JPH05249288A - Compound reactor power generation system - Google Patents

Compound reactor power generation system

Info

Publication number
JPH05249288A
JPH05249288A JP4083243A JP8324392A JPH05249288A JP H05249288 A JPH05249288 A JP H05249288A JP 4083243 A JP4083243 A JP 4083243A JP 8324392 A JP8324392 A JP 8324392A JP H05249288 A JPH05249288 A JP H05249288A
Authority
JP
Japan
Prior art keywords
steam
power generation
generation system
boiler
nuclear
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4083243A
Other languages
Japanese (ja)
Inventor
Koichiro Nakamoto
香一郎 中本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Doryokuro Kakunenryo Kaihatsu Jigyodan
Power Reactor and Nuclear Fuel Development Corp
Original Assignee
Doryokuro Kakunenryo Kaihatsu Jigyodan
Power Reactor and Nuclear Fuel Development Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Doryokuro Kakunenryo Kaihatsu Jigyodan, Power Reactor and Nuclear Fuel Development Corp filed Critical Doryokuro Kakunenryo Kaihatsu Jigyodan
Priority to JP4083243A priority Critical patent/JPH05249288A/en
Publication of JPH05249288A publication Critical patent/JPH05249288A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin

Landscapes

  • Engine Equipment That Uses Special Cycles (AREA)

Abstract

PURPOSE:To enable a reactor power plate aiming at high heat efficiency comparable to an advanced type thermal-power generation maintaining the metrit of reactor power and good economy and easily coping with load-following operation. CONSTITUTION:Provided are a nuclear reactor 11, a steam generator 14 to generate steam using the heat generated in there, a turbine 16 and a electric generator 17 to generate electricity using the steam and a thermal-superheat boiler 21 arranged in between the steam generator and the turbine. The superheat boiler elevates the temperature of the steam generated in the steam generator and supplies it to the turbine. In this power generation system, base load operation is attained by the reactor and the load-following operation by controlling the thermal-superheater boiler.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、原子力発電プラントの
蒸気発生器の出口蒸気を火力式過熱ボイラで高温化する
ことにより、原子力発電の長所を生かし、新鋭火力発電
なみの高熱効率化を実現できる複合型原子力発電システ
ムに関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention utilizes the advantages of nuclear power generation by raising the temperature of the outlet steam of a steam generator of a nuclear power plant with a thermal superheater boiler, and realizes high thermal efficiency similar to that of new thermal power generation. The present invention relates to a hybrid nuclear power generation system that can be used.

【0002】[0002]

【従来の技術】原子力発電は、核燃料の利用によって少
量の燃料で膨大なエネルギーをつくり出すことができる
極めて優れた発電プラントであり、発電コストは最も安
い。例えば1989年度運転ベースでは、kWh当たり、水
力が13円、火力が10〜11円であるのに対して、原
子力では9円である。
2. Description of the Related Art Nuclear power generation is an extremely excellent power plant that can generate a huge amount of energy with a small amount of fuel by using nuclear fuel, and has the lowest power generation cost. For example, on the basis of operation in 1989, the hydraulic power is 13 yen and the thermal power is 10 to 11 yen per kWh, whereas the nuclear power is 9 yen per kWh.

【0003】しかし原子力発電システムにおいて、放射
性物質を閉じ込める燃料被覆管や冷却材バウンダリであ
る原子炉構造は、高温且つ厳しい中性子照射環境下にお
かれ高度の安全性が要求される。これら構造・材料の耐
熱性と耐放射性の制約から、原子炉出口冷却材温度はあ
まり高くできない。例えば、軽水炉では約310℃、高
速炉では500〜550℃である。従ってタービン入口
蒸気温度は、軽水炉で250〜290℃、高速炉で47
0〜500℃となり、発電効率は、軽水炉では約35
%、高速炉では40%程度である。
However, in a nuclear power generation system, a reactor structure, which is a fuel cladding tube or a coolant boundary for confining radioactive materials, is required to have high safety under high temperature and severe neutron irradiation environment. Due to the heat resistance and radiation resistance of these structures and materials, the reactor outlet coolant temperature cannot be made too high. For example, it is about 310 ° C. for a light water reactor and 500 to 550 ° C. for a fast reactor. Therefore, the turbine inlet steam temperature is 250-290 ° C for the light water reactor and 47 for the fast reactor.
The power generation efficiency is 0 to 500 ° C, and the power generation efficiency is about 35 in a light water reactor.
%, About 40% in a fast reactor.

【0004】これに対して新鋭火力発電では超臨界蒸気
条件(約570℃)が達成されており、その発電効率は
約44%と言われている。
On the other hand, the supercritical steam condition (about 570 ° C.) has been achieved in the new thermal power generation, and the power generation efficiency is said to be about 44%.

【0005】[0005]

【発明が解決しようとする課題】原子力発電は、前記の
ように、燃料費が安いという長所がある反面、蒸気温度
をあまり高くできず、そのためタービン効率が悪い欠点
があった。
As described above, the nuclear power generation has an advantage that the fuel cost is low, but on the other hand, the steam temperature cannot be increased so much, and thus the turbine efficiency is poor.

【0006】高温ガス冷却型原子炉では、原子炉出口冷
却材温度は通常730〜785℃、まれにはそれ以上と
高温化が可能であるが、冷却材としてガス(ヘリウム)
を使用するので、タービン入口蒸気温度は約530〜5
40℃で高速炉と大差ない。その上、原子炉本体が原理
的に巨大にならざるを得ず(炉心や冷却システムが軽水
炉や高速炉に比べて非常に大きくなる)、kW当たりの
建設費が非常に高くなり、発電プラントとしては経済性
の面で無理がある。
In a high temperature gas-cooled reactor, the temperature of the coolant at the reactor outlet is usually 730 to 785 ° C., and it is possible to raise the temperature to a higher temperature, but a gas (helium) is used as the coolant.
Therefore, the turbine inlet steam temperature is about 530 to 5
It is not much different from a fast reactor at 40 ° C. In addition, the reactor itself must be huge in principle (the core and cooling system are much larger than those of light water reactors and fast reactors), and the construction cost per kW is extremely high, making it a power plant. Is economically unreasonable.

【0007】原子力発電は、本来的にベースロード運転
(定格一定運転)に適しているシステムであるにもかか
わらず、電力事情によっては負荷追従運転を行わなけれ
ばならない。しかし負荷変動に応じて出力を制御する運
転は、炉心や原子炉構造にとっては温度変化に伴う構造
健全性への影響の問題があり、また運転制御の複雑化な
どの課題もある。
Although nuclear power generation is originally a system suitable for base load operation (constant rating operation), load follow operation must be performed depending on the power situation. However, the operation of controlling the output according to the load fluctuation has a problem of influence on the structural soundness due to the temperature change for the core and the reactor structure, and there are also problems such as complicated operation control.

【0008】本発明の目的は、上記のような技術的課題
を解決し、原子力発電の長所を生かしつつ高熱効率化を
図ることができ、経済性に優れ、負荷追従運転にも容易
に対応しうる複合型原子力発電システムを提供すること
である。
An object of the present invention is to solve the above technical problems, to achieve high thermal efficiency while making the best use of the advantages of nuclear power generation, to be economical, and to easily cope with load following operation. To provide a hybrid nuclear power generation system.

【0009】[0009]

【課題を解決するための手段】本発明は、原子炉と、該
原子炉で発生する熱を利用して蒸気を発生する蒸気発生
器と、その蒸気を用いて発電するタービン発電機を備え
た原子力発電システムにおいて、前記蒸気発生器と前記
タービン発電機との間に火力式過熱ボイラを配置し、蒸
気発生器で生じる蒸気を高温化してタービン発電機に供
給する複合型原子力発電システムである。ここで、蒸気
発生器への給水加熱系配管が火力式過熱ボイラ内を通る
ようにして、該過熱ボイラが給水加熱の機能をも果たす
ように構成することもできる。
SUMMARY OF THE INVENTION The present invention comprises a nuclear reactor, a steam generator for generating steam by utilizing heat generated in the nuclear reactor, and a turbine generator for generating electric power using the steam. In the nuclear power generation system, a thermal power type superheater boiler is arranged between the steam generator and the turbine generator, the steam generated in the steam generator is heated to a high temperature, and the combined nuclear power generation system is supplied. Here, the feed water heating system piping to the steam generator may be configured to pass through the thermal power type superheater boiler so that the superheater boiler also has the function of heating the feed water.

【0010】更に本発明は、上記の複合型原子力発電シ
ステムを用い、ベースロード運転を原子力で行い、負荷
追従運転を火力式過熱ボイラの制御で行う運転方法であ
る。また上記システムの火力式過熱ボイラに水素製造能
力を付加し、電力負荷低下時に該過熱ボイラで水素を製
造し、電力負荷増大時に該過熱ボイラでその水素を燃焼
させる内部充足式運転方法である。
Furthermore, the present invention is an operating method in which the above-mentioned hybrid nuclear power generation system is used, the base load operation is performed by nuclear power, and the load following operation is performed by controlling the thermal superheater boiler. Further, it is an internal filling type operation method in which hydrogen production capacity is added to the thermal power type superheater boiler of the above system, hydrogen is produced by the superheater boiler when the electric power load decreases, and the hydrogen is burned by the superheater boiler when the electric power load increases.

【0011】[0011]

【作用】蒸気サイクルシステムの一例を図5に示す。同
図において縦軸は温度T、横軸はエントロピーSであ
る。ここでは説明を簡単にするため過熱ランキンサイク
ルを例にしているが、考え方は他の熱サイクルシステム
でも同様である。通常、蒸気発生器で行われる等圧加熱
(→)、タービンで行われる等エントロピー膨張
(→)、復水器で行われる等圧冷却(→)、給
水ポンプで行われる等エントロピー圧縮(→)のサ
イクルを描き、その熱効率ηはで描かれ
る面積と〜の線から下の面積の比と考えてもよい。
FIG. 5 shows an example of the steam cycle system. In the figure, the vertical axis represents temperature T and the horizontal axis represents entropy S. Here, an overheated Rankine cycle is taken as an example for simplification of description, but the concept is the same for other heat cycle systems. Normally, isobaric heating (→) performed in a steam generator, isentropic expansion (→) performed in a turbine, isobaric cooling (→) performed in a condenser, isentropic compression (→) performed in a feed pump. The thermal efficiency η may be considered as the ratio of the area drawn with and the area below the line.

【0012】図6は理論熱効率ηに及ぼすタービン入口
温度T5 、タービン入口圧力P5 、タービン出口圧力P
6 の影響を示す。これは3つの因子のうち2つを固定
し、残りを変化させた場合である。同図から熱効率η
は、タービン入口温度T5 とタービン入口圧力P5 が高
いほど、またタービン出口圧力(背圧)P6 が低いほど
向上することが分かる。タービン出口圧力P6 は復水器
での冷却水温度(例えば海水温度)から限度がある。従
ってタービン入口温度T5 を上げることが熱効率の向上
に最も効果的である。図5について言えば、蒸気をか
ら更に過熱してにまで至らしめれば、斜線部が熱効率
改善に寄与できることになる。
FIG. 6 shows the turbine inlet temperature T 5 , the turbine inlet pressure P 5 , and the turbine outlet pressure P which affect the theoretical thermal efficiency η.
6 shows the effect. This is the case when two of the three factors are fixed and the rest are changed. From the figure, thermal efficiency η
It can be seen that the higher the turbine inlet temperature T 5 and the turbine inlet pressure P 5, and the lower the turbine outlet pressure (back pressure) P 6 . The turbine outlet pressure P 6 is limited by the cooling water temperature (for example, seawater temperature) in the condenser. Therefore, increasing the turbine inlet temperature T 5 is most effective for improving the thermal efficiency. As for FIG. 5, if the steam is further overheated, the shaded portion can contribute to the improvement of thermal efficiency.

【0013】そこで本発明では、原子力発電システムの
蒸気発生器とタービン発電機との間に火力式過熱ボイラ
を設置しており、これにより蒸気発生器で生成した蒸気
を火力式過熱ボイラによって新鋭火力発電システム並み
の蒸気条件(600℃近く)にまで高め、総合的に発電
効率を向上させる。また同時に、高度の安全性や構造健
全性が要求される原子炉構造等の設備の更なる高温化を
避けている。
Therefore, according to the present invention, a thermal power type superheater is installed between the steam generator and the turbine generator of the nuclear power generation system, and the steam generated by the steam generator is used by the thermal power type superheater to produce a new thermal power. We will raise the steam conditions to the level of a power generation system (near 600 ° C) and improve the overall power generation efficiency. At the same time, we are avoiding further increases in the temperature of equipment such as reactor structures that require high levels of safety and structural integrity.

【0014】[0014]

【実施例】図1は本発明に係る複合型原子力発電システ
ムの一例を示す説明図であり、加圧水型軽水炉に適用し
た例である。原子炉11の炉心12を通る高圧の冷却水
によって炉心12で発生する熱を除去し、高温になった
軽水を蒸気発生器14に送り、そこで熱交換(給水を加
熱)し、低温になった軽水は主ポンプ15で原子炉11
に戻り、炉心12を冷却する。この一次ループは加圧器
13で圧力制御される。給水は蒸気発生器14で加熱さ
れて蒸気となり、火力式過熱ボイラ21で過熱されてタ
ービン16に至り、発電機17を駆動する。蒸気は復水
器18で水に戻され、給水ポンプ19により給水加熱器
20を通って蒸気発生器14に戻る。本発明の特徴は、
上記のように、蒸気発生器14とタービン16との間に
火力式過熱ボイラ21を組み込んだ点である。この発電
システムでの使用例としては、火力式過熱ボイラ21に
よって、その入口温度が250〜280℃の蒸気を、出
口温度が550〜600℃となるように過熱する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 is an explanatory view showing an example of a hybrid nuclear power generation system according to the present invention, which is an example applied to a pressurized water type light water reactor. The high-pressure cooling water that passes through the core 12 of the nuclear reactor 11 removes the heat generated in the core 12, sends the high-temperature light water to the steam generator 14, where it exchanges heat (heats the feed water), and the temperature becomes low. Light water is supplied by the main pump 15 to the reactor 11
Then, the core 12 is cooled. The pressure of this primary loop is controlled by the pressurizer 13. The feed water is heated by the steam generator 14 to become steam, and is superheated by the thermal power type superheater boiler 21 to reach the turbine 16 to drive the generator 17. The steam is returned to water in the condenser 18, and returns to the steam generator 14 through the feed water heater 20 by the feed water pump 19. The features of the present invention are:
As described above, the thermal power type superheated boiler 21 is incorporated between the steam generator 14 and the turbine 16. As an example of use in this power generation system, steam having an inlet temperature of 250 to 280 ° C. is superheated by a thermal power type superheater boiler 21 so that an outlet temperature thereof becomes 550 to 600 ° C.

【0015】図2は本発明に係る複合型原子力発電シス
テムの一例を示す説明図であり、液体ナトリウム冷却型
高速炉に適用した例である。原子炉31の炉心32で発
生した熱を除去することにより高温になった1次冷却材
ナトリウムは、中間熱交換器33に至り、そこで2次冷
却材ナトリウムと熱交換を行う。低温になった1次冷却
材ナトリウムは、1次主ポンプ34で原子炉31に戻り
炉心32を冷却する。中間熱交換器33で加熱された2
次冷却材ナトリウムは蒸気発生器35を通り、熱交換
(給水を加熱)した後、2次主ポンプ36で蒸気発生器
35に戻る。給水は蒸気発生器35で加熱されて蒸気と
なり、火力式過熱ボイラ42で過熱されてタービン37
に至り、発電機38を駆動する。低温になった蒸気は復
水器39で水に戻され、給水ポンプ40により給水加熱
器41を通って蒸気発生器35に戻る。本発明の特徴
は、上記のように蒸気発生器35とタービン37との間
に火力式過熱ボイラ42を組み込んだ点である。この発
電システムの使用例としては、火力式過熱ボイラ42に
よって入口温度が470〜500℃の蒸気を、出口温度
が550〜600℃となるように過熱する。軽水炉に比
べて高速炉の方が蒸気発生器の出口蒸気温度が高い分、
火力式過熱ボイラの規模は小さくて済み、より好適であ
る。
FIG. 2 is an explanatory view showing an example of the composite nuclear power generation system according to the present invention, which is an example applied to a liquid sodium cooling type fast reactor. The primary coolant sodium, which has been heated to a high temperature by removing the heat generated in the core 32 of the nuclear reactor 31, reaches the intermediate heat exchanger 33, where it exchanges heat with the secondary coolant sodium. The primary coolant sodium having a low temperature returns to the reactor 31 by the primary main pump 34 and cools the reactor core 32. 2 heated by the intermediate heat exchanger 33
The secondary coolant sodium passes through the steam generator 35, exchanges heat (heats the feed water), and then returns to the steam generator 35 by the secondary main pump 36. The feed water is heated by a steam generator 35 to become steam, and is superheated by a thermal power type superheater boiler 42 to generate a turbine 37.
Then, the generator 38 is driven. The steam having a low temperature is returned to water by the condenser 39 and returned to the steam generator 35 by the feed water pump 40 through the feed water heater 41. A feature of the present invention is that the thermal power type superheated boiler 42 is incorporated between the steam generator 35 and the turbine 37 as described above. As an example of the use of this power generation system, steam having an inlet temperature of 470 to 500 ° C. is superheated by a thermal power type superheater boiler 42 so that an outlet temperature thereof becomes 550 to 600 ° C. Faster reactors have higher outlet steam temperatures than light water reactors,
It is more preferable because the scale of the thermal power type superheater boiler is small.

【0016】これらにおいて使用する火力式過熱ボイラ
21,42には種々の形式、例えばLNG火力ボイラ、
石油火力ボイラ、石炭火力ボイラを適用できるが、排気
ガスの地球環境への影響の観点などから、LNG火力ボ
イラが好適である。
There are various types of thermal superheater boilers 21 and 42 used in these, such as LNG thermal boilers,
Oil-fired boilers and coal-fired boilers can be applied, but LNG-fired boilers are preferable from the viewpoint of the influence of exhaust gas on the global environment.

【0017】なお、蒸気発生器への給水加熱は、起動時
は所内ボイラを熱源とするのが普通である。しかし出力
運転に入ると、蒸気発生器からの蒸気によって加熱でき
るので、所内ボイラは不要となり、無駄が多い。本発明
では図3に示すように、蒸気発生器51への給水加熱系
が火力式過熱ボイラ52内を通るように構成すると、該
過熱ボイラ52は起動時の給水加熱にも使用でき、給水
加熱器の機能を兼ねることができるため所内ボイラを省
くことができ、より経済的なシステムが得られる。
The heating of the feed water to the steam generator is usually performed by the in-house boiler as a heat source at the time of startup. However, when the power operation is started, the steam from the steam generator can be used for heating, so that the on-site boiler is unnecessary and wasteful. In the present invention, as shown in FIG. 3, when the feed water heating system for the steam generator 51 is configured to pass through the thermal power type superheater boiler 52, the superheater boiler 52 can also be used for heating feed water at start-up, and the feed water heating can be performed. Since it can also function as a vessel, the boiler in the plant can be omitted and a more economical system can be obtained.

【0018】ところで原子力発電は燃料費が安くベース
ロード運転に向いており、電源負荷の季節変動や昼夜変
動に対しては、起動停止の容易な火力発電や水力発電に
よる負荷調整が行われている。しかし、電源構成におけ
る原子力発電の比率が増大するにつれて、原子力発電も
負荷追従運転が必要になってきている。原子力発電を負
荷追従運転することは技術的には可能であるが、前述の
ように燃料被覆管や原子炉構造物などへの熱過渡が多く
加わることは構造健全性上好ましくない。また負荷変動
を考慮した原子炉構造は不経済となる。本発明はこのよ
うな課題にも有効で、原子炉自体は常に定格運転を続
け、負荷変動は火力式過熱ボイラによってうけもたせる
ことができる。本発明の複合型原子力発電システムの負
荷追従運転の様子を図4に示す。破線下方の一定領域が
原子炉によるベースロード運転分であり、破線上方の変
動領域が火力式過熱ボイラによる負荷追従運転分であ
る。
By the way, nuclear power generation has a low fuel cost and is suitable for base load operation, and for seasonal fluctuations and day / night fluctuations of the power supply load, load adjustment is performed by thermal power generation or hydroelectric power generation that can be easily started and stopped. .. However, as the ratio of nuclear power generation in the power supply configuration increases, nuclear power generation also requires load following operation. Although it is technically possible to perform load follow-up operation on nuclear power generation, it is not preferable in terms of structural integrity to add many thermal transients to the fuel cladding tube, reactor structure, etc. as described above. In addition, the reactor structure that takes load fluctuations into consideration becomes uneconomical. The present invention is effective for such a problem as well, and the reactor itself always keeps the rated operation, and load fluctuations can be received by the thermal superheater boiler. FIG. 4 shows the load follow-up operation of the hybrid nuclear power generation system of the present invention. The fixed area below the broken line is the base load operation by the nuclear reactor, and the fluctuation area above the broken line is the load following operation by the thermal superheater boiler.

【0019】ところで本発明に係る複合型原子力発電シ
ステムにおいて、火力式過熱ボイラの出口温度を約77
0℃にまで高めると水素製造が可能となる。これを利用
すると、電力負荷の低下する夜間や電力需要の少ない季
節に水素製造に余剰エネルギーを供給し、昼間や電力需
要の増える季節に生産した水素を過熱ボイラで燃焼させ
ると、負荷変動に対しても自己充足式の発電システムが
得られる。
By the way, in the combined nuclear power generation system according to the present invention, the outlet temperature of the thermal power type superheater boiler is set to about 77.
When the temperature is raised to 0 ° C, hydrogen production becomes possible. If this is used, surplus energy is supplied to hydrogen production during the night when the electric power load decreases and during the season when the electric power demand is low, and when the hydrogen produced in the daytime or during the season when the electric power demand increases is combusted in the superheater boiler, the load fluctuation Even so, a self-contained power generation system can be obtained.

【0020】なお上記のような複合型原子力システム
は、熱供給を目的とするシステムや熱供給と発電を併用
するシステムにも利用可能である。
The hybrid nuclear power system as described above can also be used in a system for the purpose of heat supply or a system using both heat supply and power generation.

【0021】[0021]

【発明の効果】本発明は上記のように、原子力発電シス
テムの蒸気発生器とタービン発電機との間に火力式過熱
ボイラを設置したことにより、燃料費が安い原子力発電
の長所と、高温化により熱効率が高く起動停止や出力変
化が比較的容易であるという火力発電の長所を生かし、
基本的には原子力発電システムでありながら熱効率が新
鋭火力発電なみに高い(約44%)最適な発電システム
が得られる。
As described above, according to the present invention, by installing the thermal power type superheater boiler between the steam generator and the turbine generator of the nuclear power generation system, the advantages of nuclear power generation with low fuel cost and high temperature can be achieved. Utilizing the advantages of thermal power generation, which has high thermal efficiency and is relatively easy to start / stop and change output,
Although it is basically a nuclear power generation system, it is possible to obtain an optimum power generation system with high thermal efficiency (about 44%) as high as new thermal power generation.

【0022】また組み込んだ火力式過熱ボイラは原子炉
起動時の給水加熱用の所内ボイラの機能も兼ねることが
できるので、その構成よって経済性は更に向上する。
Further, since the built-in thermal power type superheated boiler can also function as the in-house boiler for heating the feed water at the time of starting the nuclear reactor, the economical efficiency is further improved by the configuration.

【0023】本発明の複合型原子力発電システムを用い
ると、本来ベースロード運転に向いた原子炉は定格一定
運転を行い、付加した火力式過熱ボイラで日負荷変動、
季節負荷変動、トラブル対処のための負荷調整などを行
うことができ、1つのサイトで運転自由度の高い経済的
な発電システムが得られる。
When the combined nuclear power generation system of the present invention is used, the nuclear reactor originally intended for base load operation performs constant rated operation, and the added thermal power type superheater boiler causes daily load fluctuation,
Seasonal load fluctuations, load adjustments for troubleshooting, etc. can be performed, and an economical power generation system with high operational flexibility can be obtained at one site.

【0024】更に本発明では夜間あるいは電力負荷の低
下する季節の余剰電力を利用して水素を製造し、昼間あ
るいは電力負荷の増大する季節にその水素を過熱ボイラ
で燃焼させることにより、自己充足式複合発電にも応用
できる。
Further, according to the present invention, hydrogen is produced by utilizing surplus power at night or during a season when the power load decreases, and the hydrogen is combusted in a superheated boiler during the daytime or a season when the power load increases. It can also be applied to combined power generation.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係る複合型原子力発電システムの一実
施例を示す説明図。
FIG. 1 is an explanatory diagram showing an embodiment of a hybrid nuclear power generation system according to the present invention.

【図2】本発明に係る複合型原子力発電システムの他の
実施例を示す説明図。
FIG. 2 is an explanatory view showing another embodiment of the hybrid nuclear power generation system according to the present invention.

【図3】給水加熱を兼ねた火力式過熱ボイラの説明図。FIG. 3 is an explanatory diagram of a thermal power type superheater boiler that also functions as a supply water heater.

【図4】本発明による負荷追従運転の一例を示す説明
図。
FIG. 4 is an explanatory diagram showing an example of load following operation according to the present invention.

【図5】過熱ランキンサイクルの説明図。FIG. 5 is an explanatory diagram of a superheated Rankine cycle.

【図6】理論熱効率に及ぼす初温、初圧、背圧の影響を
示す説明図。
FIG. 6 is an explanatory diagram showing the effects of initial temperature, initial pressure, and back pressure on theoretical thermal efficiency.

【符号の説明】[Explanation of symbols]

11 原子炉 14 蒸気発生器 16 タービン 21 火力式過熱ボイラ 31 原子炉 35 蒸気発生器 37 タービン 42 火力式過熱ボイラ 11 Reactor 14 Steam Generator 16 Turbine 21 Thermal Power Superheater 31 Nuclear Reactor 35 Steam Generator 37 Turbine 42 Thermal Power Superheater

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 原子炉と、該原子炉で発生する熱を利用
して蒸気を発生する蒸気発生器と、その蒸気を用いて発
電するタービン発電機を備えた原子力発電システムにお
いて、前記蒸気発生器と前記タービン発電機との間に火
力式過熱ボイラを配置し、蒸気発生器で生じる蒸気を高
温化してタービン発電機に供給することを特徴とする複
合型原子力発電システム。
1. A nuclear power generation system including a nuclear reactor, a steam generator that generates steam using heat generated in the nuclear reactor, and a turbine generator that generates electric power using the steam A combined-type nuclear power generation system, wherein a thermal power type superheater boiler is arranged between the generator and the turbine generator, and the steam generated in the steam generator is heated to a high temperature and supplied to the turbine generator.
【請求項2】 蒸気発生器への給水加熱系配管が火力式
過熱ボイラ内を通るようにし、該過熱ボイラが給水加熱
の機能をも果たしている請求項1記載のシステム。
2. The system according to claim 1, wherein the feed water heating system piping to the steam generator passes through the inside of the thermal power type superheater boiler, and the superheater boiler also fulfills the function of heating the feed water.
【請求項3】 請求項1又は2記載の複合型原子力発電
システムを使用し、ベースロード運転を原子力で行い、
負荷追従運転を火力式過熱ボイラの制御で行う複合型原
子力発電システムの運転方法。
3. The hybrid nuclear power generation system according to claim 1 or 2 is used, and base load operation is performed by nuclear power.
A method of operating a hybrid nuclear power generation system in which load following operation is performed by controlling a thermal power type superheater boiler.
【請求項4】 請求項1又は2記載の複合型原子力発電
システムにおいて、その火力式過熱ボイラに水素製造能
力を付加し、電力負荷低下時に該過熱ボイラによって水
素を製造し、電力負荷増大時に該過熱ボイラでその水素
を燃焼させる複合型原子力発電システムの内部充足式運
転方法。
4. The combined nuclear power generation system according to claim 1 or 2, wherein hydrogen-producing capacity is added to the thermal power type superheater boiler, hydrogen is produced by the superheater boiler when the electric power load decreases, and hydrogen is produced when the electric power load increases. Internally-sufficient operation method of hybrid nuclear power generation system in which the hydrogen is burned in a superheated boiler.
【請求項5】 原子炉と、該原子炉で発生する熱を利用
して蒸気を発生する蒸気発生器を備えた原子力システム
において、前記蒸気発生器の出力側に火力式過熱ボイラ
を配置し、蒸気発生器で生じる蒸気を高温化することを
特徴とする複合型原子力システム。
5. In a nuclear power system comprising a nuclear reactor and a steam generator that generates steam by utilizing heat generated in the nuclear reactor, a thermal power type superheater boiler is arranged on an output side of the steam generator, A hybrid nuclear power system characterized by raising the temperature of steam generated in a steam generator.
JP4083243A 1992-03-05 1992-03-05 Compound reactor power generation system Pending JPH05249288A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4083243A JPH05249288A (en) 1992-03-05 1992-03-05 Compound reactor power generation system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4083243A JPH05249288A (en) 1992-03-05 1992-03-05 Compound reactor power generation system

Publications (1)

Publication Number Publication Date
JPH05249288A true JPH05249288A (en) 1993-09-28

Family

ID=13796891

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4083243A Pending JPH05249288A (en) 1992-03-05 1992-03-05 Compound reactor power generation system

Country Status (1)

Country Link
JP (1) JPH05249288A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999066511A1 (en) * 1998-06-17 1999-12-23 Yyl Corporation Power generating device
JP2002030904A (en) * 2000-05-09 2002-01-31 Yyl:Kk Power generating device
CN102174904A (en) * 2011-03-08 2011-09-07 上海宁松热能环境工程有限公司 Method and system for generating power jointly by nuclear fuel and fossil fuel
KR20230118355A (en) 2022-02-04 2023-08-11 한국수력원자력 주식회사 Method for operating nuclear power plant comprisng multiple operation mode
WO2023181386A1 (en) * 2022-03-25 2023-09-28 株式会社日立製作所 Control system and control method for power generation system

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5722596A (en) * 1980-07-17 1982-02-05 Mitsui Shipbuilding Eng Atomic power plant
JPH03151505A (en) * 1989-10-24 1991-06-27 Asea Brown Boveri Ag Gas/steam electric power generating facility

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5722596A (en) * 1980-07-17 1982-02-05 Mitsui Shipbuilding Eng Atomic power plant
JPH03151505A (en) * 1989-10-24 1991-06-27 Asea Brown Boveri Ag Gas/steam electric power generating facility

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999066511A1 (en) * 1998-06-17 1999-12-23 Yyl Corporation Power generating device
JP2002030904A (en) * 2000-05-09 2002-01-31 Yyl:Kk Power generating device
CN102174904A (en) * 2011-03-08 2011-09-07 上海宁松热能环境工程有限公司 Method and system for generating power jointly by nuclear fuel and fossil fuel
KR20230118355A (en) 2022-02-04 2023-08-11 한국수력원자력 주식회사 Method for operating nuclear power plant comprisng multiple operation mode
WO2023181386A1 (en) * 2022-03-25 2023-09-28 株式会社日立製作所 Control system and control method for power generation system

Similar Documents

Publication Publication Date Title
CA2771839C (en) Hybrid power plant
US20080127647A1 (en) Solar-Generated Steam Retrofit for Supplementing Natural-Gas Combustion at Combined Cycle Power Plants
US20120102950A1 (en) Solar thermal power plant with the integration of an aeroderivative turbine
US9200622B2 (en) Solar-nuclear hybrid power plant
KR101028634B1 (en) Auxiliary generation system by surplus steam of power station
KR102326658B1 (en) Combined heat and power system with load following operation
EP4118305A1 (en) Renewable power generation system and method
US6164072A (en) Method and apparatus for matching a secondary steam supply to a main steam supply of a nuclear or thermal renewable fueled electric generating plant
CN109026240B (en) Power generation system and method based on nuclear energy and solar energy coupling
JPH05249288A (en) Compound reactor power generation system
KR20220020609A (en) Nuclear power load response generation system using carbon dioxide compression storage system
RU2124641C1 (en) Steam power plant and its operation process
KR102546449B1 (en) Nuclear power load response generation system using thermal energy storage system
JPH03208259A (en) Solid electrolyte fuel cell system
CN115405383A (en) Heat storage-based flexible peak regulation system and method for thermal power plant
JP2002071884A (en) Light water reactor nuclear power generation equipment and method using it
EP2265802A1 (en) Hybrid power plant
Dostal et al. Medium-power lead-alloy fast reactor balance-of-plant options
Irianto et al. Effect of Superheated Steam Pressure on the Performance of RDE Energy Conversion System
RU2759559C1 (en) Method for increasing safety and technical and economic efficiency of npp operation under uniform energy consumption based on hydrogen-heat storage
RU2709783C1 (en) Method of hydrogen heating of feed water to npp
Cao et al. Study on thermal performance of peak shaving unit under different sources of heat storage steam
JP2022139945A (en) Steam generation system combined with heat storage and power generation system combined with heat storage
Forsberg et al. Nuclear Air-Brayton Combined Cycle (NACC) With Natural Gas Peak Power
Gretz Concept and operating experiences with Eurelios 1 MW helioelectric power plant of the European Communities