JP3784618B2 - Manufacturing method of laminated ring - Google Patents

Manufacturing method of laminated ring Download PDF

Info

Publication number
JP3784618B2
JP3784618B2 JP2000191225A JP2000191225A JP3784618B2 JP 3784618 B2 JP3784618 B2 JP 3784618B2 JP 2000191225 A JP2000191225 A JP 2000191225A JP 2000191225 A JP2000191225 A JP 2000191225A JP 3784618 B2 JP3784618 B2 JP 3784618B2
Authority
JP
Japan
Prior art keywords
ring
treatment
temperature
heat treatment
maraging steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2000191225A
Other languages
Japanese (ja)
Other versions
JP2002003946A (en
Inventor
仁司 今井
克幸 中島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2000191225A priority Critical patent/JP3784618B2/en
Publication of JP2002003946A publication Critical patent/JP2002003946A/en
Application granted granted Critical
Publication of JP3784618B2 publication Critical patent/JP3784618B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、無段変速機の動力伝達に用いられる無段変速機用ベルトを構成する積層リングの製造方法に関するものである。
【0002】
【従来の技術】
無段変速機の動力伝達に用いられる無段変速機用ベルトは、金属製の複数のリングを積層した積層リングと、該積層リングに組み付けられる多数の金属製エレメントとにより構成されている。
【0003】
従来、前記積層リングは、次のような方法により製造されている。まず、超力鋼であるマルエージング鋼の薄板の端部同士を溶接して円筒状のドラムを形成し、該ドラムに対して前記溶接時の熱により部分的に硬くなった硬度ムラを均質化するために第1の溶体化を行う。次に、前記溶体化後のドラムを所定幅に裁断してリングを形成し、該リングを圧延する。次に、圧延されたリングに対し第2の溶体化を行った後、前記溶体化後のリングを所定の周長に補正する周長補正を施す。そして、前記周長補正が施されたリングに時効及び窒化処理を施して内部及び表面の硬度を向上させた後、少しずつ周長の異なる複数のリングを相互に積層して積層リングを形成する。
【0004】
前記従来の製造方法において、圧延されたリングに対する第2の溶体化は、圧延組織を再結晶させ、圧延により変形された金属組織の形状を復元するために、一般にはマルエージング鋼の再結晶温度である約760℃以上850℃未満の温度範囲で行なわれる。また、本発明者らの検討によれば、前記第2の溶体化は、後続の窒化処理における窒化ムラの発生を防止するために、マルエージング鋼の再結晶完了温度である約780℃以上850℃未満の温度範囲で行なうことが好ましい。
【0005】
前記第2の溶体化を前記範囲の温度で行なうと、後続の時効処理及び窒化処理により、優れた引張強度、表面硬度、内部硬度と、前記物性を得るために適切な深さの窒化層とを備えるリングを得ることができる。ところが、前記第2の溶体化を前記範囲の温度で行ったリングは引張りによる延びが十分に得られず、前記のようにして形成された積層リングを無段変速機用ベルトとして使用する際に、切欠、亀裂等ができるとこれが進展して破断しやすいとの問題がある。
【0006】
一方、マルエージング鋼は、500〜750℃程度の温度で加熱すると、逆変態オーステナイト相が生成することが知られている。前記逆変態オーステナイト相は、前記マルエージング鋼の粒界に析出したNi3 Ti等の金属間化合物が部分的にマトリクス中に固溶して、Ni濃度の高い部分が局部的にオーステナイト化したものである。逆変態オーステナイト相は、前記逆変態オーステナイト相の生成により、靭性、伸びが増大する。そこで、前記第2の溶体化に変えて、前記逆変態オーステナイト相を生成させるような熱処理を行なうことが考えられる。
【0007】
しかしながら、前記逆変態オーステナイト相の量が増加すると、後続の時効処理において時効硬化が起きず、窒化処理においても均一で安定な窒化層が形成されにくくなり、十分な引張強度、表面硬度、内部硬度が得られにくくなるとの不都合がある。
【0008】
【発明が解決しようとする課題】
本発明は、かかる不都合を解消して、従来と同等の引張強度、表面硬度、内部硬度を備えると共に、切欠、亀裂等が発生しても破断しにくい積層リングの製造方法を提供することを目的とする。
【0009】
【課題を解決するための手段】
本発明者らは、マルエージング鋼製リングに、切欠、亀裂等が発生しても破断しにくくなる靭性、伸びを付与することができ、しかも時効処理及び窒化処理により無段変速機用ベルトに必要な引張強度、表面硬度、内部硬度を付与することできる熱処理条件について種々検討を行なった。この結果、本発明者らは、圧延後のリングに対して、特定の温度範囲で熱処理を施すことにより、逆変態オーステナイト相の生成量を制御することができることを見出し、本発明を完成した。
【0010】
そこで、前記目的を達成するために、本発明の積層リングの製造方法は、マルエージング鋼の薄板の端部同士を溶接して形成された円筒状のドラムを所定幅に裁断してリングを形成する工程と、該リングを圧延する工程と、圧延されたリングに対して熱処理を行う工程と、該熱処理が施されたリングに時効処理及び窒化処理を施す工程と、窒化処理が施されたリングのうち、少しずつ周長の異なる複数のリングを相互に積層することにより積層リングが形成される工程とを備える積層リングの製造方法において、前記圧延されたリングに対する熱処理は、550〜620℃の範囲の温度で行なうことにより、リングを構成する前記マルエージング鋼に対して15〜25体積%の逆変態オーステナイト相を生成させることを特徴とする。
【0011】
本発明の製造方法によれば、前記圧延されたリングに対し、前記範囲の温度で熱処理を施すことにより、前記リングに切欠、亀裂等が発生しても破断しにくくなる靭性、伸びを付与するに足る量であって、後続の時効処理による時効硬化及び窒化処理による安定均一な窒化層の形成を妨げることのない量の逆変態オーステナイト相を生成させることができる。
【0012】
前記熱処理の温度が550℃未満では、前記リングが過度に引っ張られ、あるいは切欠、亀裂等が発生したときに破断する虞がある。また、前記熱処理の温度が620℃を超えると、後続の時効処理及び窒化処理により、無段変速機用ベルトに必要な引張強度、表面硬度、内部硬度を得ることができない。
【0013】
【発明の実施の形態】
次に、添付の図面を参照しながら本発明の実施の形態についてさらに詳しく説明する。図1は本実施形態の積層リングの製造方法を模式的に示す工程図であり、図2は熱処理温度とマルエージング鋼の膨張率との関係を示す線図、図3は熱処理温度と逆変態オーステナイト相の生成量との関係を示す線図、図4は本実施形態の製造方法で得られたリングの伸張率と引張強さとの関係を示す線図、図5は熱処理温度と窒化層の深さとの関係を示す線図、図6は熱処理温度と表面硬度及び内部硬度との関係を示す線図、図7は熱処理温度と引張強さとの関係を示す線図である。
【0014】
本実施形態の製造方法では、まず、図1示のようにマルエージング鋼の薄板1をベンディングしてループ化したのち、端部同士を溶接して円筒状のドラム2を形成する。このとき、前記マルエージング鋼は溶接の熱により時効硬化を示すので、ドラム2の溶接部分の両側に硬度の高い部分が出現する。
【0015】
そこで、次に、ドラム2を真空炉3に収容して加熱することにより溶体化処理を行い、硬度ムラを除去する。前記溶体化処理が終了したならば、ドラム2を真空炉3から搬出し、所定幅に裁断してリング4を形成する。
【0016】
前記のようにして形成されたリング4は、次に圧下率40〜50%で圧延される。圧延されたリング4には、表面から30μm程度の厚さで圧延組織が形成されている。そこで、圧延されたリング4を、加熱炉5に収容して550〜620℃の範囲の温度で熱処理を行なうことにより、逆変態オーステナイト相を生成させる。
【0017】
前記熱処理が施されたリング4は、冷却後、周長補正され、さらに時効処理及び窒化処理が施される。そして、窒化処理が施されたリング4のうち、少しずつ周長の異なる複数のリング4を相互に積層することにより、図示しない積層リングが形成される。
【0018】
次に、前記圧延されたリング4に対する加熱炉5における熱処理について、詳しく説明する。
【0019】
前記リング4を構成するマルエージング鋼を加熱していくと、結晶構造が変化するが、該変化は図2に示すようにリング4の膨張率の変化として把握することができる。図2を参照して、リング4では処理温度が500℃を超えると、前記マルエージング鋼の粒界に析出していたNi3 Ti等の金属間化合物が部分的にマトリクス中に固溶し始める。この結果、Ni濃度の高い部分が局部的にオーステナイト化して逆変態オーステナイト相が生成する。逆変態オーステナイト相の生成は、処理温度が約740℃を超え前記マルエージング鋼の再結晶が始まるまで続く。前記マルエージング鋼の再結晶は、オーステナイト化を含んでいるが、前記オーステナイト化は処理温度が約780℃に達するに及んで完了する。
【0020】
前記逆変態オーステナイト相は、前述のように500〜740℃の範囲で生成するが、このとき逆変態オーステナイト相の生成量のマルエージング鋼全体に対する割合(体積%)は、図3に示すように変化する。そこで、本実施形態では、前記圧延されたリング4に対する加熱炉5における熱処理を550〜620℃の範囲で行なうことにより、リング4を構成する前記マルエージング鋼に対して15〜25体積%の逆変態オーステナイト相を生成させるものである。
【0021】
次に、本実施形態の範囲の各温度で熱処理を行なった後、さらにタフトライド法により530℃の塩浴に20分間浸漬して窒化を施すと同時に時効処理したリング4(実施例1〜3)と、比較のために、前記温度範囲の下限以下の温度である500℃で熱処理を行なった後、前記と同一条件で窒化を施すと同時に時効処理したリング4(比較例1)とを伸張して、伸張率に対する引張強さを測定すると共に、伸張限界までの伸張率を測定した。結果を図4に示す。
【0022】
図4から、500℃で熱処理を行なったリング4(比較例1)は伸張率が2.1%であって十分な延伸性が得られないばかりか破断したのに対し、550℃で熱処理を行なったリング4(実施例1)の伸張率は2.8%、580℃で熱処理を行なったリング4(実施例2)は3.8%、620℃で熱処理を行なったリング4(実施例3)は3.0%であって、しかも破断することがなく、比較例に対して格段に優れた延伸性が付与されていることが明らかである。
【0023】
次に、実施例1〜3の各リング4と、さらに比較のために、前記温度範囲の上限以上の温度である700℃で熱処理を行なった後、前記と同一条件で窒化を施すと同時に時効処理したリング4(比較例2)とについて、目視により窒化層の深さを測定した。結果を図5に示す。
【0024】
図5から、実施例1〜3のリング4はいずれも、無段変速機用ベルトの積層リングを構成するために必要とされる20μm以上の深さの窒化層を備えているのに対し、比較例2のリング4では窒化層の厚さが20μmに達しないことが明らかである。これは、図3から明らかなように、比較例2のリング4では前記逆変態オーステナイト相の生成量が実施例1〜3の各リング4よりも多いために、安定かつ均一な窒化層が形成されないためと考えられる。
【0025】
次に、550〜700℃の範囲の温度で熱処理を行なった後、さらにタフトライド法により530℃の塩浴に20分間浸漬して窒化を施すと同時に時効処理したリング4について、表面硬度及び内部硬度を測定した。結果を図6に示す。
【0026】
図6から、本実施形態の550〜620℃の範囲で熱処理を行った場合には、無段変速機用ベルトの積層リングを構成するために必要とされる750(HMV)以上の表面硬度が得られるが、熱処理の温度が本実施形態の範囲の温度の上限である620℃を超えると、表面硬度が750(HMV)未満となることが明らかである。また、内部硬度についてみると、熱処理の温度が本実施形態の範囲の温度の上限である620℃を超えると、硬度が急峻に低下することが明らかである。
【0027】
次に、550〜700℃の範囲の温度で熱処理を行なった後、さらにタフトライド法により530℃の塩浴に20分間浸漬して窒化を施すと同時に時効処理したリング4について、引張強さを測定した。結果を図7に示す。図7から、熱処理の温度が本実施形態の範囲の温度の上限である620℃を超えると、引張強さが急峻に低下することが明らかである。
【0028】
以上の結果から、前記圧延されたリング4に対する熱処理を550〜620℃の範囲の温度で行うことにより、優れた延伸性と共に、優れた引張強度、表面硬度、内部硬度を備えるリング4が得られることが明らかである。このようなリング4から形成された積層リングは、前記引張強度、表面硬度、内部硬度により無段変速機用ベルトに好適に使用することができると共に、前記延伸性により、前記無段変速機用ベルトに使用したときに切欠、亀裂等が発生しても破断しにくくなる。
【0029】
尚、本実施形態のリング4は前記熱処理に続いてタフトライド法により窒化処理を施すと同時に時効処理を施しているが、加熱炉内で加熱して時効処理したのち、ガス窒化処理またはガス軟窒化処理を施すようにしてもよく、加熱炉内で加熱してガス窒化処理またはガス軟窒化処理と同時に時効処理を施すようにしてもよい。
【図面の簡単な説明】
【図1】本発明の積層リングの製造方法を模式的に示す工程図。
【図2】熱処理温度とマルエージング鋼の膨張率との関係を示す線図。
【図3】熱処理温度と逆変態オーステナイト相の生成量との関係を示す線図。
【図4】本発明の製造方法で得られたリングの伸張率と引張強さとの関係を示す線図。
【図5】熱処理温度と窒化層の深さとの関係を示す線図。
【図6】熱処理温度と表面硬度及び内部硬度との関係を示す線図。
【図7】熱処理温度と引張強さとの関係を示す線図。
【符号の説明】
1…マルエージング鋼の薄板、 2…ドラム、 4…リング。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method of manufacturing a laminated ring constituting a continuously variable transmission belt used for power transmission of a continuously variable transmission.
[0002]
[Prior art]
A continuously variable transmission belt used for power transmission of a continuously variable transmission is configured by a stacked ring in which a plurality of metal rings are stacked and a number of metal elements assembled to the stacked rings.
[0003]
Conventionally, the laminated ring is manufactured by the following method. First, a cylindrical drum by welding the ends of the thin plate of maraging steel is ultra high strength steel, homogeneous partially hardened hardness unevenness by the heat during the welding with respect to the drum In order to make it, the first solution treatment is performed. Next, the solution-treated drum is cut into a predetermined width to form a ring, and the ring is rolled. Next, after the second solution treatment is performed on the rolled ring, circumference correction is performed to correct the ring after the solution formation to a predetermined circumference. Then, after aging and nitriding treatment are performed on the ring subjected to the peripheral length correction to improve the internal and surface hardness, a plurality of rings having different peripheral lengths are stacked on each other to form a stacked ring. .
[0004]
In the conventional manufacturing method, in order to recrystallize the rolled structure and restore the shape of the metal structure deformed by rolling, the second solution treatment for the rolled ring is generally performed at a recrystallization temperature of maraging steel. In a temperature range of about 760 ° C. or more and less than 850 ° C. Further, according to the study by the present inventors, the second solution treatment is performed at about 780 ° C. or higher, which is the recrystallization completion temperature of maraging steel, in order to prevent occurrence of uneven nitriding in the subsequent nitriding treatment. It is preferable to carry out in a temperature range of less than ° C.
[0005]
When the second solution treatment is carried out at a temperature within the above range, a subsequent aging treatment and nitriding treatment can provide excellent tensile strength, surface hardness, internal hardness, and a nitride layer having an appropriate depth to obtain the physical properties. Can be obtained. However, the ring subjected to the second solution treatment at the temperature in the above range cannot be sufficiently stretched by pulling, and the laminated ring formed as described above is used as a continuously variable transmission belt. There is a problem that if a notch, a crack, or the like is formed, it develops and is easily broken.
[0006]
On the other hand, when maraging steel is heated at a temperature of about 500 to 750 ° C., it is known that a reverse transformation austenite phase is generated. The reverse-transformed austenite phase is the one in which intermetallic compounds such as Ni 3 Ti precipitated at the grain boundaries of the maraging steel are partly dissolved in the matrix, and the portion with a high Ni concentration is locally austenitic. It is. The reverse transformed austenite phase has increased toughness and elongation due to the formation of the reverse transformed austenite phase. In view of this, it is conceivable to perform a heat treatment to generate the reverse transformed austenite phase instead of the second solution.
[0007]
However, when the amount of the reverse-transformed austenite phase increases, age hardening does not occur in the subsequent aging treatment, and it becomes difficult to form a uniform and stable nitride layer even in the nitriding treatment, and sufficient tensile strength, surface hardness, internal hardness There is a disadvantage that it becomes difficult to obtain.
[0008]
[Problems to be solved by the invention]
An object of the present invention is to provide a method for manufacturing a laminated ring that eliminates such inconveniences and has a tensile strength, surface hardness, and internal hardness equivalent to those of the prior art, and that does not easily break even if a notch, a crack, or the like occurs. And
[0009]
[Means for Solving the Problems]
The inventors of the present invention can impart to the maraging steel ring toughness and elongation that are difficult to break even if notches, cracks, etc. occur, and to the belt for continuously variable transmissions by aging treatment and nitriding treatment. Various studies were conducted on heat treatment conditions that can provide the necessary tensile strength, surface hardness, and internal hardness. As a result, the present inventors have found that the amount of reverse transformed austenite phase produced can be controlled by subjecting the ring after rolling to a heat treatment in a specific temperature range, thereby completing the present invention.
[0010]
Therefore, in order to achieve the above object, the laminated ring manufacturing method of the present invention forms a ring by cutting a cylindrical drum formed by welding end portions of maraging steel thin plates to a predetermined width. A step of rolling, a step of rolling the ring, a step of heat-treating the rolled ring, a step of subjecting the ring subjected to the heat treatment to aging treatment and nitriding treatment, and a ring subjected to nitriding treatment Among these, in the method of manufacturing a laminated ring comprising a step of forming a laminated ring by laminating a plurality of rings having different circumferential lengths little by little , the heat treatment on the rolled ring is performed at 550 to 620 ° C. By carrying out at a temperature within the range, 15 to 25% by volume of a reverse-transformed austenite phase is generated with respect to the maraging steel constituting the ring .
[0011]
According to the manufacturing method of the present invention, the rolled ring is subjected to a heat treatment at a temperature in the above range, thereby imparting toughness and elongation that makes it difficult to break even if a notch, a crack, or the like occurs in the ring. Therefore, it is possible to generate a reverse-transformed austenite phase in an amount sufficient to prevent the formation of a stable and uniform nitrided layer by age hardening and nitriding by the subsequent aging treatment.
[0012]
If the temperature of the heat treatment is less than 550 ° C., the ring may be excessively pulled or may break when a notch, a crack, or the like occurs. If the temperature of the heat treatment exceeds 620 ° C., the tensile strength, surface hardness, and internal hardness required for the continuously variable transmission belt cannot be obtained by the subsequent aging treatment and nitriding treatment.
[0013]
DETAILED DESCRIPTION OF THE INVENTION
Next, embodiments of the present invention will be described in more detail with reference to the accompanying drawings. FIG. 1 is a process diagram schematically showing a method for manufacturing a laminated ring of the present embodiment, FIG. 2 is a diagram showing the relationship between the heat treatment temperature and the expansion rate of maraging steel, and FIG. 3 is the heat treatment temperature and reverse transformation. FIG. 4 is a diagram showing the relationship between the austenite phase generation amount, FIG. 4 is a diagram showing the relationship between the elongation ratio of the ring obtained by the manufacturing method of this embodiment and the tensile strength, and FIG. FIG. 6 is a diagram showing the relationship between the heat treatment temperature, the surface hardness and the internal hardness, and FIG. 7 is a diagram showing the relationship between the heat treatment temperature and the tensile strength.
[0014]
In the manufacturing method of this embodiment, first, as shown in FIG. 1, the maraging steel thin plate 1 is bent to form a loop, and then the ends are welded to form a cylindrical drum 2. At this time, since the maraging steel exhibits age hardening by the heat of welding, high hardness portions appear on both sides of the welded portion of the drum 2.
[0015]
Therefore, next, the drum 2 is accommodated in the vacuum furnace 3 and heated to perform a solution treatment, thereby removing hardness unevenness. When the solution treatment is completed, the drum 2 is unloaded from the vacuum furnace 3 and cut into a predetermined width to form the ring 4.
[0016]
The ring 4 formed as described above is then rolled at a rolling reduction of 40 to 50%. A rolled structure is formed on the rolled ring 4 with a thickness of about 30 μm from the surface. Accordingly, the rolled ring 4 is accommodated in the heating furnace 5 and subjected to heat treatment at a temperature in the range of 550 to 620 ° C., thereby generating a reverse transformed austenite phase.
[0017]
After cooling, the ring 4 subjected to the heat treatment is corrected in circumference, and further subjected to aging treatment and nitriding treatment. Then, among the rings 4 that have been subjected to nitriding treatment, a plurality of rings 4 having different circumferential lengths are laminated one by one to form a laminated ring (not shown).
[0018]
Next, the heat treatment in the heating furnace 5 for the rolled ring 4 will be described in detail.
[0019]
When the maraging steel constituting the ring 4 is heated, the crystal structure changes, but this change can be grasped as a change in the expansion coefficient of the ring 4 as shown in FIG. Referring to FIG. 2, in ring 4, when the processing temperature exceeds 500 ° C., an intermetallic compound such as Ni 3 Ti that has precipitated at the grain boundaries of the maraging steel starts to partially dissolve in the matrix. . As a result, a portion with a high Ni concentration is locally austenitized to produce a reverse transformed austenite phase. The formation of the reverse transformed austenite phase continues until the processing temperature exceeds about 740 ° C. and recrystallization of the maraging steel begins. The recrystallization of the maraging steel includes austenitization, which is completed when the processing temperature reaches about 780 ° C.
[0020]
The reverse-transformed austenite phase is generated in the range of 500 to 740 ° C. as described above. At this time, the ratio (volume%) of the amount of the reverse-transformed austenite phase to the entire maraging steel is as shown in FIG. Change. Therefore, in the present embodiment, the heat treatment in the heating furnace 5 for the rolled ring 4 is performed in the range of 550 to 620 ° C., so that the reverse of 15 to 25% by volume with respect to the maraging steel constituting the ring 4. A transformation austenite phase is generated.
[0021]
Next, after performing heat treatment at each temperature within the range of the present embodiment, ring 4 (Examples 1 to 3) subjected to nitriding by immersing in a salt bath at 530 ° C. for 20 minutes and nitriding by a tuftride method. For comparison, after performing heat treatment at 500 ° C., which is a temperature lower than the lower limit of the temperature range, the ring 4 (Comparative Example 1) subjected to nitriding under the same conditions as described above and simultaneously aged is stretched. Then, the tensile strength with respect to the elongation rate was measured, and the elongation rate to the elongation limit was measured. The results are shown in FIG.
[0022]
From FIG. 4, the ring 4 (Comparative Example 1) that was heat-treated at 500 ° C. had an elongation of 2.1% and did not obtain sufficient stretchability. The ring 4 (Example 1) that was subjected to heat treatment was 2.8%, and the ring 4 (Example 2) that was heat-treated at 580 ° C. was 3.8%, and the ring 4 (Example 1) that was heat-treated at 620 ° C. 3) is 3.0% and does not break, and it is clear that remarkably excellent stretchability is imparted to the comparative example.
[0023]
Next, for comparison with each of the rings 4 of Examples 1 to 3, after heat treatment at 700 ° C., which is higher than the upper limit of the temperature range, nitriding is performed at the same time as the above, and aging is performed simultaneously For the treated ring 4 (Comparative Example 2), the depth of the nitrided layer was measured visually. The results are shown in FIG.
[0024]
From FIG. 5, all of the rings 4 of Examples 1 to 3 are provided with a nitrided layer having a depth of 20 μm or more, which is necessary for constituting a laminated ring of a continuously variable transmission belt, In the ring 4 of Comparative Example 2, it is clear that the thickness of the nitride layer does not reach 20 μm. As is apparent from FIG. 3, the ring 4 of Comparative Example 2 has a larger amount of the reverse transformed austenite phase than the rings 4 of Examples 1 to 3, so that a stable and uniform nitride layer is formed. It is thought that it is not done.
[0025]
Next, the surface hardness and the internal hardness of the ring 4 subjected to heat treatment at a temperature in the range of 550 to 700 ° C., and further subjected to nitriding by immersing in a salt bath at 530 ° C. for 20 minutes by a tuftride method and simultaneously aging treatment. Was measured. The results are shown in FIG.
[0026]
From FIG. 6, when the heat treatment is performed in the range of 550 to 620 ° C. of the present embodiment, the surface hardness of 750 (HMV) or more required for constituting the laminated ring of the continuously variable transmission belt is obtained. Although it is obtained, it is clear that when the temperature of the heat treatment exceeds 620 ° C. which is the upper limit of the temperature in the range of the present embodiment, the surface hardness becomes less than 750 (HMV). Further, regarding the internal hardness, it is clear that the hardness sharply decreases when the temperature of the heat treatment exceeds 620 ° C. which is the upper limit of the temperature in the range of the present embodiment.
[0027]
Next, after performing heat treatment at a temperature in the range of 550 to 700 ° C., the tensile strength was measured for the ring 4 that was further nitrided by immersing in a salt bath at 530 ° C. for 20 minutes by the tuftride method and simultaneously aging treatment. did. The results are shown in FIG. From FIG. 7, it is clear that when the temperature of the heat treatment exceeds 620 ° C. which is the upper limit of the temperature in the range of the present embodiment, the tensile strength sharply decreases.
[0028]
From the above results, by performing the heat treatment on the rolled ring 4 at a temperature in the range of 550 to 620 ° C., a ring 4 having excellent tensile strength, surface hardness, and internal hardness is obtained along with excellent stretchability. It is clear. The laminated ring formed from such a ring 4 can be suitably used for a continuously variable transmission belt due to the tensile strength, surface hardness, and internal hardness, and for the continuously variable transmission due to the stretchability. Even if a notch, a crack, or the like occurs when used for a belt, it is difficult to break.
[0029]
The ring 4 of the present embodiment is subjected to nitriding treatment by the tuftride method at the same time as the nitriding treatment following the heat treatment. However, after aging treatment by heating in a heating furnace, gas nitriding treatment or gas soft nitriding treatment is performed. A treatment may be applied, or an aging treatment may be performed simultaneously with gas nitriding treatment or gas soft nitriding treatment by heating in a heating furnace.
[Brief description of the drawings]
FIG. 1 is a process diagram schematically showing a method for producing a laminated ring of the present invention.
FIG. 2 is a diagram showing the relationship between the heat treatment temperature and the expansion rate of maraging steel.
FIG. 3 is a diagram showing the relationship between the heat treatment temperature and the amount of reverse transformed austenite phase formed.
FIG. 4 is a diagram showing the relationship between the elongation percentage and tensile strength of the ring obtained by the production method of the present invention.
FIG. 5 is a diagram showing the relationship between the heat treatment temperature and the depth of the nitride layer.
FIG. 6 is a diagram showing the relationship between heat treatment temperature, surface hardness and internal hardness.
FIG. 7 is a diagram showing the relationship between heat treatment temperature and tensile strength.
[Explanation of symbols]
1 ... thin plate of maraging steel, 2 ... drum, 4 ... ring.

Claims (1)

マルエージング鋼の薄板の端部同士を溶接して形成された円筒状のドラムを所定幅に裁断してリングを形成する工程と、該リングを圧延する工程と、圧延されたリングに対して熱処理を行う工程と、該熱処理が施されたリングに時効処理及び窒化処理を施す工程と、窒化処理が施されたリングのうち、少しずつ周長の異なる複数のリングを相互に積層することにより積層リングが形成される工程とを備える積層リングの製造方法において、
前記圧延されたリングに対する熱処理は、550〜620℃の範囲の温度で行なうことにより、リングを構成する前記マルエージング鋼に対して15〜25体積%の逆変態オーステナイト相を生成させることを特徴とする積層リングの製造方法。
A step of forming a ring by cutting a cylindrical drum formed by welding ends of thin sheets of maraging steel to a predetermined width, a step of rolling the ring, and a heat treatment for the rolled ring Laminating by laminating a plurality of rings with slightly different circumferential lengths among the ring subjected to aging treatment and nitriding treatment and the ring subjected to nitriding treatment. A method of manufacturing a laminated ring comprising a step of forming a ring ,
The heat treatment for the rolled ring is performed at a temperature in the range of 550 to 620 ° C. to generate 15 to 25% by volume of a reverse transformed austenite phase with respect to the maraging steel constituting the ring. A method for manufacturing a laminated ring.
JP2000191225A 2000-06-26 2000-06-26 Manufacturing method of laminated ring Expired - Lifetime JP3784618B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000191225A JP3784618B2 (en) 2000-06-26 2000-06-26 Manufacturing method of laminated ring

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000191225A JP3784618B2 (en) 2000-06-26 2000-06-26 Manufacturing method of laminated ring

Publications (2)

Publication Number Publication Date
JP2002003946A JP2002003946A (en) 2002-01-09
JP3784618B2 true JP3784618B2 (en) 2006-06-14

Family

ID=18690558

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000191225A Expired - Lifetime JP3784618B2 (en) 2000-06-26 2000-06-26 Manufacturing method of laminated ring

Country Status (1)

Country Link
JP (1) JP3784618B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5036441B2 (en) * 2007-07-26 2012-09-26 三菱電機株式会社 Method for manufacturing vertical silicon carbide semiconductor device
EP2832870A4 (en) 2012-03-28 2015-11-25 Toyota Motor Co Ltd Method and device for manufacturing endless metal ring, and endless metal ring
NL1041998B1 (en) 2016-07-27 2018-02-01 Bosch Gmbh Robert Flexible steel ring made from maraging steel and provided with a nitrided surface layer

Also Published As

Publication number Publication date
JP2002003946A (en) 2002-01-09

Similar Documents

Publication Publication Date Title
EP1176224B1 (en) Nitrided maraging steel and method of manufacturing thereof
WO2010002240A1 (en) Heat treatment process for a drive belt metal ring component
JP3784618B2 (en) Manufacturing method of laminated ring
JP3630299B2 (en) Method for manufacturing endless ring for metal belt of continuously variable transmission
EP1094121B1 (en) Method of manufacturing a laminated ring
JP4213503B2 (en) Heat treatment method for maraging steel
JP3850659B2 (en) Manufacturing method of laminated ring
JP5784144B2 (en) Heat treatment process for manufacturing process of drive belt metal ring components
JP2000337453A (en) Manufacture of endless metallic belt
JP3836296B2 (en) Endless metal belt manufacturing method and heat treatment apparatus
JP3970622B2 (en) Heat treatment method for metal rings
CN103339267B (en) For the heat treating method of the production method of transmission belt metal ring component
JP2001294939A (en) Laminated ring manufacturing method
US20040244873A1 (en) Steel belt comprising martensitic steel and method for manufacturing hoop for continuously variable transmission using said steel belt
JP4149710B2 (en) Metal ring heat treatment method
JP2001150074A (en) Method of manufacturing endless metallic belt
JP4084228B2 (en) Metal ring heat treatment method
JP2001140019A (en) Method for producing endless metallic belt
JP2003301220A (en) Heat treatment method for metal ring
JP2003328109A (en) Nitriding treatment method for maraging steel and belt for belt type continuously variable transmission subjected to nitriding treatment by the method
JP3854197B2 (en) Method for correcting circumference of plastic deformable ring
JP3842193B2 (en) Nitriding method
JP3784622B2 (en) Ring manufacturing method
JPH11200010A (en) Surface treatment of metallic multilayered belt for automobile
JP6008976B2 (en) Heat treatment process in manufacturing method of drive belt metal ring element

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050310

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051122

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060120

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060314

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060315

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100324

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100324

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110324

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110324

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120324

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130324

Year of fee payment: 7