを冷却する工程と、次いで該時効処理が施されたリングに対し不活性気体とアンモニアとの混合雰囲気下で窒化処理を施す工程とを備え、
前記時効処理はリングの時効硬度が最大値未満となる亜時効にとどめ、前記窒化処理によりリングの時効硬度が最大値に達するようにすることを特徴とする積層リングの製造方法。
A step of cutting a cylindrical drum formed by welding ends of thin sheets of maraging steel containing Ni and Al and Ti as aging strengthening elements to form a ring; and A step of rolling the ring, a step of performing solution treatment on the rolled ring, a step of correcting the circumference of the ring subjected to the solution treatment to a predetermined circumferential length, an aging treatment on the ring having the corrected circumferential length, and In a method for manufacturing a laminated ring comprising a step of performing nitriding
Aging treatment of the circumference-corrected ring to precipitate and fix Al and Ti as Ni 3 AlTi , which is an intermetallic compound, a step of cooling the ring after completion of the aging treatment, and then the aging treatment And a step of performing nitriding treatment in a mixed atmosphere of an inert gas and ammonia on the ring subjected to
The aging treatment is limited to sub-aging where the aging hardness of the ring is less than the maximum value, and the aging hardness of the ring reaches the maximum value by the nitriding treatment .
JP2000384180A 2000-06-08 2000-12-18 Manufacturing method of laminated ring Expired - Fee Related JP3850659B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000384180A JP3850659B2 (en) 2000-06-08 2000-12-18 Manufacturing method of laminated ring

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2000-172023 2000-06-08
JP2000172023 2000-06-08
JP2000384180A JP3850659B2 (en) 2000-06-08 2000-12-18 Manufacturing method of laminated ring

Publications (2)

Publication Number Publication Date
JP2002060848A JP2002060848A (en) 2002-02-28
JP3850659B2 true JP3850659B2 (en) 2006-11-29

Family

ID=26593552

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000384180A Expired - Fee Related JP3850659B2 (en) 2000-06-08 2000-12-18 Manufacturing method of laminated ring

Country Status (1)

Country Link
JP (1) JP3850659B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004043962A (en) * 2002-05-14 2004-02-12 Nissan Motor Co Ltd Surface hardening treatment method for maraging steel and belt for belt type continuously variable transmission produced by the method
JP2005219115A (en) * 2004-02-09 2005-08-18 Honda Motor Co Ltd Butt welding method of metallic sheet
WO2006054885A1 (en) * 2004-11-17 2006-05-26 Robert Bosch Gmbh Push belt and manufacturing method therefor
JP5053651B2 (en) * 2007-01-31 2012-10-17 日立金属株式会社 Method for producing maraging steel strip having high fatigue strength
JP5457000B2 (en) * 2008-08-07 2014-04-02 エア・ウォーターNv株式会社 Surface treatment method of steel material, steel material and mold obtained thereby
JP5418492B2 (en) * 2010-12-29 2014-02-19 アイシン・エィ・ダブリュ株式会社 Transmission belt and manufacturing method thereof

Also Published As

Publication number Publication date
JP2002060848A (en) 2002-02-28

Similar Documents

Publication Publication Date Title
EP1055738B1 (en) Method of manufacturing laminated ring and heat treatment apparatus for use in such method
JP3850659B2 (en) Manufacturing method of laminated ring
JP3776306B2 (en) Metal ring nitriding jig
WO2015087869A1 (en) Ring member for cvt and method for producing same
EP1094121B1 (en) Method of manufacturing a laminated ring
JP2002038251A (en) Method for manufacturing endless ring for metal belt of continuously variable transmission
JP2011256416A (en) Method for manufacturing metal ring
JP3784774B2 (en) Heat treatment method for metal rings
JP3784618B2 (en) Manufacturing method of laminated ring
JP4282846B2 (en) Method for producing endless metal belt
JP3836296B2 (en) Endless metal belt manufacturing method and heat treatment apparatus
JP4213503B2 (en) Heat treatment method for maraging steel
JP4149710B2 (en) Metal ring heat treatment method
JP2001140019A (en) Method for producing endless metallic belt
JP3970622B2 (en) Heat treatment method for metal rings
JP3986996B2 (en) Method for nitriding metal ring
JP2001150074A (en) Method of manufacturing endless metallic belt
JPS62192528A (en) Manufacture of maraging steel member having superior wear resistance and fatigue strength
JP4084228B2 (en) Metal ring heat treatment method
JP3842193B2 (en) Nitriding method
JP3784622B2 (en) Ring manufacturing method
JP2001294939A (en) Laminated ring manufacturing method
JP3681589B2 (en) Method for producing endless metal belt
JP3776286B2 (en) Method for producing endless metal belt
JP4267151B2 (en) Method for producing endless metal belt

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040621

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040727

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040921

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050517

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050714

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060829

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060830

R150 Certificate of patent or registration of utility model

Ref document number: 3850659

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100908

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100908

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110908

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110908

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120908

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120908

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130908

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140908

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees