JPS62191026A - Denitration equipment - Google Patents

Denitration equipment

Info

Publication number
JPS62191026A
JPS62191026A JP61029895A JP2989586A JPS62191026A JP S62191026 A JPS62191026 A JP S62191026A JP 61029895 A JP61029895 A JP 61029895A JP 2989586 A JP2989586 A JP 2989586A JP S62191026 A JPS62191026 A JP S62191026A
Authority
JP
Japan
Prior art keywords
box
support member
shaped support
catalyst
catalyst block
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP61029895A
Other languages
Japanese (ja)
Other versions
JPH0714461B2 (en
Inventor
Ko Watanabe
渡辺 洸
Haruo Arakawa
荒川 春男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Power Ltd
Original Assignee
Babcock Hitachi KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Babcock Hitachi KK filed Critical Babcock Hitachi KK
Priority to JP61029895A priority Critical patent/JPH0714461B2/en
Publication of JPS62191026A publication Critical patent/JPS62191026A/en
Publication of JPH0714461B2 publication Critical patent/JPH0714461B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To allow the titled apparatus to withstand vibration, by arranging a box-shaped support member, which is formed of frame members surrounding the outer peripheries of a catalyst block aggregates and beam members connecting said frame members, in an exhaust gas passage and forming said aggregates into an integral structure by the box-shaped support member. CONSTITUTION:A box-shaped support member 33, which is formed of frame members 31-31c surrounding the outer peripheries of catalyst blocks 26a, 26b and beam members 32a, 32b connecting said frame members, is arranged in an exhaust gas passage and supported in an integral structure in such a state that the outer peripheries of the catalyst blocks 26a, 26b are surrounded through stopper members 34. Therefore, the box-shaped support member 33 has the same temp. as the catalyst blocks 26a, 26b and can be supported so as to follow thermal expansion and contraction. As a result, the box-shaped support member can be supported so as to withstand vibration.

Description

【発明の詳細な説明】[Detailed description of the invention]

〔産業上の利用分野〕 本発明は複合発電プラントの廃熱回収装置等から排出さ
れる燃焼排lス中の窒素酸化物(NOx)を除去する脱
硝装置に保り、特に排ガスが水平流に流れる内部保温型
脱硝装置に関するものである。 〔従来の技術〕 急増jる寛力篇費に応えるために大容量の火力発電所が
建設され
[Industrial Application Field] The present invention relates to a denitrification device that removes nitrogen oxides (NOx) from combustion exhaust gas discharged from a waste heat recovery device, etc. of a combined cycle power plant. This relates to a flowing internal heat retention type denitrification device. [Conventional technology] Large-capacity thermal power plants were constructed in order to meet rapidly increasing government spending.

【いるが、これらのボイラは部分負荷時におい
ても高い発電効率を得るために変圧運転を行なうことが
要求されている。 これは最近の電力w景の特徴として、原子力発電の伸び
と共に、負荷の最大と最小の差も増大し。 火力発電はベースロード用から負荷調整用へと移行する
傾向にある。 つまり、火力発電ボイラはボイラ負荷を常に全負荷で運
転されるものは少なく、負荷を75%負荷、50%負荷
、25%負荷へと負荷を上げ、下げして運転したり、ボ
イラの運転を停止するなど、いわゆる毎日起動停止(D
aily 5tart 5top  以下率にD88と
いう)や、週末起動停止(Weekly 5tartS
 top以下単にWS2という)運転を行なって中間負
荷を担い、発電効率を向上させろことが行なわれ工いる
。 例えば高効率発電の一環として、最近複合兄竜プラント
が注目されている。この複合発電プラントはまず、ガス
タービンによる発電を行なうと共に、カスタービンから
排出されるおトガス中の熱を廃熱回収装置(廃熱回収ボ
イラ)によって回収し、この廃熱回収ボイラで発生した
蒸気により蒸気タービンを駆動させて発電するものであ
る。 この複合発電プラントはガスタービンによる発電と、蒸
気タービンによる発電を行なうために発電効率が高いう
えにガスタービンは負荷応答性に潰れ、このために急激
なtカ需要の上昇にも十分対応し得ろ負荷追従性に優れ
た利点もあり、特に1Jss4転やWSS運転には有効
である。 ところか、この複合発電プラントにおいては、LNQ、
灯油などのクリーンな燃料を使用するので、8(Jxt
htやダスト量は少なくなるが、カスタービンの燃焼に
おいては酸累景が多く、高温燃焼を行なうために、耕ガ
ス中のN(Jx益が増加するので、脱硝装置を内紙した
廃熱回収ボイラか開発されている。 第6図は内部保温型脱硝装置が配置された複合発電プラ
ントの概略系軌図である。第6囚において、1はカスタ
ービン、2にガスタービン1からの排ガスqを尋人する
排ガス通路、3は過熱器、4は第1の蒸発器、5は脱硝
装置、6は縞2の蒸発器、7は節炭器である。過熱器3
.第1および第2の蒸発器4.6.脱硝装f15、節炭
器7は排ガス通路2内に配置されている。8は蒸気を発
生するドラム、9はドラム8で発生した蒸気により駆動
される蒸気タービン、10は蒸気を凝縮して水に戻す復
水器、11は復水器10の水をドラム8に給水する復水
ポンプ、12は給水管路である。 復水器10の水は復水ポンプ11により給水Wとなって
給水管路12を経て節炭器6で耕ガスqにより予熱され
てドラム8内に供給される。ドラム8内の水は下降管1
3を通って下降し、管路14a、14bを経て蒸発器4
.6へ導入され管路15a、15bを経てドラム8内に
戻る。このようにして、循環流動する間に、蒸発器4,
6において排ガスqとの熱交換により生じた蒸気は地利
蒸気管16により過熱器3に導入され、ここで排ガスq
により過熱され、過熱蒸気として主蒸気管17を経て蒸
気タービン9へ供給される。18は主蒸気管に接続され
、蒸気タービン9をバイパスして蒸気を直接促水器10
に導くタービンバイパス管である。又、19は蒸気ター
ビン9への蒸気の流蓋を調節する蒸気タービン加減弁、
肋は蒸気タービン9への蒸気の供給量により蒸気のバイ
パス蓋を調節するタービンバイパス弁%21はPトガス
ダクト2のダンパである。 以上の説明は複合発電プラントの概要であるが一般に、
排熱回収ボイラ内には、過熱器3、蒸発器、4,6およ
び節炭器7が組み込まれ排ガス中の熱を回収すると共に
排ガスの脱硝を行なう脱硝装置5が配置されている。 第7図は従来の内部保温型脱硝装置の横断面図、第8図
は、第7図のA部を拡大した支持装置の■−via断面
拡大図である。排カスGが通過する排カス通路2のケー
シング器の内側には保温材器が内張され、その内部に脱
硝装置5が受台め上に載置されている。また、脱銅装置
5は第9図に示す様に触媒ユニット5を数ユニットに総
めで触媒ブロックかを形成し、さらにこの触媒ブロック
局を第7図に示す様に槓み1ねて脱硝装f5が形成され
、この脱硝装置5の中を排ガスGが通過することによっ
て脱硝反応が行なわれる。 ところが、前述した様にこれらの複合発電プラントにお
いては、DBS運転やWSS運転によって頻繁に起動、
停止を繰り返すために、特に起動時においては触媒ブロ
ック26がガスタービン1からの排ガスGによって一方
的に加熱されるために、第8図に示す実線の位置に位置
する触媒ブロックあが破線や一点鎖線で示すように伸び
、運転停止時には逆に実線の位[K戻る、いわゆる槓み
lねられた触媒ブロックがか伸縮を繰り返す。 この様に従来の脱硝装置5は内部保温型であるためガス
タービン1からの熱を受ける触媒ブロックあは熱伸縮す
るが、排ガス通路20ケーシング四は断熱材で採機され
ているので熱伸輻はほとんど無く、触媒ブロックかをケ
ーシングηに直接固定して支持することができない。 従って、地震等の振動に対しては、第8図に示す構造の
複体な油圧防振器27寺を用いてケーシングnの外部よ
り触媒ブロック26を支持する支持装置四が採用されて
いた。 この支持装置1128は油圧防振器ごと支持棒四から成
り油圧防振器ごは1ノ[ガスGによる温度上昇を防ぐた
め排ガス通路2の外側に設置する。したがって、サポー
ト部材間と触媒ブロック5を連結する支持棒四は排ガス
通路2のケーシングη及び保温材乙な員遇する構造とな
り支持伸四は触媒ブロックあの熱伸縮に追従して動くた
めシール構造や断熱構造は第8図に示す様に複雑になる
。 〔発明が解決しようとする間組点〕 この様に従来の内部保温型脱硝装置においてはL)88
違転、W8S違転を行なって起動、運転を繰り返すため
に触媒ブロックの支持構造が追従できす、しかも積み重
ねたt@諌ダブロック地襄等の振動に対しては非常に弱
い支持構造であった。 本発明はかかる従来の欠点を解消しようとするもので、
その目的とするところは、触媒ブロックの熱伸縮に追従
でき、しかも地宸等の振動に対しても強固に支持するこ
とができる内部保温型脱硝装置を提供するものである。 〔問題点を解決するための手段〕 本発明は前述の問題点を解決するために、シトガス通路
内に触媒ブロックの集合体の外周を囲む枠形部材と、こ
の枠形部材を連結する梁部材によって形成した箱型支持
部材を配置し、触媒ブロックの集合体を箱形支持部材に
よって一体構造で支持するものである。 〔作用〕 この様に触媒ブロックを同一の熱伸縮を行ない、しかも
一体構造の箱形支持部材によって外側から強固に支持さ
れるので、触媒ブロックの熱伸動に追従して支持するこ
とができる。 〔実施例〕 以下本発明の実施例を図面を用いて説明する。 第1図は本発明の実施例に係る縦断面図、第2図は第1
図の正面断面図、第3図Fi、第1図の慣断面図、第4
図は第3図の8部を拡大した詳細図、第5図は箱型支持
部材の斜視図である。 第1図から第5図において、21diガス通路、5は脱
硝装置、22はケーシング、田は保温材、冴は受台、が
は触媒ブロックで従来のものと同一のものを示すが、説
明の都合上、26aを上流側触媒ブロック、26bを下
流側触媒ブロックと呼ぶ。 31 a 、 31 b 、 31 cは触媒ブロック
26a%26bの外周を囲む枠形部材、32a、32b
は枠形部材31a。 31b、31Cを連結する梁部材、おは枠形部材31a
131b、31Cと梁部材32a、32bによって形成
された箱形支持部材、讃は箱形支持部材あの内側に配置
した上流側、下流側触媒ブロック26a%26bを支持
するストッパ一部材、あは箱形支持部材あの内側に狭カ
ス流れ方向に内張された薄板部材、あは併ガス通路2と
箱型支持部材羽の隙間をシールするスライドプレート、
37は箱形支持部材あと上流側、下流側触媒ブロックが
a、26bの匝…】をシールするシールプレート、アは
槓み増し触媒ブロック、39は槓み増し触媒ブロックあ
の槓み増し触媒ブロック用枠形部材、40は績み増し触
媒ブロック月未部材である。 この様な構造において、枠形部材318%31b。 3I Cは第2図にボす如く上流側削媒ブロック26a
1下ηC側触媒ブロック26 bの外周を囲む枠形に形
成され、この枠形部材31 aは第1図および第3図に
示す様に上流側触媒ブロック26aの上流側に、枠形部
材31 bは上流側触媒ブロック26 aと下流側触媒
ブロック26bの間に、枠形部材31 Cは下流側触媒
ブロック26bの下流側にそれぞれ配−されている。 そして、この枠形部材31 aと枠形部材31 b 、
枠形部材31 bと枠形部材31 Cは梁部材3za、
32bによって連結され、第5図の斜視図に最もよく示
されているように箱形支持部材おを栖成し、この箱形支
持部材おによって第1図、第2図および第3図に示すよ
うに上流側触媒ブロック26a、下流側触媒ブロック2
6bを排ガス通路2内で支持している。 なお、箱形支持部材あの内側における併カスGの流れ方
向には第4図および第5図に示す様に薄板部材あが内張
され、枠形部材31 a 、 31 b 、 31 c
と上流側触媒ブロック26a1下流01lI触妹ブロツ
ク2bbの間にはストッパ一部材あが介在されている。 この様に本発明においては、縞1図から第3図に示す様
に箱形支持部材33がストッパ一部材あを介して上流側
、下流側触媒ブロック26a、26bの外周を取巻く形
で一体構造にされて支持されているため、箱形支持部材
3:3は触媒ブロック26a%26bの温度と同一とな
り、三次元的に変化する熱併給に追従して支持すること
ができる。また上流側、下流側触媒ブロック26a、2
6bはね形支付部材おによりストッパ一部材讃を介して
一体化されているため、触媒ブロック26a、26b毎
の転倒は無く脱硝装置5の底部のみで触媒ブロックかa
、26b全体を支持すれば強度上の問題はなくなる。 さらに、箱形支持部材あの内面周囲には薄板部材あとシ
ールプレート37を設置することにより排ガスqの短路
な防止することができる。 また、脱硝装置5を相形″g:、持部材おによって支持
することによって、工場で脱硝装置5全体をブロック化
して建設現場^輸送し、ブロック工法によって短時間に
建設することもできる。 なお、第1図および第3図における積み増し触媒ブロッ
クあは上ηt 11111触媚ブロツク26a1下流側
触媒ブロツク26bの触媒が劣化した場合に、下流側触
媒ブロック26 bの下流側に槓み増し触媒ブロック襲
を第1図および第3図の破線で示す様に槓み増しして同
一の脱硝効率を得る場合に用いる。 この様に枠形部材31 Cの下流に槓み増し触媒ブロッ
ク用の枠形部材39と梁部材40を箱形支持部材33と
一体にしておけば、積み増し触媒ブロックあを迅速に積
み増しすることができ、他の上流側、下ηC側触媒ブロ
ック26a、26bと同様に支持することもできる。 以上本発明の実施例においては飯合発′区プラントの脱
硝装置について説明したが、不発ゆ」は汲合発寛プラン
トの脱硝装置に駆足されるものではなく、火力発電用ボ
イラ、他の燃焼炉等の脱硝装置へも応用することができ
る。 〔発明の効果〕 本発明によれば触媒ブロックの集合体が箱形支持部材に
よって排ガス通路内で一体構造に支持されているので、
DSS運転−1PW8s運転によって起動、停止を練り
返しても強固に支持することができ、しかも地震等の振
動に対しても触媒ブロックが転倒することがなくなる。
[However, these boilers are required to operate at variable voltage in order to obtain high power generation efficiency even during partial load. This is a feature of the recent electric power landscape, with the growth in nuclear power generation, the difference between maximum and minimum loads has also increased. Thermal power generation tends to shift from base load to load adjustment. In other words, there are few thermal power generation boilers that are always operated at full load; instead, they are operated with the load raised or lowered to 75% load, 50% load, 25% load, or the boiler is operated at full load. So-called daily startup and shutdown (D
aily 5tart 5top (referred to as D88), and weekend startup/stop (Weekly 5tartS
(hereinafter simply referred to as WS2) operation is carried out to shoulder the intermediate load and improve power generation efficiency. For example, the combined Anryu plant has recently been attracting attention as a part of high-efficiency power generation. This combined power generation plant first generates electricity using a gas turbine, and then recovers the heat in the gas discharged from the gas turbine using a waste heat recovery device (waste heat recovery boiler). This system drives a steam turbine to generate electricity. This combined power generation plant generates electricity with a gas turbine and a steam turbine, so it has high power generation efficiency, and the gas turbine is not responsive to load, so it is not able to adequately respond to sudden increases in t-power demand. It also has the advantage of excellent load followability, and is particularly effective for 1Jss quad rotation and WSS operation. However, in this combined power plant, LNQ,
8 (Jxt) because it uses clean fuel such as kerosene.
Although the amount of Ht and dust decreases, there is a lot of acid accumulation in the combustion of the cast turbine, and the high temperature combustion increases the N (Jx gain) in the plowing gas, so waste heat recovery using a denitrification device is A boiler has been developed. Figure 6 is a schematic system diagram of a combined power plant equipped with an internal heat retention type denitrification device. 3 is a superheater, 4 is a first evaporator, 5 is a denitrification device, 6 is a striped evaporator, and 7 is an economizer.Superheater 3
.. First and second evaporators 4.6. The denitrification device f15 and the economizer 7 are arranged in the exhaust gas passage 2. 8 is a drum that generates steam, 9 is a steam turbine driven by the steam generated in drum 8, 10 is a condenser that condenses the steam and returns it to water, and 11 is a supply of water from the condenser 10 to drum 8. 12 is a water supply pipe. The water in the condenser 10 is turned into water supply W by the condensate pump 11, passes through the water supply pipe 12, is preheated by the cultivation gas q in the economizer 6, and is supplied into the drum 8. The water in the drum 8 is transferred to the downcomer pipe 1
3 and descends through pipes 14a and 14b to the evaporator 4.
.. 6 and returns to the drum 8 via pipes 15a and 15b. In this way, during the circulating flow, the evaporator 4,
6, the steam generated by heat exchange with the exhaust gas q is introduced into the superheater 3 through the local steam pipe 16, where the steam is exchanged with the exhaust gas q.
The superheated steam is supplied to the steam turbine 9 via the main steam pipe 17 as superheated steam. 18 is connected to the main steam pipe, bypassing the steam turbine 9 and directly supplying steam to the water booster 10
This is the turbine bypass pipe that leads to the Further, 19 is a steam turbine control valve that adjusts the flow lid of steam to the steam turbine 9;
The turbine bypass valve 21 is a damper for the P gas duct 2, which adjusts the steam bypass lid according to the amount of steam supplied to the steam turbine 9. The above explanation is an overview of combined cycle power plants, but in general,
Inside the exhaust heat recovery boiler, a denitrification device 5 is disposed, which includes a superheater 3, evaporators, 4, 6, and a carbon saver 7, and which recovers heat from exhaust gas and denitrates the exhaust gas. FIG. 7 is a cross-sectional view of a conventional internal heat retention type denitrification device, and FIG. 8 is an enlarged cross-sectional view of the support device taken along the line 1--via, which is an enlarged view of section A in FIG. The inside of the casing device of the waste waste passage 2 through which the waste waste G passes is lined with a heat insulating material container, and the denitrification device 5 is placed on a pedestal inside the heat insulating material container. The decopper removal device 5 is constructed by combining several catalyst units 5 to form a catalyst block as shown in FIG. f5 is formed, and the exhaust gas G passes through this denitrification device 5, whereby a denitrification reaction is performed. However, as mentioned above, in these combined cycle power plants, DBS operation and WSS operation frequently require startup and
Because the catalyst block 26 is heated unilaterally by the exhaust gas G from the gas turbine 1 due to repeated stops, especially during startup, the catalyst block located at the position of the solid line shown in FIG. It expands as shown by the chain line, and when the operation is stopped, it returns to the solid line.The so-called crushed catalyst block repeats expansion and contraction. As described above, since the conventional denitrification device 5 is an internal heat retention type, the catalyst block that receives heat from the gas turbine 1 expands and contracts due to heat, but the exhaust gas passage 20 and the casing 4 are made of a heat insulating material, so there is no thermal expansion and contraction. The catalyst block cannot be directly fixed to and supported by the casing η. Therefore, in order to protect against vibrations such as earthquakes, a support device 4 has been adopted which supports the catalyst block 26 from the outside of the casing n using a complex hydraulic vibration isolator 27 having the structure shown in FIG. This support device 1128 consists of four support rods including a hydraulic vibration isolator, and each hydraulic vibration isolator is installed outside the exhaust gas passage 2 to prevent temperature rise due to gas G. Therefore, the support rod 4 that connects the support members and the catalyst block 5 has a structure that serves as the casing η of the exhaust gas passage 2 and the heat insulating material B, and the support rod 4 has a seal structure because it moves to follow the thermal expansion and contraction of the catalyst block. The insulation structure becomes complicated as shown in FIG. [The point to be solved by the invention] In this way, in the conventional internal heat retention type denitrification device, L) 88
The support structure of the catalyst block can follow the repeated start and operation after turning over and W8S, and the support structure is extremely weak against the vibrations of the stacked t@Isada block flooring, etc. Ta. The present invention aims to eliminate such conventional drawbacks,
The purpose is to provide an internal heat retention type denitrification device that can follow the thermal expansion and contraction of a catalyst block and can also be firmly supported against vibrations such as vibrations. [Means for Solving the Problems] In order to solve the above-mentioned problems, the present invention provides a frame-shaped member that surrounds the outer periphery of an assembly of catalyst blocks in a gas passage, and a beam member that connects this frame-shaped member. A box-shaped support member formed by the above method is disposed, and the catalyst block assembly is supported as an integral structure by the box-shaped support member. [Function] In this way, the catalyst block undergoes the same thermal expansion and contraction, and is also firmly supported from the outside by the integral box-shaped support member, so that it can be supported while following the thermal expansion and movement of the catalyst block. [Examples] Examples of the present invention will be described below with reference to the drawings. FIG. 1 is a vertical cross-sectional view of an embodiment of the present invention, and FIG.
Front sectional view of Fig. 3, Fig. 3 Fi, conventional sectional view of Fig. 1, Fig. 4
The figure is a detailed enlarged view of part 8 of FIG. 3, and FIG. 5 is a perspective view of the box-shaped support member. In Figures 1 to 5, 21 di gas passages, 5 a denitrification device, 22 a casing, Ta a heat insulating material, Sae a pedestal, and Ga a catalyst block, which are the same as the conventional ones, but are explained below. For convenience, 26a will be referred to as an upstream catalyst block, and 26b will be referred to as a downstream catalyst block. 31 a , 31 b , 31 c are frame-shaped members surrounding the outer periphery of the catalyst blocks 26 a % 26 b; 32 a, 32 b;
is a frame-shaped member 31a. A beam member connecting 31b and 31C, a frame-shaped member 31a
A box-shaped support member formed by 131b, 31C and the beam members 32a, 32b; There is a thin plate member lined inside the support member in the narrow waste flow direction, and a slide plate that seals the gap between the gas passage 2 and the box-shaped support member wings.
37 is the upstream side after the box-shaped support member, the downstream catalyst block is a, the seal plate that seals the box of 26b...], A is the additional hammering catalyst block, 39 is the additional hammering catalyst block.That is for the additional hammering catalyst block. The frame-shaped member 40 is an additional catalyst block member. In such a structure, the frame-shaped member 318% 31b. 3I C is the upstream cutting medium block 26a as shown in Fig. 2.
1. The frame member 31a is formed in a frame shape surrounding the outer periphery of the lower ηC side catalyst block 26b, and this frame member 31a is provided on the upstream side of the upstream side catalyst block 26a as shown in FIGS. 1 and 3. b is arranged between the upstream catalyst block 26a and the downstream catalyst block 26b, and the frame member 31C is arranged downstream of the downstream catalyst block 26b. And this frame-shaped member 31 a and frame-shaped member 31 b,
Frame-shaped member 31 b and frame-shaped member 31 C are beam members 3za,
32b to form a box-shaped support member as best shown in the perspective view of FIG. Upstream catalyst block 26a, downstream catalyst block 2
6b is supported within the exhaust gas passage 2. In addition, as shown in FIGS. 4 and 5, a thin plate member is lined in the flow direction of the waste G on the inside of the box-shaped support member, and frame-shaped members 31 a , 31 b , 31 c
A stopper member is interposed between the upstream catalyst block 26a1 and the downstream catalyst block 2bb. As described above, in the present invention, as shown in FIGS. 1 to 3, the box-shaped support member 33 is integrally constructed so as to surround the outer peripheries of the upstream and downstream catalyst blocks 26a and 26b via the stopper member. Since the box-shaped support member 3:3 has the same temperature as the catalyst block 26a% 26b, it can support the three-dimensionally changing heat cogeneration. Also, the upstream and downstream catalyst blocks 26a, 2
Since the spring-shaped support member 6b and the stopper are integrated through the support member, there is no need for the catalyst blocks 26a and 26b to fall over, and the catalyst block a can be removed only at the bottom of the denitrification device 5.
, 26b can be supported in their entirety to eliminate the strength problem. Further, by installing a thin plate member and a seal plate 37 around the inner surface of the box-shaped support member, it is possible to prevent the exhaust gas q from passing through a short path. In addition, by supporting the denitrification device 5 with a supporting member, the entire denitrification device 5 can be made into blocks at a factory, transported to a construction site, and constructed in a short time using the block construction method. If the catalyst in the downstream catalyst block 26b of the tactile block 26a1 deteriorates, an additional catalyst block is added to the downstream side of the downstream catalyst block 26b. It is used to obtain the same denitrification efficiency by increasing the number of pumps as shown by the broken line in FIGS. 1 and 3. In this way, the frame member 39 for the catalyst block is provided with additional pumping downstream of the frame member 31C. By integrating the beam member 40 with the box-shaped support member 33, additional catalyst blocks can be quickly added to the pile, and can be supported in the same way as the other upstream and lower ηC side catalyst blocks 26a and 26b. In the above embodiments of the present invention, the denitrification equipment of the Iigo plant has been explained, but the denitrification equipment of the Igo plant is not driven by the denitrification equipment of the Igo plant. It can also be applied to denitrification equipment such as combustion furnaces. [Effects of the Invention] According to the present invention, since the catalyst block assembly is integrally supported within the exhaust gas passage by the box-shaped support member,
DSS operation - 1 PW 8s operation provides strong support even when starting and stopping are repeated, and furthermore, the catalyst block will not fall over due to vibrations such as earthquakes.

【図面の簡単な説明】[Brief explanation of drawings]

第1図から第5図は本発明の実施例に係る脱硝装置を示
すもので、第1図は脱硝装置の縦断面図、第2図は第1
図の正面断面図、第3図は横断面図、第4図は第3図の
8部を拡大した詳細図、第5図は箱形支持部材の斜視図
、第6図は複合発電プラントの概略構成図、第7図は従
来の脱硝装置の正面断面図、第8図は第7図のA部を拡
大した詳細図、第9図は触媒ブロックの斜視図である。 2・・・・・・リドガス通路、加・・・・・・ケーシン
グ、都・・・・・・保温材、26a、26b%関・・・
・・・触媒ブロック、3181311b、31C139
・・・・・・枠形部材、32 a 、 32 b、 4
C1・・・・・梁部材、33・・・・・・箱形支持部材
。 第3図 第4図 第5図 第7図
1 to 5 show a denitrification device according to an embodiment of the present invention, FIG. 1 is a vertical cross-sectional view of the denitrification device, and FIG.
Figure 3 is a cross-sectional view, Figure 4 is a detailed enlarged view of section 8 in Figure 3, Figure 5 is a perspective view of the box-shaped support member, and Figure 6 is a cross-sectional view of the combined power plant. 7 is a front sectional view of a conventional denitrification device, FIG. 8 is a detailed enlarged view of section A in FIG. 7, and FIG. 9 is a perspective view of a catalyst block. 2...Lid gas passage, addition...Casing, capital...Insulating material, 26a, 26b% barrier...
...Catalyst block, 3181311b, 31C139
...Frame-shaped member, 32 a, 32 b, 4
C1... Beam member, 33... Box-shaped support member. Figure 3 Figure 4 Figure 5 Figure 7

Claims (1)

【特許請求の範囲】[Claims] ケーシングの内側に保温材で内張された排ガス通路に、
触媒ブロックを積み重ねて排ガスを脱硝するものにおい
て、前記排ガス通路内に触媒ブロックの集合体の外周を
囲む枠形部材と、この枠形部材を連結する梁部材によっ
て形成した箱形支持部材を配置し、触媒ブロックの集合
体を箱形支持部材によって一体構造で支持するようにし
たことを特徴とする脱硝装置。
In the exhaust gas passage lined with heat insulating material inside the casing,
In an apparatus for denitrifying exhaust gas by stacking catalyst blocks, a box-shaped support member formed by a frame-shaped member surrounding the outer periphery of the catalyst block assembly and a beam member connecting the frame-shaped member is disposed in the exhaust gas passage. A denitrification device characterized in that an assembly of catalyst blocks is integrally supported by a box-shaped support member.
JP61029895A 1986-02-15 1986-02-15 Denitration equipment Expired - Lifetime JPH0714461B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61029895A JPH0714461B2 (en) 1986-02-15 1986-02-15 Denitration equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61029895A JPH0714461B2 (en) 1986-02-15 1986-02-15 Denitration equipment

Publications (2)

Publication Number Publication Date
JPS62191026A true JPS62191026A (en) 1987-08-21
JPH0714461B2 JPH0714461B2 (en) 1995-02-22

Family

ID=12288708

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61029895A Expired - Lifetime JPH0714461B2 (en) 1986-02-15 1986-02-15 Denitration equipment

Country Status (1)

Country Link
JP (1) JPH0714461B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11264501A (en) * 1998-03-16 1999-09-28 Babcock Hitachi Kk Waste heat recovery boiler
WO2015128658A1 (en) * 2014-02-27 2015-09-03 Johnson Matthey Catalysts (Germany) Gmbh Catalyst module, receiving unit for such a catalyst module and method for manufacturing such a catalyst module
EP3018315A1 (en) * 2014-11-10 2016-05-11 GE Jenbacher GmbH & Co. OG Catalyst device for a stationary combustion engine
WO2020171200A1 (en) * 2019-02-21 2020-08-27 三菱日立パワーシステムズ株式会社 Denitration device
AT525015A3 (en) * 2020-02-06 2023-05-15 Mitsubishi Heavy Ind Ltd Catalyst reactor equipped with a function to prevent ash deposits

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5471766A (en) * 1977-11-18 1979-06-08 Ishikawajima Harima Heavy Ind Co Ltd Method and apparatus for installing honeycomb-shaped catalyst
JPS5546586U (en) * 1978-09-22 1980-03-26
JPS5687126U (en) * 1979-12-07 1981-07-13
JPS5824323A (en) * 1981-08-06 1983-02-14 Babcock Hitachi Kk Denitrating device
JPS5886239U (en) * 1981-12-09 1983-06-11 バブコツク日立株式会社 Denitration equipment

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5471766A (en) * 1977-11-18 1979-06-08 Ishikawajima Harima Heavy Ind Co Ltd Method and apparatus for installing honeycomb-shaped catalyst
JPS5546586U (en) * 1978-09-22 1980-03-26
JPS5687126U (en) * 1979-12-07 1981-07-13
JPS5824323A (en) * 1981-08-06 1983-02-14 Babcock Hitachi Kk Denitrating device
JPS5886239U (en) * 1981-12-09 1983-06-11 バブコツク日立株式会社 Denitration equipment

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11264501A (en) * 1998-03-16 1999-09-28 Babcock Hitachi Kk Waste heat recovery boiler
WO2015128658A1 (en) * 2014-02-27 2015-09-03 Johnson Matthey Catalysts (Germany) Gmbh Catalyst module, receiving unit for such a catalyst module and method for manufacturing such a catalyst module
CN106030067A (en) * 2014-02-27 2016-10-12 庄信万丰催化剂(德国)有限公司 Catalyst module, receiving unit for such a catalyst module and method for manufacturing such a catalyst module
US9803531B2 (en) 2014-02-27 2017-10-31 Johnson Matthey Catalysts (Germany) Gmbh Catalyst module, receiving unit for such a catalyst module and method for manufacturing such a catalyst module
CN106030067B (en) * 2014-02-27 2018-11-09 庄信万丰催化剂(德国)有限公司 Photocatalyst module and its manufacturing method, the receiving unit for the photocatalyst module
RU2709208C2 (en) * 2014-02-27 2019-12-17 Джонсон Мэтти Каталистс (Джермани) Гмбх Catalytic module, installation unit for such catalytic module and method of producing such catalytic module
EP3018315A1 (en) * 2014-11-10 2016-05-11 GE Jenbacher GmbH & Co. OG Catalyst device for a stationary combustion engine
US9816427B2 (en) 2014-11-10 2017-11-14 Ge Jenbacher Gmbh & Co Og Catalytic converter device for a stationary internal combustion engine
WO2020171200A1 (en) * 2019-02-21 2020-08-27 三菱日立パワーシステムズ株式会社 Denitration device
AT525015A3 (en) * 2020-02-06 2023-05-15 Mitsubishi Heavy Ind Ltd Catalyst reactor equipped with a function to prevent ash deposits
AT525015B1 (en) * 2020-02-06 2023-10-15 Mitsubishi Heavy Ind Ltd Catalyst reactor equipped with a function of preventing ash deposits
AT525015B9 (en) * 2020-02-06 2024-01-15 Mitsubishi Heavy Ind Ltd Catalyst reactor equipped with a function to prevent ash deposits

Also Published As

Publication number Publication date
JPH0714461B2 (en) 1995-02-22

Similar Documents

Publication Publication Date Title
US7275503B2 (en) Heat transfer tube panel module and method of constructing exhaust heat recovery boiler using the module
JPS6026107A (en) Power generation plant with multistage turbine
JP2003214182A (en) Gas turbine combined plant and its operating method
JPS62191026A (en) Denitration equipment
JP2003106110A (en) Power generating plant
EP0902168B1 (en) Method and arrangement for a combi power plant
EP3155319B1 (en) Modular heat recovery steam generator construction
EP0889204A2 (en) Combined cycle power generation plant
JP3616826B2 (en) Gas turbine system and operation method thereof
RU2291503C1 (en) Method for primary controlling alternating-current frequency in power system incorporating nps power units
JPH06212910A (en) Electric power generating plant
JPS62221425A (en) Denitration device
US20190390574A1 (en) Modular cooling water assemblies for combined cycle power plant systems
US4158604A (en) Boiler systems for nuclear powered reactors
KR20100066496A (en) Steam generator
JPH05249288A (en) Compound reactor power generation system
JPH02169013A (en) Denitration apparatus
JP2585328B2 (en) Operating method of combined plant and apparatus therefor
JPH0443682Y2 (en)
JP3029192B2 (en) Denitration equipment
JPH0688502A (en) Power generating plant
JP2000304203A (en) Waste heat recovery boiler
JP3794724B2 (en) Gasification combined power generation facility
Babushkin et al. Study of the Rostov nuclear power plant efficiency operation under increased vacuum value
JP2951294B2 (en) How to stop the waste heat recovery boiler

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term