WO2023181386A1 - Control system and control method for power generation system - Google Patents

Control system and control method for power generation system Download PDF

Info

Publication number
WO2023181386A1
WO2023181386A1 PCT/JP2022/014571 JP2022014571W WO2023181386A1 WO 2023181386 A1 WO2023181386 A1 WO 2023181386A1 JP 2022014571 W JP2022014571 W JP 2022014571W WO 2023181386 A1 WO2023181386 A1 WO 2023181386A1
Authority
WO
WIPO (PCT)
Prior art keywords
power generation
power
plant
control system
nuclear
Prior art date
Application number
PCT/JP2022/014571
Other languages
French (fr)
Japanese (ja)
Inventor
幸徳 片桐
洋平 村上
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Priority to PCT/JP2022/014571 priority Critical patent/WO2023181386A1/en
Publication of WO2023181386A1 publication Critical patent/WO2023181386A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/46Controlling of the sharing of output between the generators, converters, or transformers

Definitions

  • the present invention relates to a control system and a control method for a power generation system.
  • Patent Document 1 describes a power generation system that produces and stores hydrogen and oxygen obtained by electrolyzing water using surplus electricity, and burns the stored hydrogen and oxygen to generate electricity according to the power supply and demand situation.
  • Patent Document 2 describes a power generation system in which base load operation is performed using nuclear power and load following operation is performed by controlling a thermal power superheating boiler.
  • Patent Documents 1 and 2 leave much room for improvement.
  • the present invention has been made to solve the above-mentioned problems, and provides a control system and a control method for a power generation system that obtains adjustment power by efficiently cooperating a nuclear power plant and a thermal power plant.
  • the main purpose is to
  • the present invention provides a power generation system control system that controls a power generation system including a nuclear power generation plant equipped with a hydrogen production device and a thermal power generation plant that uses hydrogen as part of its fuel. Then, the power generation command for the nuclear power plant and the power generation command for the thermal power plant are calculated by inputting the system load request, the market power price, and the fuel consumption of the thermal power plant, and the power generation command for the nuclear power plant and the thermal power plant are calculated.
  • the configuration is such that it is sent to a power generation plant. Other means will be described later.
  • FIG. 1 is a schematic configuration diagram of the entire power generation system according to the first embodiment.
  • FIG. 2 is an explanatory diagram of the operation of the control system of the power generation system according to the first embodiment.
  • 3 is a flowchart showing the operation of the control system of the power generation system according to the first embodiment. It is a flow chart which shows operation of a control system of a power generation system concerning a 2nd embodiment.
  • FIG. 2 is a block diagram of a computer configuring the control system.
  • this embodiment an embodiment of the present invention (hereinafter referred to as "this embodiment") will be described in detail with reference to the drawings. Note that each figure is merely shown schematically to the extent that the present invention can be fully understood. Therefore, the present invention is not limited to the illustrated example. Further, in each figure, common or similar components are denoted by the same reference numerals, and redundant explanation thereof will be omitted.
  • the present invention also contemplates providing a control system for a power generation system as described below.
  • the present invention enables efficient cooperative operation of nuclear power plants and thermal power plants, thereby reducing carbon dioxide emissions from thermal power plants and reducing the imbalance between demand and supply in the power system (demand-supply gap).
  • the idea is to provide a control system for a power generation system that is compatible with eliminating the above problems.
  • thermal power plant when using a thermal power plant as a regulating power by connecting a renewable energy power generation facility, which is an asynchronous power source that uses sunlight, solar heat, wind, etc., to the power system,
  • the power plant is operated at minimum load.
  • a thermal power plant consumes only fuel without achieving its rated output, resulting in poor fuel efficiency.
  • thermal power plants have low capacity utilization rates due to long standby operation times.
  • Another idea of the present invention is to provide a control system for a power generation system that improves the fuel efficiency and equipment utilization rate of a thermal power plant by efficiently operating the nuclear power plant and the thermal power plant in coordination. .
  • Another idea of the present invention is to provide a control system for a power generation system that improves the thermal efficiency of a nuclear power plant by efficiently cooperating the nuclear power plant and the thermal power plant.
  • FIG. 1 is a schematic configuration diagram of the entire power generation system 100 according to the first embodiment.
  • a power generation system 100 includes a control system 10, a nuclear power plant 20 including a hydrogen production device 30, a thermal power plant 40 that uses hydrogen as part of the fuel, It includes a central power dispatch center 51, a power exchange 52, a renewable energy power generation facility 99, and a power system 101.
  • the control system 10 inputs (obtains) a system load request 61 from a central power dispatch center 51, inputs a market power price 63 from a power exchange 52, and obtains a fuel consumption amount 62 of the thermal power plant 40 from a thermal power plant 40. Enter. Then, the control system 10 calculates a nuclear power generation command 71 and a thermal power generation command 81 based on the system load request 61, the market power price 63, and the fuel consumption amount 62, and sends them to the nuclear power plant 20 and the thermal power plant 40. At that time, when performing the second type operation described later, the control system 10 sends the hydrogen co-firing rate 82 to the thermal power plant 40.
  • the system load request 61 is a load request for the power system 101.
  • the system load request 61 functions as an EDC (Economic load Dispatching Control) signal or an LFC (Load Frequency Control) signal.
  • the central power dispatch center 51 manages system load requests 61.
  • the market power price 63 includes a capacity market price 64 and an adjustment power market price 65.
  • the capacity market price 64 is the price of supplied power when power is supplied over a medium to long term.
  • the adjustment power market price 65 is the price of electric power (adjustment power) required to match supply and demand at a power generation plant or the like in accordance with changes in the demand for electric power.
  • the power exchange 52 manages a capacity market price 64 and a regulating power market price 65.
  • the nuclear power generation directive 71 is a power generation directive for the nuclear power plant 20.
  • the nuclear power generation command 71 functions as an MWD (Mega Watt Demand) signal for the nuclear power plant 20.
  • the thermal power generation command 81 is a power generation command for the thermal power plant 40.
  • the thermal power generation command 81 functions as an MWD (Mega Watt Demand) signal for the thermal power plant 40 .
  • the hydrogen co-combustion rate 82 is the ratio of hydrogen and fuel when hydrogen and fuel (natural gas) are mixed and combusted.
  • the nuclear power plant 20 generates electricity based on the nuclear power generation directive 71 and sends nuclear generated power 76 to the power system 101.
  • the nuclear power plant 20 increases or decreases the turbine output while generating electricity with the reactor thermal output at the rated value (that is, with the reactor at a constant load).
  • the hydrogen production device 30 is made to produce hydrogen using surplus steam produced by power generation.
  • the nuclear power plant 20 then supplies the generated hydrogen 78 (including the hydrogen 79 temporarily stored in the hydrogen storage device 35 (see FIG. 2) after generation) to the thermal power plant 40.
  • the thermal power plant 40 receives hydrogen 78 (including hydrogen 79) produced by the hydrogen production device 30 from the nuclear power plant 20 side. Note that the thermal power plant 40 may be supplied with hydrogen produced at the renewable energy power generation facility 99.
  • the thermal power plant 40 generates power based on a thermal power generation command 81 and sends thermally generated power 86 to the power system 101.
  • the thermal power plant 40 not only rated the power generation output but also co-combusts hydrogen and fuel (natural gas) based on the hydrogen co-combustion rate 82 (mixes hydrogen and fuel). (combust) to generate electricity.
  • the thermal power plant 40 operates with high fuel efficiency and equipment efficiency by operating at maximum output.
  • the thermal power plant 40 is operated under governor free control (in other words, the valves (not shown) in the piping connected to the steam turbine (not shown) are operated under governor free control so that the system frequency is stabilized. (operation in which the output is controlled by opening and closing in small increments to change the output).
  • the control system 10 reduces carbon dioxide emissions from the thermal power plant 40 by co-firing hydrogen and fuel while eliminating the supply-demand gap 101 (that is, the difference between the amount of electricity generated and the amount of electricity consumed) in the power system.
  • the nuclear power generation directive 71 (see FIG. 2) and the thermal power generation directive 81 (see FIG. 2) are determined so as to reduce the amount.
  • Such a control system 10 can reduce carbon dioxide emissions by co-firing hydrogen in the thermal power plant 40. Further, the control system 10 can eliminate the supply-demand gap in the power system by causing the thermal power plant 40 to open and close valves (not shown) in small increments during governor-free control operation so that the system frequency is stabilized. Therefore, the control system 10 can both reduce carbon dioxide emissions from the thermal power plant 40 and eliminate the supply-demand gap in the power system. Furthermore, since the control system 10 can reduce the standby operation time of the thermal power plant 40, it is possible to improve the fuel efficiency of the thermal power plant 40 and improve the equipment utilization rate of the thermal power plant 40. Furthermore, since the control system 10 can operate at the rated output, the thermal efficiency of the nuclear power plant 20 can be improved.
  • FIG. 2 is an explanatory diagram of the operation of the control system 10 of the power generation system 100.
  • the control system 10 includes a nuclear power plant control means 21, a hydrogen production equipment control means 31, a thermal power plant 40, a thermal power plant control means 41, a central power dispatch center 51, and an electric power exchange. 52 for communication.
  • the nuclear power plant control means 21 is a device that controls the nuclear power plant 20.
  • the hydrogen production device control means 31 is a device that controls the hydrogen production device 30.
  • Thermal power plant control means 41 is a device that controls the thermal power plant 40.
  • the description will be made assuming that hydrogen produced by the hydrogen production device 30 of the nuclear power plant 20 is once stored in the hydrogen storage device 35 and then supplied to the thermal power plant 40.
  • the hydrogen produced by the hydrogen production device 30 of the nuclear power plant 20 may be directly supplied to the thermal power plant 40.
  • the nuclear power plant control means 21 is a part of the nuclear power plant 20 (that is, a component included in the nuclear power plant 20). Further, the hydrogen production device control means 31 is a part of the hydrogen production device 30 (that is, a component included in the hydrogen production device 30). The thermal power plant control means 41 is a part of the thermal power plant 40 (that is, a component included in the thermal power plant 40).
  • the central power dispatch center 51 is communicably connected to the power system 101 and the control system 10.
  • the control system 10 receives a system load request 61 from the central power dispatch center 51 .
  • the control system 10 also inputs the market power price 63 from the power exchange 52.
  • the market power price 63 includes a capacity market price 64 and an adjustment power market price 65.
  • the control system 10 also inputs the fuel consumption amount 62 of the thermal power plant 40 from the thermal power plant 40 .
  • the control system 10 determines a nuclear power generation command 71, a hydrogen production command 72, a thermal power generation command 81, and a hydrogen co-combustion rate 82 based on a system load request 61, a market power price 63, and a fuel consumption amount 62.
  • the control system 10 then sends a nuclear power generation command 71 to the nuclear power plant control means 21, a hydrogen production command 72 to the hydrogen production equipment control means 31, and a thermal power generation command 81 and hydrogen co-firing rate 82 to the thermal power plant control means 41. Send to.
  • the nuclear power plant control means 21 generates a governor command 73 based on the nuclear power generation command 71 and sends it to the nuclear power plant 20.
  • Nuclear power plant 20 generates power based on governor directive 73 and supplies nuclear power generated power 76 to power system 101 via transformer 91 . Further, the nuclear power plant 20 supplies a portion of the nuclear power generation power 7 and surplus steam 77 to the hydrogen production device 30 .
  • the hydrogen production device control means 31 generates a power supply command 74 and a steam supply command 75 based on the hydrogen production command 72 and sends them to the hydrogen production device 30.
  • the hydrogen production device 30 produces hydrogen 78 using steam 77 supplied from the nuclear power plant 20 based on the power supply command 74 and the steam supply command 75, and supplies it to the hydrogen storage device 35.
  • the thermal power plant control means 41 is communicatively connected to the hydrogen storage device 35 and the thermal power plant 40.
  • Thermal power plant control means 41 generates a hydrogen supply command 84 and a fuel command 85 based on a thermal power generation command 81 and a hydrogen co-combustion rate 82, sends the hydrogen supply command 84 to the hydrogen storage device 35, and transmits the fuel command 85 to the thermal power generation command 84. It is sent to the power generation plant 40.
  • the hydrogen storage device 35 supplies the amount of hydrogen 79 designated by the hydrogen supply command 84 to the thermal power plant 40.
  • Thermal power plant 40 generates electricity by co-firing hydrogen 79 supplied from hydrogen storage device 35 and fuel (natural gas) based on fuel command 85 , and sends thermally generated power 86 to power grid 101 via transformer 92 . supply to.
  • FIG. 3 is a flowchart showing the operation of the control system 10. Note that the following steps S115 to S125 and steps S165 to S175 may be performed before step S110.
  • control system 10 obtains (online) the market power price 63 (capacity market price 64, adjustment power market price 65) from the power exchange 52 (step S105).
  • control system 10 compares the capacity market price 64 and the adjustment power market price 65 and determines whether the capacity market price 64 is equal to or higher than the adjustment power market price 65 (step S110).
  • step S110 If it is determined in step S110 that the capacity market price 64 is equal to or higher than the adjustment power market price 65 (“Yes”), the control system 10 starts the first type operation (step S115). On the other hand, if the capacity market price 64 is less than the adjustment power market price 65 (in the case of "No"), the control system 10 starts the second type operation (step S165).
  • the first type operation is an operation in which the nuclear power plant 20 (both the reactor and the generator) is operated at a constant power generation output, and the thermal power plant 40 is operated in a load following manner. In the first type operation, the thermal power plant 40 stabilizes the system frequency through governor free control operation.
  • step S115 the control system 10 acquires (online) the fuel consumption amount 62 of the thermal power plant 40 from the thermal power plant 40 (step S120).
  • the control system 10 acquires the system load request 61 (online) from the central power dispatch center 51 (step S125). At this time, the control system 10 sets the upper limit of the acceptance amount of the system load request 61 to the following equation (1), and sets the lower limit to the following equation (2). (Amount of system load request accepted) Upper limit: Nuclear rated power output + thermal power rated power output...(1) Lower limit: Nuclear rated power generation output + minimum thermal power generation output...(2)
  • the control system 10 calculates a nuclear power generation command 71 and a thermal power generation command 81 and sends them (online) to the nuclear power plant control means 21 of the nuclear power plant 20 and the thermal power plant control means 41 of the thermal power plant 40. each plant is operated (step S130). At this time, the control system 10 calculates the nuclear power generation command 71 using the following equation (3), and also calculates the thermal power generation command 81 using the following equation (4).
  • Nuclear Power Directive Nuclear rated power output...(3)
  • Thermal power generation directive System load demand - Nuclear power generation directive ... (4)
  • step S165 the control system 10 acquires (online) the fuel consumption amount 62 of the thermal power plant 40 from the thermal power plant 40 (step S170).
  • the control system 10 acquires the system load request 61 (online) from the central power dispatch center 51 (step S175). At this time, the control system 10 sets the upper limit of the acceptance amount of the system load request 61 to the following equation (5), and sets the lower limit to the following equation (6). Note that details of the power for hydrogen production in the following formulas (5) and (6) will be described later. (Amount of system load request accepted) Upper limit: Rated nuclear power generation output + Rated thermal power generation output - Electricity for hydrogen production...(5) Lower limit: Minimum nuclear power generation output + thermal power rated power generation output – electricity for hydrogen production...(6)
  • the control system 10 calculates a nuclear power generation command 71 and a thermal power generation command 81 and sends them (online) to the nuclear power plant control means 21 of the nuclear power plant 20 and the thermal power plant control means 41 of the thermal power plant 40. each plant is operated (step S180). At this time, the control system 10 calculates the nuclear power generation command 71 using the following equation (7), and also calculates the thermal power generation command 81 using the following equation (8).
  • Thermal power generation directive Thermal power rated power generation output...(7)
  • Nuclear power generation directive System load demand - Thermal power generation directive + Electric power for hydrogen production...(8)
  • the thermal power plant 40 gradually reduces the input amount of fossil fuel (natural gas such as LNG) and gradually increases the input amount of hydrogen fuel instead, thereby achieving an operating state with reduced carbon dioxide. and transition.
  • fossil fuel natural gas such as LNG
  • the nuclear power plant 20 is operated with a constant reactor output, and steam 77 generated from the difference between the reactor output and the nuclear power generation directive 71 is guided to the hydrogen production device 30 to produce hydrogen 78.
  • the “rated output” is the (power generation) output determined as the specifications of the power generation plant.
  • the “rated output” is presented by the purchaser (electric power company) as a required specification for a power generation plant, and the manufacturer of the power generation plant designs and delivers the power generation plant according to this required specification.
  • “Rated output” is also the state in which the power generation plant is at its highest efficiency. “Rated output” may also be referred to as 100% output.
  • maximum output is the maximum output of the power plant within the range of safe operation.
  • the “maximum output” is often set to be about 10% higher than the rated output. Even at maximum output, the power plant's equipment will not be damaged, but at maximum output the power generation efficiency of the power plant will be slightly lower than at the rated output. As a power generation plant manufacturer, we do not recommend operating a power generation plant that exceeds its maximum output because it places a load on the various equipment in the power plant (in other words, it is not covered by the warranty).
  • the "minimum output” is the minimum output of the power plant within the range of normal operation.
  • the output falls below the minimum output, phenomena such as a decrease in the combustion stability of the combustor or emissions of nitrogen oxides (NOx) exceeding regulation values occur, so it is necessary to operate the plant at above the minimum output. is recommended.
  • operation below minimum power means a deviation from the normal operating range of control rod and reactor recirculation control. Nuclear power is also recommended to operate at or above the minimum output.
  • the control system 10 stops supplying hydrogen from the hydrogen storage device 35 to the thermal power plant 40. Further, when the remaining amount of the hydrogen storage device 35 exceeds a certain value, the control system 10 restarts hydrogen supply from the hydrogen storage device 35 to the thermal power plant 40.
  • Hydrogen production methods include the “alkaline water electrolysis” method, the “PFEC (polymer electrolyte fuel cell)” method, and the “SOEC (Solid Oxide Electrolyser Cell)” method.
  • the "SOEC” method which uses electricity and heat (from a nuclear reactor), is adopted for hydrogen production. Since the electric power of the electric power system 101 is relatively expensive, it is preferable to use part of the electric power obtained from the nuclear power plant 20 instead of purchasing the electric power from the electric power system 101.
  • the electric power for hydrogen production is "(A ⁇ 10.2) ⁇ (3.3 ⁇ 33) (kw)". As an example, this value is used as the power for hydrogen production in the second type operation.
  • the control system 10 of the power generation system 100 has the following features.
  • the control system 10 of the power generation system 100 according to the present embodiment is a power generation system including a nuclear power generation plant 20 equipped with a hydrogen production device 30 and a thermal power generation plant 40 that uses hydrogen as a part of fuel. Control.
  • the control system 10 inputs a system load request 61, a market power price 63, and a fuel consumption amount 62 of the thermal power plant 40, and outputs a nuclear power generation command 71 (power generation command for the nuclear power plant 20) and a thermal power generation command 81 (thermal power generation command).
  • a power generation command for the power generation plant 40 is calculated and sent to the nuclear power plant 20 and the thermal power plant 40.
  • Such a control system 10 performs hydrogen production in the nuclear power plant 20 and co-combustion of hydrogen and fuel (natural gas) in the thermal power plant 40, thereby ensuring that the nuclear power plant 20 and the thermal power plant 40 are compatible. Cooperative operation can be realized. Further, the control system 10 can reduce (reduce) carbon dioxide while utilizing the thermal power plant 40 as a regulating force, and can eliminate the supply-demand gap in the power system 101 with the nuclear power plant 20. In this embodiment, for example, by reducing gas turbine fuel by 30%, carbon dioxide can be reduced (reduced) by about 30%, which is the fuel reduction amount.
  • the control system 10 performs the first type operation when the capacity market price 64 included in the market power price 63 is equal to or higher than the adjustment power market price 65, If it is less than 65, type 2 operation is performed.
  • the first type operation is an operation in which the nuclear power plant 20 is operated at a constant power generation output, and the thermal power plant 40 is operated in a load following manner.
  • surplus steam is guided to the hydrogen production device 30 to produce hydrogen while the nuclear power plant 20 is in a load following operation, and the thermal power plant 40 is operated to produce hydrogen and fuel produced by the hydrogen production device 30. This is an operation that involves co-firing.
  • the thermal power generation command 81 is calculated.
  • Type 1 operation when acquiring the system load request 61, the control system 10 sets the upper limit of the acceptance amount of the system load request 61 to "nuclear rated power generation output + thermal power rated power generation output", and sets the lower limit to " Rated nuclear power generation output + minimum thermal power generation output.”
  • the control system 10 sets the upper limit of the acceptance amount of the system load request 61 to "nuclear rated power generation output + thermal power rated power generation output - hydrogen production power"
  • the lower limit is set as "minimum nuclear power generation output + rated thermal power generation output”.
  • the control system 10 determines the target load of the nuclear power plant 20 so as to eliminate the supply-demand gap in the power system 101, and also determines the target load of the nuclear power plant 20 so as to minimize the amount of carbon dioxide emitted from the thermal power plant 40. Determine the target load of the plant 40. Then, the control system 10 causes the nuclear power plant 20 to operate the turbine under load based on the system load request 61 and guide excess steam to the hydrogen production device 30 to produce hydrogen when generating electricity. Further, the control system 10 causes the thermal power plant 40 to co-combust hydrogen and fuel produced by the hydrogen production device 30 in a governor-free controlled operation and operate at a constant output.
  • Such a control system 10 can improve the reactor heat utilization rate and reduce (reduce) carbon dioxide.
  • the control system 10 compares the capacity market price 64 included in the market power price 63 with the adjustment power market price 65, bids for power in the market with a higher price, and controls the output of the nuclear power plant 20. do.
  • Such a control system 10 can improve the cost of the power plant.
  • the control system 10 determines the thermal power generation command 81, the hydrogen storage amount, and the hydrogen co-firing rate, and controls the output of the thermal power plant 40.
  • Such a control system 10 reduces carbon dioxide emissions from a thermal power plant and enables stable hydrogen co-firing in the thermal power plant based on the amount of hydrogen stored.
  • the control system 10 is configured to control the load on the nuclear power plant 20 so as to eliminate the supply-demand gap in the power system 101, and also adjust the system frequency by causing the thermal power plant 40 to generate electricity so that the system frequency is stabilized. It would be good if it were.
  • Such a control system 10 can stably operate the power system 101 even when the output fluctuates at the renewable energy power generation facility 99.
  • the control system 10 of the power generation system 100 is a control system that controls a power generation system including a nuclear power plant 20 equipped with a hydrogen production device 30 and a thermal power plant 40 that uses hydrogen as part of its fuel. 10, the control system 10 calculates a nuclear power generation directive 71 and a thermal power generation directive 81 by inputting a system load request 61, an electricity price, and a fuel consumption amount 62 for thermal power generation, and It is possible to realize a method for controlling the power generation system 100 that includes the step of sending power to the power generation plant 20 and the thermal power plant 40 (steps S130 and S180).
  • the control system 10 determines the target load of the nuclear power plant 20 so as to eliminate the supply-demand gap in the power system 101, and also stabilizes the system frequency. It is preferable to determine the target load of the thermal power plant 40 so as to.
  • Such a control system 10 can stably operate the power system 101 even when the output fluctuates at the renewable energy power generation facility 99.
  • the nuclear power plant 20 and the thermal power plant 40 can be efficiently operated in a coordinated manner.
  • control system 10 operates the nuclear power plant 20 at the rated value in the first type operation.
  • the second embodiment controls a power generation system 100 configured to actively produce hydrogen by operating the reactor at the rated output in the first type operation and at less than the rated power generation output.
  • a system 10 is provided.
  • FIG. 3 is a flowchart showing the operation of the control system 10. Note that the following steps S115 to S125a and steps S165 to S175 may be performed before step S110.
  • the operation of the second embodiment is that the processing of step S125a is performed instead of the processing of step S125 and the processing of step S130.
  • the difference is that the process of step S130a is performed.
  • the control system 10 acquires the system load request 61 (online) from the central power dispatch center 51 in step S125a. At this time, the control system 10 sets the upper limit of the acceptance amount of the system load request 61 to the following equation (9), and sets the lower limit to the following equation (10). (Amount of system load request accepted) Upper limit: nuclear rated power generation output + thermal power rated power generation output - electricity for hydrogen production...(9) Lower limit: Rated nuclear power generation output + Minimum thermal power generation output - Electricity for hydrogen production...(10)
  • the control system 10 calculates the nuclear power generation command 71 and the thermal power generation command 81 in step S130a, and calculates the nuclear power plant control means 21 of the nuclear power plant 20 and the thermal power plant of the thermal power plant 40.
  • the information is sent to the control means 41 (online) to operate each plant.
  • the control system 10 calculates the nuclear power generation command 71 using the following equation (11), and also calculates the thermal power generation command 81 using the following equation (12).
  • Nuclear Power Directive Nuclear rated power output – Electricity for hydrogen production...(11)
  • Thermal power generation directive System load demand - Nuclear power generation directive ... (12)
  • the control system 10 stops hydrogen production at the nuclear power plant 20.
  • the nuclear power plant 20 also discharges excess hydrogen to a condenser (not shown).
  • the control system 10 performs the first type operation when the capacity market price 64 included in the market power price 63 is equal to or higher than the adjustment power market price 65. If the adjustment power market price is less than 65, type 2 operation is performed.
  • the first type operation while operating the nuclear power plant 20 at a constant power generation output (that is, while operating the nuclear reactor at the rated output), some steam is guided to the hydrogen production device 30 to produce hydrogen, This is an operation in which the thermal power plant 40 co-combusts hydrogen produced by the hydrogen production device 30 and fuel.
  • surplus steam is guided to the hydrogen production device 30 to produce hydrogen while the nuclear power plant 20 is in a load following operation, and the thermal power plant 40 is operated to produce hydrogen and fuel produced by the hydrogen production device 30. This is an operation that involves co-firing.
  • the nuclear power plant 20 and the thermal power plant 40 can be efficiently operated cooperatively. Moreover, compared to the first embodiment, the second embodiment operates the reactor at the rated output in the first type operation and also operates at less than the rated power output to actively produce hydrogen. , operational efficiency can be further improved.
  • FIG. 5 is a block diagram of a computer 900 that constitutes the control system 10.
  • a computer 900 includes a CPU 901, a RAM 902, a ROM 903, an HDD 904, a communication I/F (interface) 905, an input/output I/F 906, and a media I/F 907.
  • Communication I/F 905 is connected to an external communication circuit 915.
  • Input/output I/F 906 is connected to input/output device 916.
  • the media I/F 907 reads and writes data from the recording medium 917.
  • the ROM 903 stores control programs executed by the CPU, various data, and the like.
  • the CPU 901 implements various functions of the control system 10 by executing application programs loaded into the RAM 902.
  • the present invention is not necessarily limited to having all the components described. Further, in the present invention, other components can be added to certain components, or some components can be changed to other components. Further, in the present invention, some components can also be deleted.
  • control system 10 may purchase hydrogen produced using renewable energy, store it in the hydrogen storage device 35, and use it for hydrogen co-combustion in the thermal power plant 40. This makes it possible to produce hydrogen using inexpensive electricity, making it easier to resolve hydrogen shortages.
  • Control system 20 Nuclear power plant 21 Nuclear plant control means 30 Hydrogen production equipment 31 Hydrogen production equipment control means 35 Hydrogen storage device 40 Thermal power plant 41 Thermal power plant control means 51 Central power dispatch center 52 Power exchange 60 Power system information 61 System Load demand 62 Fuel consumption 63 Electricity price (market electricity price) 64 Capacity market price 65 Adjustment power market price 71 Nuclear power generation directive (power generation directive for nuclear power plants) 72 Hydrogen production directive 73 Governor directive 74 Electricity supply directive 75 Steam supply directive 76 Nuclear power generation 77 Steam 78,79 Hydrogen 81 Thermal power generation directive (power generation directive for thermal power plants) 82 Hydrogen co-combustion rate 84 Hydrogen supply command 85 Fuel command 86 Thermal power generation 91,92 Transformer 99 Renewable energy power generation facility 100 Power generation system 101 Power system 900 Computer 901 CPU 902 RAM 903 ROM 904 HDD 905 Communication I/F (interface) 906 Input/output I/F 907 Media I/F 915 Communication circuit 916 Input/output device 917 Recording medium

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Supply And Distribution Of Alternating Current (AREA)

Abstract

A control system (10) for a power generation system (100) controls the power generation system (100), which comprises a nuclear power generation plant (20) that is provided with a hydrogen production device (30) and a thermal power generation plant (40) that uses hydrogen as a portion of the fuel therefor. The control system calculates a power generation instruction for the nuclear power generation plant (nuclear power generation instruction (71)) and a power generation instruction for the thermal power generation plant (thermal power generation instruction (81)) by using, as inputs, the power grid load requirement (61), the market electricity price (63), and the fuel consumption amount (62) of the thermal power generation plant, and sends the instructions to the nuclear power generation plant and the thermal power generation plant.

Description

発電システムの制御システム、及び、制御方法Control system and control method for power generation system
 本発明は、発電システムの制御システム、及び、制御方法に関する。 The present invention relates to a control system and a control method for a power generation system.
 現在、地球環境の温暖化を抑制するために、二酸化炭素の排出量を低減するためのカーボンニュートラルが提唱されている。カーボンニュートラルの実現に向けて、将来、二酸化炭素の排出量が比較的多い火力発電プラントが廃止され、その代わりとして、太陽光や太陽熱、風力等を利用する再生可能エネルギー発電施設が大量に導入されるとともに、これら再生可能エネルギー発電施設と原子力発電プラントとが併用される見込みである。しかしながら、再生可能エネルギー発電施設は天候の影響を受け易く、短時間に発電量が急激に増減することがある。このような発電量の増減に対応するため、高効率な火力発電プラントの一部は、引き続き運用を継続し、系統の需要と供給をバランスさせる調整力としての利用が期待されている。 Currently, carbon neutrality is being proposed to reduce carbon dioxide emissions in order to suppress global warming. In order to achieve carbon neutrality, in the future, thermal power plants that emit relatively large amounts of carbon dioxide will be phased out, and in their place, renewable energy power generation facilities that use sunlight, solar heat, wind, etc. will be introduced in large numbers. It is expected that these renewable energy power generation facilities and nuclear power plants will be used together. However, renewable energy power generation facilities are easily affected by the weather, and the amount of power generated may increase or decrease rapidly in a short period of time. In order to respond to such fluctuations in power generation, some highly efficient thermal power plants are expected to continue operating and be used as a regulating force to balance supply and demand in the grid.
 一方、原子力発電プラントはカーボンニュートラルの実現に向け最大出力での運用が想定されているが、先に述べた需給バランスの解消という課題に対応すべく原子力発電プラントを柔軟に運用する手段として例えば特許文献1,2に示す技術が開示されている。特許文献1には、電力需給状況に応じて、余剰電力で水を電気分解し得られた水素および酸素を製造・貯蔵し、貯蔵された水素および酸素を燃焼して発電する発電システムが記載されている。また特許文献2には、ベースロード運転を原子力で行い、負荷追従運転を火力式過熱ボイラの制御で行う発電システムが記載されている。 On the other hand, nuclear power plants are expected to be operated at maximum output in order to achieve carbon neutrality, but in order to address the issue of resolving the supply-demand balance mentioned earlier, patents are being developed as a means of flexibly operating nuclear power plants. Techniques shown in Documents 1 and 2 are disclosed. Patent Document 1 describes a power generation system that produces and stores hydrogen and oxygen obtained by electrolyzing water using surplus electricity, and burns the stored hydrogen and oxygen to generate electricity according to the power supply and demand situation. ing. Further, Patent Document 2 describes a power generation system in which base load operation is performed using nuclear power and load following operation is performed by controlling a thermal power superheating boiler.
特開2021-191118号公報JP 2021-191118 Publication 特開平05-249288号公報Japanese Patent Application Publication No. 05-249288
 しかしながら、特許文献1,2に開示された従来技術には改善の余地が多くある。 However, the conventional techniques disclosed in Patent Documents 1 and 2 leave much room for improvement.
 例えば、特許文献1に記載されている余剰電力による水素および酸素製造ならびに水素および酸素燃焼による発電システムに関しては、発電の用として酸素および水素を燃焼する発電プラント(水素酸素燃焼タービン)を新たに増設する必要がある。また、特許文献2に記載されている原子炉と火力式過熱ボイラとを組み合わせた発電システムにおいても、調整力の用として原子力に火力式過熱ボイラを追加する必要がある。
 一般に既存の火力発電プラントを調整力として使用した場合、プラント出力を低く抑えての運用が求められるため、燃料効率や設備利用率が低いという課題がある。また、原子力発電プラントは、原子炉制御の技術的限界として出力変更の時間・幅に制限があり、また原子炉を一定として蒸気タービンへの蒸気量を調整することで負荷追従をした場合には、余剰の原子炉蒸気が利用されないまま復水されるため、熱効率が低くなるという課題がある。
For example, regarding the hydrogen and oxygen production using surplus electricity and the power generation system using hydrogen and oxygen combustion described in Patent Document 1, a new power generation plant (hydrogen-oxygen combustion turbine) that burns oxygen and hydrogen for power generation is added. There is a need to. Further, even in the power generation system that combines a nuclear reactor and a thermal superheating boiler described in Patent Document 2, it is necessary to add a thermal superheating boiler to the nuclear power for regulating power.
Generally, when existing thermal power plants are used as regulating power, they are required to operate at low plant outputs, resulting in low fuel efficiency and low capacity utilization. In addition, in nuclear power plants, there are limits to the time and width of output changes due to technical limitations of reactor control, and if the reactor is kept constant and the amount of steam to the steam turbine is adjusted to follow the load, , surplus reactor steam is condensed without being used, leading to a problem of low thermal efficiency.
 本発明は、前記した課題を解決するためになされたものであり、原子力発電プラントと火力発電プラントとを効率よく協調運用させることで調整力を得る発電システムの制御システム、及び、制御方法を提供することを主な目的とする。 The present invention has been made to solve the above-mentioned problems, and provides a control system and a control method for a power generation system that obtains adjustment power by efficiently cooperating a nuclear power plant and a thermal power plant. The main purpose is to
 前記目的を達成するため、本発明は、水素製造装置を備える原子力発電プラントと、水素を燃料の一部として用いる火力発電プラントと、を含んでなる発電システムを制御する、発電システムの制御システムであって、系統負荷要求、市場の電力価格、および火力発電プラントの燃料消費量を入力して前記原子力発電プラントの発電指令と前記火力発電プラントの発電指令を計算し、前記原子力発電プラントと前記火力発電プラントに送出する構成とする。
 その他の手段は、後記する。
In order to achieve the above object, the present invention provides a power generation system control system that controls a power generation system including a nuclear power generation plant equipped with a hydrogen production device and a thermal power generation plant that uses hydrogen as part of its fuel. Then, the power generation command for the nuclear power plant and the power generation command for the thermal power plant are calculated by inputting the system load request, the market power price, and the fuel consumption of the thermal power plant, and the power generation command for the nuclear power plant and the thermal power plant are calculated. The configuration is such that it is sent to a power generation plant.
Other means will be described later.
 本発明によれば、原子力発電プラントと火力発電プラントとを効率よく協調運用させることで系統に対する需給調整力を提供することができる。 According to the present invention, it is possible to provide the ability to adjust supply and demand to the grid by efficiently operating a nuclear power plant and a thermal power plant in a coordinated manner.
第1実施形態に係る発電システム全体の模式構成図である。FIG. 1 is a schematic configuration diagram of the entire power generation system according to the first embodiment. 第1実施形態に係る発電システムの制御システムの動作説明図である。FIG. 2 is an explanatory diagram of the operation of the control system of the power generation system according to the first embodiment. 第1実施形態に係る発電システムの制御システムの動作を示すフローチャートである。3 is a flowchart showing the operation of the control system of the power generation system according to the first embodiment. 第2実施形態に係る発電システムの制御システムの動作を示すフローチャートである。It is a flow chart which shows operation of a control system of a power generation system concerning a 2nd embodiment. 制御システムを構成するコンピュータのブロック図である。FIG. 2 is a block diagram of a computer configuring the control system.
 以下、図面を参照して、本発明の実施の形態(以下、「本実施形態」と称する)について詳細に説明する。なお、各図は、本発明を十分に理解できる程度に、概略的に示しているに過ぎない。よって、本発明は、図示例のみに限定されるものではない。また、各図において、共通する構成要素や同様な構成要素については、同一の符号を付し、それらの重複する説明を省略する。 Hereinafter, an embodiment of the present invention (hereinafter referred to as "this embodiment") will be described in detail with reference to the drawings. Note that each figure is merely shown schematically to the extent that the present invention can be fully understood. Therefore, the present invention is not limited to the illustrated example. Further, in each figure, common or similar components are denoted by the same reference numerals, and redundant explanation thereof will be omitted.
 本発明は、以下のような発電システムの制御システムを提供することも思想にするものである。
 (1)本発明は、原子力発電プラントと火力発電プラントとを効率よく協調運用させることで、火力発電プラントからの二酸化炭素の排出量の低減と電力系統の需要と供給のバランスのずれ(需給ギャップ)の解消とを両立する発電システムの制御システムを提供することも思想にするものである。
The present invention also contemplates providing a control system for a power generation system as described below.
(1) The present invention enables efficient cooperative operation of nuclear power plants and thermal power plants, thereby reducing carbon dioxide emissions from thermal power plants and reducing the imbalance between demand and supply in the power system (demand-supply gap). ) The idea is to provide a control system for a power generation system that is compatible with eliminating the above problems.
 (2)また、例えば、太陽光や太陽熱、風力等を利用する非同期電源である再生可能エネルギー発電施設の電力系統への接続により、火力発電プラントを調整力として利用する場合に、特に昼間の火力発電プラントは、負荷を最低にして運転される。負荷を最低にして運転すると、火力発電プラントは、定格出力を得ることなく燃料ばかり消費するため、燃料効率が悪い。また火力発電プラントは、待機運転時間がながくなるため、設備利用率が低い。本発明は、原子力発電プラントと火力発電プラントとを効率よく協調運用させることで、火力発電プラントの燃料効率と設備利用率を向上させる発電システムの制御システムを提供することも思想にするものである。 (2) For example, when using a thermal power plant as a regulating power by connecting a renewable energy power generation facility, which is an asynchronous power source that uses sunlight, solar heat, wind, etc., to the power system, The power plant is operated at minimum load. When operated at the lowest load, a thermal power plant consumes only fuel without achieving its rated output, resulting in poor fuel efficiency. In addition, thermal power plants have low capacity utilization rates due to long standby operation times. Another idea of the present invention is to provide a control system for a power generation system that improves the fuel efficiency and equipment utilization rate of a thermal power plant by efficiently operating the nuclear power plant and the thermal power plant in coordination. .
 (3)また、原子力発電プラントを調整力として利用する場合に、原子炉の負荷を一定に維持してタービン出力を増減させるが、原子炉で発生した蒸気を復水器に送って復水させるため、熱効率が低下する。本発明は、原子力発電プラントと火力発電プラントとを効率よく協調運用させることで、原子力発電プラントの熱効率を向上させる発電システムの制御システムを提供することも思想にするものである。 (3) Also, when using a nuclear power plant as a regulating force, the load on the reactor is maintained constant and the turbine output is increased or decreased, but the steam generated in the reactor is sent to a condenser and condensed. Therefore, thermal efficiency decreases. Another idea of the present invention is to provide a control system for a power generation system that improves the thermal efficiency of a nuclear power plant by efficiently cooperating the nuclear power plant and the thermal power plant.
 [第1実施形態]
 <発電システム全体の構成>
 以下、図1を参照して、本第1実施形態に係る発電システム100の構成について説明する。図1は、本第1実施形態に係る発電システム100全体の模式構成図である。
[First embodiment]
<Overall power generation system configuration>
Hereinafter, with reference to FIG. 1, the configuration of the power generation system 100 according to the first embodiment will be described. FIG. 1 is a schematic configuration diagram of the entire power generation system 100 according to the first embodiment.
 図1に示すように、本第1実施形態に係る発電システム100は、制御システム10と、水素製造装置30を備える原子力発電プラント20と、水素を燃料の一部として用いる火力発電プラント40と、中央給電指令所51と、電力取引所52と、再生可能エネルギー発電施設99と、電力系統101とを備えている。 As shown in FIG. 1, a power generation system 100 according to the first embodiment includes a control system 10, a nuclear power plant 20 including a hydrogen production device 30, a thermal power plant 40 that uses hydrogen as part of the fuel, It includes a central power dispatch center 51, a power exchange 52, a renewable energy power generation facility 99, and a power system 101.
 制御システム10は、中央給電指令所51から系統負荷要求61を入力(取得)し、電力取引所52から市場の電力価格63を入力し、火力発電プラント40から火力発電プラント40の燃料消費量62を入力する。そして制御システム10は、系統負荷要求61と市場の電力価格63と燃料消費量62に基づいて原子力発電指令71と火力発電指令81を計算し、原子力発電プラント20と火力発電プラント40に送出する。その際に、後記する第2種運用を行う場合に、制御システム10は、水素混焼率82を火力発電プラント40に送出する。 The control system 10 inputs (obtains) a system load request 61 from a central power dispatch center 51, inputs a market power price 63 from a power exchange 52, and obtains a fuel consumption amount 62 of the thermal power plant 40 from a thermal power plant 40. Enter. Then, the control system 10 calculates a nuclear power generation command 71 and a thermal power generation command 81 based on the system load request 61, the market power price 63, and the fuel consumption amount 62, and sends them to the nuclear power plant 20 and the thermal power plant 40. At that time, when performing the second type operation described later, the control system 10 sends the hydrogen co-firing rate 82 to the thermal power plant 40.
 系統負荷要求61は、電力系統101の負荷要求である。系統負荷要求61は、EDC(Economic load Dispatching Control(経済負荷配分制御))信号やLFC(Load Frequency Control(負荷周波数制御))信号として機能する。中央給電指令所51は、系統負荷要求61を管理している。 The system load request 61 is a load request for the power system 101. The system load request 61 functions as an EDC (Economic load Dispatching Control) signal or an LFC (Load Frequency Control) signal. The central power dispatch center 51 manages system load requests 61.
 市場の電力価格63は、容量市場価格64と調整力市場価格65を含んでいる。容量市場価格64は、中長期でもって電力を供給する際の供給電力の価格である。調整力市場価格65は、電力の需要の変化に合わせて発電プラント等で需要と供給を一致させるために必要な電力(調整力)の価格である。電力取引所52は、容量市場価格64と調整力市場価格65を管理している。 The market power price 63 includes a capacity market price 64 and an adjustment power market price 65. The capacity market price 64 is the price of supplied power when power is supplied over a medium to long term. The adjustment power market price 65 is the price of electric power (adjustment power) required to match supply and demand at a power generation plant or the like in accordance with changes in the demand for electric power. The power exchange 52 manages a capacity market price 64 and a regulating power market price 65.
 原子力発電指令71は、原子力発電プラント20の発電指令である。原子力発電指令71は、原子力発電プラント20に対するMWD(Mega Watt Demand(メガワット要求))信号として機能する。 The nuclear power generation directive 71 is a power generation directive for the nuclear power plant 20. The nuclear power generation command 71 functions as an MWD (Mega Watt Demand) signal for the nuclear power plant 20.
 火力発電指令81は、火力発電プラント40の発電指令である。火力発電指令81は、火力発電プラント40に対するMWD(Mega Watt Demand(メガワット要求))信号として機能する。 The thermal power generation command 81 is a power generation command for the thermal power plant 40. The thermal power generation command 81 functions as an MWD (Mega Watt Demand) signal for the thermal power plant 40 .
 水素混焼率82は、水素と燃料(天然ガス)とを混ぜて燃焼させる際の水素と燃料の比率である。 The hydrogen co-combustion rate 82 is the ratio of hydrogen and fuel when hydrogen and fuel (natural gas) are mixed and combusted.
 原子力発電プラント20は、原子力発電指令71に基づいて発電し、原子力発生電力76を電力系統101に送出する。また、原子力発電プラント20は、後記する第2種運用を行う場合に、原子炉熱出力を定格にして(つまり、原子炉を負荷一定にして)発電しながらタービン出力を増減させることで、その発電で生成された余剰の蒸気を用いて水素製造装置30に水素を生成させる。そして原子力発電プラント20は、生成された水素78(生成後に水素貯蔵装置35(図2参照)に一時的に貯蔵された水素79を含む)を火力発電プラント40に供給する。 The nuclear power plant 20 generates electricity based on the nuclear power generation directive 71 and sends nuclear generated power 76 to the power system 101. In addition, when the nuclear power plant 20 performs type 2 operation described later, the nuclear power plant 20 increases or decreases the turbine output while generating electricity with the reactor thermal output at the rated value (that is, with the reactor at a constant load). The hydrogen production device 30 is made to produce hydrogen using surplus steam produced by power generation. The nuclear power plant 20 then supplies the generated hydrogen 78 (including the hydrogen 79 temporarily stored in the hydrogen storage device 35 (see FIG. 2) after generation) to the thermal power plant 40.
 火力発電プラント40は、原子力発電プラント20側から水素製造装置30で製造された水素78(水素79を含む)の供給を受ける。なお、火力発電プラント40は、再生可能エネルギー発電施設99で製造された水素の供給を受けるようにしてもよい。 The thermal power plant 40 receives hydrogen 78 (including hydrogen 79) produced by the hydrogen production device 30 from the nuclear power plant 20 side. Note that the thermal power plant 40 may be supplied with hydrogen produced at the renewable energy power generation facility 99.
 火力発電プラント40は、火力発電指令81に基づいて発電し、火力発生電力86を電力系統101に送出する。また、火力発電プラント40は、後記する第2種運用を行う場合に、発電出力を定格にするとともに、水素混焼率82に基づいて水素と燃料(天然ガス)を混焼させる(水素と燃料を混ぜて燃焼させる)ことで発電する。このとき、火力発電プラント40は、最大出力で運転することで、燃料効率と設備効率が高い運用を行う。また、このとき、電力系統の系統周波数が変化するため、系統周波数が安定するように、火力発電プラント40は、ガバナフリー制御運転(つまり、図示せぬ蒸気タービンに繋がる配管の図示せぬバルブを小刻みに開閉して出力を変化させるように制御する運転)を行う。 The thermal power plant 40 generates power based on a thermal power generation command 81 and sends thermally generated power 86 to the power system 101. In addition, when performing Type 2 operation to be described later, the thermal power plant 40 not only rated the power generation output but also co-combusts hydrogen and fuel (natural gas) based on the hydrogen co-combustion rate 82 (mixes hydrogen and fuel). (combust) to generate electricity. At this time, the thermal power plant 40 operates with high fuel efficiency and equipment efficiency by operating at maximum output. Also, at this time, the system frequency of the power system changes, so the thermal power plant 40 is operated under governor free control (in other words, the valves (not shown) in the piping connected to the steam turbine (not shown) are operated under governor free control so that the system frequency is stabilized. (operation in which the output is controlled by opening and closing in small increments to change the output).
 制御システム10は、電力系統に101の需給ギャップ(つまり、電力の発電量と電力の消費量の差)を解消しつつ、水素と燃料を混焼することで火力発電プラント40からの二酸化炭素の排出量を低減するように、原子力発電指令71(図2参照)と火力発電指令81(図2参照)を決定する。 The control system 10 reduces carbon dioxide emissions from the thermal power plant 40 by co-firing hydrogen and fuel while eliminating the supply-demand gap 101 (that is, the difference between the amount of electricity generated and the amount of electricity consumed) in the power system. The nuclear power generation directive 71 (see FIG. 2) and the thermal power generation directive 81 (see FIG. 2) are determined so as to reduce the amount.
 このような制御システム10は、火力発電プラント40での水素の混焼により二酸化炭素の排出量を低減することができる。また、制御システム10は、系統周波数が安定するように、ガバナフリー制御運転で火力発電プラント40が図示せぬバルブを小刻みに開閉することで電力系統の需給ギャップを解消することができる。したがって、制御システム10は、火力発電プラント40からの二酸化炭素の排出量の低減と電力系統の需給ギャップの解消とを両立させることができる。また、制御システム10は、火力発電プラント40の待機運転時間を減らすことができるため、火力発電プラント40の燃料効率を向上させるとともに、火力発電プラント40の設備利用率を向上させることができる。また、制御システム10は、定格出力で運転できるため、原子力発電プラント20の熱効率を向上させることができる。 Such a control system 10 can reduce carbon dioxide emissions by co-firing hydrogen in the thermal power plant 40. Further, the control system 10 can eliminate the supply-demand gap in the power system by causing the thermal power plant 40 to open and close valves (not shown) in small increments during governor-free control operation so that the system frequency is stabilized. Therefore, the control system 10 can both reduce carbon dioxide emissions from the thermal power plant 40 and eliminate the supply-demand gap in the power system. Furthermore, since the control system 10 can reduce the standby operation time of the thermal power plant 40, it is possible to improve the fuel efficiency of the thermal power plant 40 and improve the equipment utilization rate of the thermal power plant 40. Furthermore, since the control system 10 can operate at the rated output, the thermal efficiency of the nuclear power plant 20 can be improved.
 <発電システムの制御システムの構成及び動作の概要>
 以下、図2を参照して、発電システム100の制御システム10の構成及び動作の概要について説明する。図2は発電システム100の制御システム10の動作説明図である。
<Overview of configuration and operation of power generation system control system>
An overview of the configuration and operation of the control system 10 of the power generation system 100 will be described below with reference to FIG. 2. FIG. 2 is an explanatory diagram of the operation of the control system 10 of the power generation system 100.
 図2に示すように、制御システム10は、原子力プラント制御手段21と、水素製造装置制御手段31と、火力発電プラント40と、火力プラント制御手段41と、中央給電指令所51と、電力取引所52とに通信可能に接続されている。原子力プラント制御手段21は、原子力発電プラント20を制御する装置である。水素製造装置制御手段31は、水素製造装置30を制御する装置である。火力プラント制御手段41は、火力発電プラント40を制御する装置である。 As shown in FIG. 2, the control system 10 includes a nuclear power plant control means 21, a hydrogen production equipment control means 31, a thermal power plant 40, a thermal power plant control means 41, a central power dispatch center 51, and an electric power exchange. 52 for communication. The nuclear power plant control means 21 is a device that controls the nuclear power plant 20. The hydrogen production device control means 31 is a device that controls the hydrogen production device 30. Thermal power plant control means 41 is a device that controls the thermal power plant 40.
 ここでは、原子力発電プラント20の水素製造装置30で製造された水素が水素貯蔵装置35に一旦貯蔵されてから火力発電プラント40に供給されるものとして説明する。ただし、原子力発電プラント20の水素製造装置30で製造された水素が火力発電プラント40に直接供給されるようにしてもよい。 Here, the description will be made assuming that hydrogen produced by the hydrogen production device 30 of the nuclear power plant 20 is once stored in the hydrogen storage device 35 and then supplied to the thermal power plant 40. However, the hydrogen produced by the hydrogen production device 30 of the nuclear power plant 20 may be directly supplied to the thermal power plant 40.
 原子力プラント制御手段21は、原子力発電プラント20の一部(つまり、原子力発電プラント20に含まれる構成要素)である。また水素製造装置制御手段31は、水素製造装置30の一部(つまり、水素製造装置30に含まれる構成要素)である。また火力プラント制御手段41は、火力発電プラント40の一部(つまり、火力発電プラント40に含まれる構成要素)である。 The nuclear power plant control means 21 is a part of the nuclear power plant 20 (that is, a component included in the nuclear power plant 20). Further, the hydrogen production device control means 31 is a part of the hydrogen production device 30 (that is, a component included in the hydrogen production device 30). The thermal power plant control means 41 is a part of the thermal power plant 40 (that is, a component included in the thermal power plant 40).
 中央給電指令所51は、電力系統101と制御システム10とに通信可能に接続されている。制御システム10は、中央給電指令所51から系統負荷要求61を入力する。また制御システム10は、電力取引所52から市場の電力価格63を入力する。市場の電力価格63には、容量市場価格64と調整力市場価格65を含んでいる。また制御システム10は、火力発電プラント40から火力発電プラント40の燃料消費量62を入力する。 The central power dispatch center 51 is communicably connected to the power system 101 and the control system 10. The control system 10 receives a system load request 61 from the central power dispatch center 51 . The control system 10 also inputs the market power price 63 from the power exchange 52. The market power price 63 includes a capacity market price 64 and an adjustment power market price 65. The control system 10 also inputs the fuel consumption amount 62 of the thermal power plant 40 from the thermal power plant 40 .
 制御システム10は、系統負荷要求61と市場の電力価格63と燃料消費量62に基づいて原子力発電指令71と水素製造指令72と火力発電指令81と水素混焼率82を決定する。そして制御システム10は、原子力発電指令71を原子力プラント制御手段21に送出し、水素製造指令72を水素製造装置制御手段31に送出し、火力発電指令81と水素混焼率82を火力プラント制御手段41に送出する。 The control system 10 determines a nuclear power generation command 71, a hydrogen production command 72, a thermal power generation command 81, and a hydrogen co-combustion rate 82 based on a system load request 61, a market power price 63, and a fuel consumption amount 62. The control system 10 then sends a nuclear power generation command 71 to the nuclear power plant control means 21, a hydrogen production command 72 to the hydrogen production equipment control means 31, and a thermal power generation command 81 and hydrogen co-firing rate 82 to the thermal power plant control means 41. Send to.
 原子力プラント制御手段21は、原子力発電指令71に基づいてガバナ指令73を生成して原子力発電プラント20に送出する。原子力発電プラント20は、ガバナ指令73に基づいて発電し、原子力発生電力76を変圧器91を介して電力系統101に供給する。また、原子力発電プラント20は、原子力発生電力7の一部と余剰の蒸気77を水素製造装置30に供給する。 The nuclear power plant control means 21 generates a governor command 73 based on the nuclear power generation command 71 and sends it to the nuclear power plant 20. Nuclear power plant 20 generates power based on governor directive 73 and supplies nuclear power generated power 76 to power system 101 via transformer 91 . Further, the nuclear power plant 20 supplies a portion of the nuclear power generation power 7 and surplus steam 77 to the hydrogen production device 30 .
 水素製造装置制御手段31は、水素製造指令72に基づいて電力供給指令74と蒸気供給指令75を生成して水素製造装置30に送出する。水素製造装置30は、電力供給指令74と蒸気供給指令75に基づいて原子力発電プラント20から供給された蒸気77を用いて水素78を製造し、水素貯蔵装置35に供給する。 The hydrogen production device control means 31 generates a power supply command 74 and a steam supply command 75 based on the hydrogen production command 72 and sends them to the hydrogen production device 30. The hydrogen production device 30 produces hydrogen 78 using steam 77 supplied from the nuclear power plant 20 based on the power supply command 74 and the steam supply command 75, and supplies it to the hydrogen storage device 35.
 火力プラント制御手段41は、水素貯蔵装置35と火力発電プラント40に通信可能に接続されている。火力プラント制御手段41は、火力発電指令81と水素混焼率82に基づいて水素供給指令84と燃料指令85を生成して、水素供給指令84を水素貯蔵装置35に送出し、燃料指令85を火力発電プラント40に送出する。水素貯蔵装置35は、水素供給指令84に基づいて、水素供給指令84で指定された分の水素79を火力発電プラント40に供給する。火力発電プラント40は、燃料指令85に基づいて水素貯蔵装置35から供給された水素79と燃料(天然ガス)とを混焼させて発電し、火力発生電力86を変圧器92を介して電力系統101に供給する。 The thermal power plant control means 41 is communicatively connected to the hydrogen storage device 35 and the thermal power plant 40. Thermal power plant control means 41 generates a hydrogen supply command 84 and a fuel command 85 based on a thermal power generation command 81 and a hydrogen co-combustion rate 82, sends the hydrogen supply command 84 to the hydrogen storage device 35, and transmits the fuel command 85 to the thermal power generation command 84. It is sent to the power generation plant 40. Based on the hydrogen supply command 84, the hydrogen storage device 35 supplies the amount of hydrogen 79 designated by the hydrogen supply command 84 to the thermal power plant 40. Thermal power plant 40 generates electricity by co-firing hydrogen 79 supplied from hydrogen storage device 35 and fuel (natural gas) based on fuel command 85 , and sends thermally generated power 86 to power grid 101 via transformer 92 . supply to.
 以下、図3を参照して、制御システム10の動作の詳細について説明する。図3は制御システム10の動作を示すフローチャートである。なお、以下のステップS115からステップS125とステップS165からステップS175は、ステップS110よりも前に行うようにしてもよい。 Hereinafter, details of the operation of the control system 10 will be described with reference to FIG. 3. FIG. 3 is a flowchart showing the operation of the control system 10. Note that the following steps S115 to S125 and steps S165 to S175 may be performed before step S110.
 図3に示すように、制御システム10は、電力取引所52から市場の電力価格63(容量市場価格64、調整力市場価格65)を(オンラインで)取得する(ステップS105)。 As shown in FIG. 3, the control system 10 obtains (online) the market power price 63 (capacity market price 64, adjustment power market price 65) from the power exchange 52 (step S105).
 次に、制御システム10は、容量市場価格64と調整力市場価格65を比較して、容量市場価格64が調整力市場価格65以上であるか否かを判定する(ステップS110)。 Next, the control system 10 compares the capacity market price 64 and the adjustment power market price 65 and determines whether the capacity market price 64 is equal to or higher than the adjustment power market price 65 (step S110).
 ステップS110の判定で、容量市場価格64が調整力市場価格65以上である場合(“Yes”の場合)に、制御システム10は、第1種運用を開始する(ステップS115)。一方、容量市場価格64が調整力市場価格65未満である場合(“No”の場合)に、制御システム10は、第2種運用を開始する(ステップS165)。 If it is determined in step S110 that the capacity market price 64 is equal to or higher than the adjustment power market price 65 (“Yes”), the control system 10 starts the first type operation (step S115). On the other hand, if the capacity market price 64 is less than the adjustment power market price 65 (in the case of "No"), the control system 10 starts the second type operation (step S165).
 第1種運用は、原子力発電プラント20(原子炉と発電機の双方)を一定の発電出力で運転するとともに、火力発電プラント40を負荷追従運転する運用である。第1種運用では、火力発電プラント40は、ガバナフリー制御運転にて系統周波数を安定化させる。 The first type operation is an operation in which the nuclear power plant 20 (both the reactor and the generator) is operated at a constant power generation output, and the thermal power plant 40 is operated in a load following manner. In the first type operation, the thermal power plant 40 stabilizes the system frequency through governor free control operation.
 第2種運用は、原子力発電プラント20を負荷追従運転しながら余剰の蒸気を水素製造装置30に導いて水素を製造するとともに、火力発電プラント40を水素製造装置30で製造された水素と燃料とを混焼して一定の発電出力で発電する運用である。第2種運用では、火力発電プラント40は、ガバナフリー制御運転にて系統周波数を安定化させる。 In the second type operation, surplus steam is guided to the hydrogen production device 30 to produce hydrogen while the nuclear power plant 20 is in a load following operation, and the thermal power plant 40 is operated to produce hydrogen and fuel produced by the hydrogen production device 30. This is an operation that generates electricity at a constant output by co-firing the In the second type operation, the thermal power plant 40 stabilizes the system frequency in governor free control operation.
 第1種運用では、ステップS115の後、制御システム10は、火力発電プラント40から火力発電プラント40の燃料消費量62を(オンラインで)取得する(ステップS120)。 In the first type operation, after step S115, the control system 10 acquires (online) the fuel consumption amount 62 of the thermal power plant 40 from the thermal power plant 40 (step S120).
 次に、制御システム10は、中央給電指令所51から系統負荷要求61を(オンラインで)取得する(ステップS125)。その際に、制御システム10は、系統負荷要求61の受入量の上限を以下の式(1)とし、下限を以下の式(2)とする。
(系統負荷要求の受入量)
 上限:原子力定格発電出力+火力定格発電出力  …(1)
 下限:原子力定格発電出力+火力最低発電出力  …(2)
Next, the control system 10 acquires the system load request 61 (online) from the central power dispatch center 51 (step S125). At this time, the control system 10 sets the upper limit of the acceptance amount of the system load request 61 to the following equation (1), and sets the lower limit to the following equation (2).
(Amount of system load request accepted)
Upper limit: Nuclear rated power output + thermal power rated power output...(1)
Lower limit: Nuclear rated power generation output + minimum thermal power generation output…(2)
 次に、制御システム10は、原子力発電指令71と火力発電指令81を計算して、原子力発電プラント20の原子力プラント制御手段21と火力発電プラント40の火力プラント制御手段41に(オンラインで)送出して各プラントを運転する(ステップS130)。その際に、制御システム10は、以下の式(3)で原子力発電指令71を計算するとともに、以下の式(4)で火力発電指令81を計算する。
 原子力発電指令=原子力定格発電出力  …(3)
 火力発電指令 =系統負荷要求-原子力発電指令  …(4)
Next, the control system 10 calculates a nuclear power generation command 71 and a thermal power generation command 81 and sends them (online) to the nuclear power plant control means 21 of the nuclear power plant 20 and the thermal power plant control means 41 of the thermal power plant 40. each plant is operated (step S130). At this time, the control system 10 calculates the nuclear power generation command 71 using the following equation (3), and also calculates the thermal power generation command 81 using the following equation (4).
Nuclear Power Directive = Nuclear rated power output…(3)
Thermal power generation directive = System load demand - Nuclear power generation directive … (4)
 一方、第2種運用では、ステップS165の後、制御システム10は、火力発電プラント40から火力発電プラント40の燃料消費量62を(オンラインで)取得する(ステップS170)。 On the other hand, in the second type operation, after step S165, the control system 10 acquires (online) the fuel consumption amount 62 of the thermal power plant 40 from the thermal power plant 40 (step S170).
 次に、制御システム10は、中央給電指令所51から系統負荷要求61を(オンラインで)取得する(ステップS175)。その際に、制御システム10は、系統負荷要求61の受入量の上限を以下の式(5)とし、下限を以下の式(6)とする。なお、以下の式(5)と式(6)の水素製造用電力の詳細については後記する。
(系統負荷要求の受入量)
 上限:原子力定格発電出力+火力定格発電出力-水素製造用電力  …(5)
 下限:原子力最低発電出力+火力定格発電出力-水素製造用電力  …(6)
Next, the control system 10 acquires the system load request 61 (online) from the central power dispatch center 51 (step S175). At this time, the control system 10 sets the upper limit of the acceptance amount of the system load request 61 to the following equation (5), and sets the lower limit to the following equation (6). Note that details of the power for hydrogen production in the following formulas (5) and (6) will be described later.
(Amount of system load request accepted)
Upper limit: Rated nuclear power generation output + Rated thermal power generation output - Electricity for hydrogen production...(5)
Lower limit: Minimum nuclear power generation output + thermal power rated power generation output – electricity for hydrogen production…(6)
 次に、制御システム10は、原子力発電指令71と火力発電指令81を計算して、原子力発電プラント20の原子力プラント制御手段21と火力発電プラント40の火力プラント制御手段41に(オンラインで)送出して各プラントを運転する(ステップS180)。その際に、制御システム10は、以下の式(7)で原子力発電指令71を計算するとともに、以下の式(8)で火力発電指令81を計算する。
 火力発電指令 =火力定格発電出力  …(7)
 原子力発電指令=系統負荷要求-火力発電指令+水素製造用電力  …(8)
Next, the control system 10 calculates a nuclear power generation command 71 and a thermal power generation command 81 and sends them (online) to the nuclear power plant control means 21 of the nuclear power plant 20 and the thermal power plant control means 41 of the thermal power plant 40. each plant is operated (step S180). At this time, the control system 10 calculates the nuclear power generation command 71 using the following equation (7), and also calculates the thermal power generation command 81 using the following equation (8).
Thermal power generation directive = Thermal power rated power generation output…(7)
Nuclear power generation directive = System load demand - Thermal power generation directive + Electric power for hydrogen production...(8)
 このとき、火力発電プラント40は、化石燃料(LNG等の天然ガス)の投入量を徐々に減らし、その代わりに、水素燃料の投入量を徐々に増やすことで、二酸化炭素を低減した運転状態へと移行する。 At this time, the thermal power plant 40 gradually reduces the input amount of fossil fuel (natural gas such as LNG) and gradually increases the input amount of hydrogen fuel instead, thereby achieving an operating state with reduced carbon dioxide. and transition.
 また、原子力発電プラント20は、原子炉出力を一定で運転しており、原子炉出力と原子力発電指令71との差から生じる蒸気77を水素製造装置30に導き、水素78を製造する。 Further, the nuclear power plant 20 is operated with a constant reactor output, and steam 77 generated from the difference between the reactor output and the nuclear power generation directive 71 is guided to the hydrogen production device 30 to produce hydrogen 78.
 ここで、「定格出力」とは、発電プラントの仕様として定められた(発電)出力である。「定格出力」は、購入者(電力会社)が発電プラントの要求仕様として提示するものであり、発電プラントのメーカはこの要求仕様に従い発電プラントを設計し納品する。「定格出力」は、発電プラントの効率が最も高い状態でもある。「定格出力」は、100%出力と呼ぶ場合もある。 Here, the "rated output" is the (power generation) output determined as the specifications of the power generation plant. The "rated output" is presented by the purchaser (electric power company) as a required specification for a power generation plant, and the manufacturer of the power generation plant designs and delivers the power generation plant according to this required specification. “Rated output” is also the state in which the power generation plant is at its highest efficiency. "Rated output" may also be referred to as 100% output.
 また、「最大出力」とは、発電プラントが安全運用の範囲内で最大となる出力である。「最大出力」は、定格出力よりも10%程高い状態として設定されることが多い。最大出力でも発電プラントの機器は壊れないが、最大出力では定格出力よりも発電プラントの発電効率が若干低下する。最大出力を超える発電プラントの運用は、発電プラントの各種機器に負荷を与えるため、発電プラントのメーカとして推奨していない(つまり、保証範囲外になっている)。 Additionally, "maximum output" is the maximum output of the power plant within the range of safe operation. The "maximum output" is often set to be about 10% higher than the rated output. Even at maximum output, the power plant's equipment will not be damaged, but at maximum output the power generation efficiency of the power plant will be slightly lower than at the rated output. As a power generation plant manufacturer, we do not recommend operating a power generation plant that exceeds its maximum output because it places a load on the various equipment in the power plant (in other words, it is not covered by the warranty).
 また、「最低出力」とは、発電プラントが通常運用の範囲内で最小となる出力である。特に火力発電プラントでは、最低出力を下回ると、燃焼器の燃焼安定性の低下、あるいは窒素酸化物(NOx)等の排出量の規則値超過などの事象が発生するため、最低出力以上での運用が推奨される。原子力発電プラントでは、最低出力以下での運用は制御棒及び原子炉再循環量制御の通常運用範囲からの逸脱を意味する。原子力においても最低出力以上の運用が推奨される。 In addition, the "minimum output" is the minimum output of the power plant within the range of normal operation. In particular, in thermal power plants, if the output falls below the minimum output, phenomena such as a decrease in the combustion stability of the combustor or emissions of nitrogen oxides (NOx) exceeding regulation values occur, so it is necessary to operate the plant at above the minimum output. is recommended. In a nuclear power plant, operation below minimum power means a deviation from the normal operating range of control rod and reactor recirculation control. Nuclear power is also recommended to operate at or above the minimum output.
 (水素混焼について)
 ガスタービン燃料の30%を水素に代替可能な燃焼器が開発されている。本実施形態では、火力発電プラント40を一定出力で運転している状態において、ガスタービン燃料に徐々に水素を投入することで、燃焼の安定性を維持する。
(About hydrogen co-firing)
A combustor that can replace 30% of gas turbine fuel with hydrogen has been developed. In this embodiment, combustion stability is maintained by gradually adding hydrogen to the gas turbine fuel while the thermal power plant 40 is operating at a constant output.
 水素貯蔵装置35の残量がある数値を下回ったら、制御システム10は、水素貯蔵装置35から火力発電プラント40への水素供給を停止する。また水素貯蔵装置35の残量がある数値を上回ったら、制御システム10は、水素貯蔵装置35から火力発電プラント40への水素供給を再開する。 When the remaining amount of the hydrogen storage device 35 falls below a certain value, the control system 10 stops supplying hydrogen from the hydrogen storage device 35 to the thermal power plant 40. Further, when the remaining amount of the hydrogen storage device 35 exceeds a certain value, the control system 10 restarts hydrogen supply from the hydrogen storage device 35 to the thermal power plant 40.
 (第2種運用における水素製造について)
 水素製造方式としては、「アルカリ水電解」方法、「PFEC(polymer electrolyte fuel cell(固体高分子形燃料電池))」方法、「SOEC(Solid Oxide Electrolyser Cell(固体酸化物電解槽セル))」方法等があるが、本実施形態では水素製造に電力と(原子炉からの)熱を使用する「SOEC」方法を採用する。
 水素製造に用いる電力は、電力系統101の電力が比較的高いため、電力系統101から購入するのではなく、原子力発電プラント20で得られる電力の一部を用いるとよい。
(About hydrogen production in Type 2 operation)
Hydrogen production methods include the "alkaline water electrolysis" method, the "PFEC (polymer electrolyte fuel cell)" method, and the "SOEC (Solid Oxide Electrolyser Cell)" method. However, in this embodiment, the "SOEC" method, which uses electricity and heat (from a nuclear reactor), is adopted for hydrogen production.
Since the electric power of the electric power system 101 is relatively expensive, it is preferable to use part of the electric power obtained from the nuclear power plant 20 instead of purchasing the electric power from the electric power system 101.
 SOEC方法でのエネルギー消費量の一例として、水素1(Nm/h)あたり電力3.3(kwh/Nm)に対し、熱0.3(kwh/Nm)であると仮定する。 As an example of energy consumption in the SOEC method, assume that 1 (Nm 3 /h) of hydrogen is 3.3 (kwh/Nm 3 ) of electricity and 0.3 (kwh/Nm 3 ) of heat.
 原子力発電プラント20での発電効率を(便宜上)33%と仮定すると、水素を1(Nm/h)製造するために用いる原子炉からの熱は、「3.3(kwh/Nm)÷33%+0.3(kwh/Nm)=10.2(kwh/Nm)」である。 Assuming that the power generation efficiency in the nuclear power plant 20 is 33% (for convenience), the heat from the reactor used to produce 1 (Nm 3 /h) of hydrogen is "3.3 (kwh/Nm 3 ) ÷ 33%+0.3 (kwh/Nm 3 )=10.2 (kwh/Nm 3 ).”
 原子力発電プラント20での負荷運転によって蒸気がA(kw)余剰となったと仮定すると、この蒸気A(kw)から製造される水素の量は、「A÷10.2(Nm/h)」である。 Assuming that A (kw) of steam becomes surplus due to load operation in the nuclear power plant 20, the amount of hydrogen produced from this steam A (kw) is "A÷10.2 (Nm 3 /h)" It is.
 また、水素製造用電力は、「(A÷10.2)×(3.3÷33)(kw)」となる。第2種運用の水素製造用電力としては、一例として、この値を用いるものとする。 Moreover, the electric power for hydrogen production is "(A÷10.2)×(3.3÷33) (kw)". As an example, this value is used as the power for hydrogen production in the second type operation.
 <発電システムの制御システムの主な特徴>
 本実施形態に係る発電システム100の制御システム10は、以下のような特徴を有している。
 (1)本実施形態に係る発電システム100の制御システム10は、水素製造装置30を備える原子力発電プラント20と、水素を燃料の一部として用いる火力発電プラント40と、を含んでなる発電システムを制御する。制御システム10は、系統負荷要求61、市場の電力価格63、および火力発電プラント40の燃料消費量62を入力して原子力発電指令71(原子力発電プラント20の発電指令)と火力発電指令81(火力発電プラント40の発電指令)を計算し、原子力発電プラント20と火力発電プラント40に送出する。
<Main features of the power generation system control system>
The control system 10 of the power generation system 100 according to this embodiment has the following features.
(1) The control system 10 of the power generation system 100 according to the present embodiment is a power generation system including a nuclear power generation plant 20 equipped with a hydrogen production device 30 and a thermal power generation plant 40 that uses hydrogen as a part of fuel. Control. The control system 10 inputs a system load request 61, a market power price 63, and a fuel consumption amount 62 of the thermal power plant 40, and outputs a nuclear power generation command 71 (power generation command for the nuclear power plant 20) and a thermal power generation command 81 (thermal power generation command). A power generation command for the power generation plant 40 is calculated and sent to the nuclear power plant 20 and the thermal power plant 40.
 このような制御システム10は、原子力発電プラント20での水素製造及び火力発電プラント40での水素と燃料(天然ガス)の混焼を行うことで、原子力発電プラント20と火力発電プラント40との適格な協調運用を実現することができる。また、制御システム10は、火力発電プラント40を調整力として活用しながら二酸化炭素を低減(削減)するとともに、原子力発電プラント20で電力系統101の需給ギャップを解消することができる。本実施形態では、例えば、ガスタービン燃料の30%分の削減を図ることで、二酸化炭素を燃料削減分である約30%低減(削減)することができる。 Such a control system 10 performs hydrogen production in the nuclear power plant 20 and co-combustion of hydrogen and fuel (natural gas) in the thermal power plant 40, thereby ensuring that the nuclear power plant 20 and the thermal power plant 40 are compatible. Cooperative operation can be realized. Further, the control system 10 can reduce (reduce) carbon dioxide while utilizing the thermal power plant 40 as a regulating force, and can eliminate the supply-demand gap in the power system 101 with the nuclear power plant 20. In this embodiment, for example, by reducing gas turbine fuel by 30%, carbon dioxide can be reduced (reduced) by about 30%, which is the fuel reduction amount.
 (2)制御システム10は、市場の電力価格63に含まれる容量市場価格64が調整力市場価格65以上である場合に、第1種運用を行い、一方、容量市場価格64が調整力市場価格65未満である場合に、第2種運用を行う。第1種運用は、原子力発電プラント20を一定の発電出力で運転するとともに、火力発電プラント40を負荷追従運転する運用である。第2種運用は、原子力発電プラント20を負荷追従運転しながら余剰の蒸気を水素製造装置30に導いて水素を製造するとともに、火力発電プラント40を水素製造装置30で製造された水素と燃料とを混焼する運用である。 (2) The control system 10 performs the first type operation when the capacity market price 64 included in the market power price 63 is equal to or higher than the adjustment power market price 65, If it is less than 65, type 2 operation is performed. The first type operation is an operation in which the nuclear power plant 20 is operated at a constant power generation output, and the thermal power plant 40 is operated in a load following manner. In the second type operation, surplus steam is guided to the hydrogen production device 30 to produce hydrogen while the nuclear power plant 20 is in a load following operation, and the thermal power plant 40 is operated to produce hydrogen and fuel produced by the hydrogen production device 30. This is an operation that involves co-firing.
 (3)第1種運用では、制御システム10は、「原子力発電指令71=原子力定格発電出力」とし、「火力発電指令81=系統負荷要求61-原子力発電指令71」として、原子力発電指令71と火力発電指令81を計算する。 (3) In Type 1 operation, the control system 10 sets the Nuclear Power Generation Directive 71 as “Nuclear Power Generation Directive 71 = Nuclear Power Rated Power Output” and “Thermal Power Generation Directive 81 = System Load Request 61 - Nuclear Power Generation Directive 71”. The thermal power generation command 81 is calculated.
 (4)第1種運用では、制御システム10は、系統負荷要求61を取得する際に、系統負荷要求61の受入量の上限を「原子力定格発電出力+火力定格発電出力」とし、下限を「原子力定格発電出力+火力最低発電出力」とする。 (4) In Type 1 operation, when acquiring the system load request 61, the control system 10 sets the upper limit of the acceptance amount of the system load request 61 to "nuclear rated power generation output + thermal power rated power generation output", and sets the lower limit to " Rated nuclear power generation output + minimum thermal power generation output.”
 (5)第2種運用では、制御システム10は、「火力発電指令81=火力定格発電出力」とし、「原子力発電指令71=系統負荷要求61-火力発電指令81+水素製造用電力」として、原子力発電指令71と火力発電指令81を計算する。 (5) In Type 2 operation, the control system 10 sets the "Thermal Power Generation Directive 81 = Thermal Power Rated Power Generation Output" and the "Nuclear Power Generation Directive 71 = System Load Request 61 - Thermal Power Generation Directive 81 + Electric Power for Hydrogen Production" to A power generation command 71 and a thermal power generation command 81 are calculated.
 (6)第2種運用では、制御システム10は、系統負荷要求61を取得する際に、系統負荷要求61の受入量の上限を「原子力定格発電出力+火力定格発電出力-水素製造用電力」とし、下限を「原子力最低発電出力+火力定格発電出力」とする。 (6) In Type 2 operation, when acquiring the system load request 61, the control system 10 sets the upper limit of the acceptance amount of the system load request 61 to "nuclear rated power generation output + thermal power rated power generation output - hydrogen production power" The lower limit is set as "minimum nuclear power generation output + rated thermal power generation output".
 (7)制御システム10は、電力系統101の需給ギャップを解消するように原子力発電プラント20の目標負荷を決定するとともに、火力発電プラント40からの二酸化炭素の排出量を最小とするように火力発電プラント40の目標負荷を決定する。そして制御システム10は、原子力発電プラント20に、発電する際に、系統負荷要求61に基づいてタービンを負荷運用して余剰の蒸気を水素製造装置30に導いて水素を製造させる。また制御システム10は、火力発電プラント40に、水素製造装置30で製造された水素と燃料とをガバナフリー制御運転で混焼して一定出力で運転させる。 (7) The control system 10 determines the target load of the nuclear power plant 20 so as to eliminate the supply-demand gap in the power system 101, and also determines the target load of the nuclear power plant 20 so as to minimize the amount of carbon dioxide emitted from the thermal power plant 40. Determine the target load of the plant 40. Then, the control system 10 causes the nuclear power plant 20 to operate the turbine under load based on the system load request 61 and guide excess steam to the hydrogen production device 30 to produce hydrogen when generating electricity. Further, the control system 10 causes the thermal power plant 40 to co-combust hydrogen and fuel produced by the hydrogen production device 30 in a governor-free controlled operation and operate at a constant output.
 このような制御システム10は、原子炉熱利用率を向上させるとともに、二酸化炭素を低減(削減)させることができる。 Such a control system 10 can improve the reactor heat utilization rate and reduce (reduce) carbon dioxide.
 (8)制御システム10は、市場の電力価格63に含まれる容量市場価格64と調整力市場価格65を比較し、より価格の高い市場の電力を応札して、原子力発電プラント20の出力を制御する。 (8) The control system 10 compares the capacity market price 64 included in the market power price 63 with the adjustment power market price 65, bids for power in the market with a higher price, and controls the output of the nuclear power plant 20. do.
 このような制御システム10は、発電プラントのコストを改善することができる。 Such a control system 10 can improve the cost of the power plant.
 (9)制御システム10は、火力発電指令81および水素貯蔵量および水素混焼率を決定し、火力発電プラント40の出力を制御する。 (9) The control system 10 determines the thermal power generation command 81, the hydrogen storage amount, and the hydrogen co-firing rate, and controls the output of the thermal power plant 40.
 このような制御システム10は、火力発電プラントからの二酸化炭素排出量を低減するとともに、水素貯蔵量に基づき火力発電プラントにおいて安定した水素混焼を可能とする。 Such a control system 10 reduces carbon dioxide emissions from a thermal power plant and enables stable hydrogen co-firing in the thermal power plant based on the amount of hydrogen stored.
 (10)制御システム10は、電力系統101の需給ギャップを解消するように原子力発電プラント20を負荷制御するとともに、系統周波数が安定するように火力発電プラント40を発電させて系統周波数を調整する構成であるとよい。 (10) The control system 10 is configured to control the load on the nuclear power plant 20 so as to eliminate the supply-demand gap in the power system 101, and also adjust the system frequency by causing the thermal power plant 40 to generate electricity so that the system frequency is stabilized. It would be good if it were.
 このような制御システム10は、再生可能エネルギー発電施設99での出力変動時にも電力系統101を安定的に運用できる。 Such a control system 10 can stably operate the power system 101 even when the output fluctuates at the renewable energy power generation facility 99.
 (11)発電システム100の制御システム10は、水素製造装置30を備える原子力発電プラント20と、水素を燃料の一部として用いる火力発電プラント40と、を含んでなる発電システムを制御する、制御システム10による発電システム100の制御方法であって、制御システム10が系統負荷要求61、電力価格、および火力発電の燃料消費量62を入力して原子力発電指令71と火力発電指令81を計算し、原子力発電プラント20と火力発電プラント40に送出する工程(ステップS130,S180)を含む発電システム100の制御方法を実現することができる。 (11) The control system 10 of the power generation system 100 is a control system that controls a power generation system including a nuclear power plant 20 equipped with a hydrogen production device 30 and a thermal power plant 40 that uses hydrogen as part of its fuel. 10, the control system 10 calculates a nuclear power generation directive 71 and a thermal power generation directive 81 by inputting a system load request 61, an electricity price, and a fuel consumption amount 62 for thermal power generation, and It is possible to realize a method for controlling the power generation system 100 that includes the step of sending power to the power generation plant 20 and the thermal power plant 40 (steps S130 and S180).
 (12)原子力発電指令71と火力発電指令81を計算する際に、制御システム10は、電力系統101の需給ギャップを解消するように原子力発電プラント20の目標負荷を決定するとともに、系統周波数が安定するように火力発電プラント40の目標負荷を決定するとよい。 (12) When calculating the nuclear power generation directive 71 and the thermal power generation directive 81, the control system 10 determines the target load of the nuclear power plant 20 so as to eliminate the supply-demand gap in the power system 101, and also stabilizes the system frequency. It is preferable to determine the target load of the thermal power plant 40 so as to.
 このような制御システム10は、再生可能エネルギー発電施設99での出力変動時にも電力系統101を安定的に運用できる。 Such a control system 10 can stably operate the power system 101 even when the output fluctuates at the renewable energy power generation facility 99.
 以上の通り、本第1実施形態に係る発電システム100の制御システム10によれば、原子力発電プラント20と火力発電プラント40とを効率よく協調運用させることができる。 As described above, according to the control system 10 of the power generation system 100 according to the first embodiment, the nuclear power plant 20 and the thermal power plant 40 can be efficiently operated in a coordinated manner.
 [第2実施形態]
 前記した第1実施形態では、制御システム10は、第1種運用において原子力発電プラント20を定格で運用している。これに対し、本第2実施形態は、第1種運用において原子炉を定格出力で運転するとともに、定格発電出力未満で運用することで、水素を積極的に製造する構成の発電システム100の制御システム10を提供する。
[Second embodiment]
In the first embodiment described above, the control system 10 operates the nuclear power plant 20 at the rated value in the first type operation. In contrast, the second embodiment controls a power generation system 100 configured to actively produce hydrogen by operating the reactor at the rated output in the first type operation and at less than the rated power generation output. A system 10 is provided.
 以下、図4を参照して、本第2実施形態での制御システム10の動作について説明する。図3は制御システム10の動作を示すフローチャートである。なお、以下のステップS115からステップS125aとステップS165からステップS175は、ステップS110よりも前に行うようにしてもよい。 Hereinafter, the operation of the control system 10 in the second embodiment will be described with reference to FIG. 4. FIG. 3 is a flowchart showing the operation of the control system 10. Note that the following steps S115 to S125a and steps S165 to S175 may be performed before step S110.
 図4に示すように、本第2実施形態の動作は、前記した第1実施形態の動作(図3参照)と比較すると、ステップS125の処理とステップS130の処理の代わりに、ステップS125aの処理とステップS130aの処理が行われる点で相違する。 As shown in FIG. 4, compared to the operation of the first embodiment described above (see FIG. 3), the operation of the second embodiment is that the processing of step S125a is performed instead of the processing of step S125 and the processing of step S130. The difference is that the process of step S130a is performed.
 本第2実施形態では、制御システム10は、ステップS125aで、中央給電指令所51から系統負荷要求61を(オンラインで)取得する。その際に、制御システム10は、系統負荷要求61の受入量の上限を以下の式(9)とし、下限を以下の式(10)とする。
(系統負荷要求の受入量)
 上限:原子力定格発電出力+火力定格発電出力-水素製造用電力  …(9)
 下限:原子力定格発電出力+火力最低発電出力-水素製造用電力  …(10)
In the second embodiment, the control system 10 acquires the system load request 61 (online) from the central power dispatch center 51 in step S125a. At this time, the control system 10 sets the upper limit of the acceptance amount of the system load request 61 to the following equation (9), and sets the lower limit to the following equation (10).
(Amount of system load request accepted)
Upper limit: nuclear rated power generation output + thermal power rated power generation output - electricity for hydrogen production...(9)
Lower limit: Rated nuclear power generation output + Minimum thermal power generation output - Electricity for hydrogen production...(10)
 また、本第2実施形態では、制御システム10は、ステップS130aで、原子力発電指令71と火力発電指令81を計算して、原子力発電プラント20の原子力プラント制御手段21と火力発電プラント40の火力プラント制御手段41に(オンラインで)送出して各プラントを運転する。その際に、制御システム10は、以下の式(11)で原子力発電指令71を計算するとともに、以下の式(12)で火力発電指令81を計算する。
 原子力発電指令=原子力定格発電出力-水素製造用電力  …(11)
 火力発電指令 =系統負荷要求-原子力発電指令  …(12)
Further, in the second embodiment, the control system 10 calculates the nuclear power generation command 71 and the thermal power generation command 81 in step S130a, and calculates the nuclear power plant control means 21 of the nuclear power plant 20 and the thermal power plant of the thermal power plant 40. The information is sent to the control means 41 (online) to operate each plant. At this time, the control system 10 calculates the nuclear power generation command 71 using the following equation (11), and also calculates the thermal power generation command 81 using the following equation (12).
Nuclear Power Directive = Nuclear rated power output – Electricity for hydrogen production…(11)
Thermal power generation directive = System load demand - Nuclear power generation directive … (12)
 水素貯蔵装置35の残量がある数値を下回ったら、制御システム10は、原子力発電プラント20での水素製造を停止する。また原子力発電プラント20は、余剰となった水素を図示せぬ復水器に排出する。 When the remaining amount of the hydrogen storage device 35 falls below a certain value, the control system 10 stops hydrogen production at the nuclear power plant 20. The nuclear power plant 20 also discharges excess hydrogen to a condenser (not shown).
 本第2実施形態では、制御システム10は、市場の電力価格63に含まれる容量市場価格64が調整力市場価格65以上である場合に、第1種運用を行い、一方、容量市場価格64が調整力市場価格65未満である場合に、第2種運用を行う。第1種運用は、原子力発電プラント20を一定の発電出力で運転しながら(つまり、原子炉を定格出力で運転しながら)一部の蒸気を水素製造装置30に導いて水素を製造するとともに、火力発電プラント40を水素製造装置30で製造された水素と燃料とを混焼する運用である。第2種運用は、原子力発電プラント20を負荷追従運転しながら余剰の蒸気を水素製造装置30に導いて水素を製造するとともに、火力発電プラント40を水素製造装置30で製造された水素と燃料とを混焼する運用である。 In the second embodiment, the control system 10 performs the first type operation when the capacity market price 64 included in the market power price 63 is equal to or higher than the adjustment power market price 65. If the adjustment power market price is less than 65, type 2 operation is performed. In the first type operation, while operating the nuclear power plant 20 at a constant power generation output (that is, while operating the nuclear reactor at the rated output), some steam is guided to the hydrogen production device 30 to produce hydrogen, This is an operation in which the thermal power plant 40 co-combusts hydrogen produced by the hydrogen production device 30 and fuel. In the second type operation, surplus steam is guided to the hydrogen production device 30 to produce hydrogen while the nuclear power plant 20 is in a load following operation, and the thermal power plant 40 is operated to produce hydrogen and fuel produced by the hydrogen production device 30. This is an operation that involves co-firing.
 このような本第2実施形態は、第1実施形態と同様に、原子力発電プラント20と火力発電プラント40とを効率よく協調運用させることができる。
 しかも、本第2実施形態は、第1実施形態に比べて、第1種運用において原子炉を定格出力で運転するとともに、定格発電出力未満で運用することで、水素を積極的に製造するため、運用効率をさらに向上させることができる。
In the second embodiment, as in the first embodiment, the nuclear power plant 20 and the thermal power plant 40 can be efficiently operated cooperatively.
Moreover, compared to the first embodiment, the second embodiment operates the reactor at the rated output in the first type operation and also operates at less than the rated power output to actively produce hydrogen. , operational efficiency can be further improved.
 図5は、制御システム10を構成するコンピュータ900のブロック図である。
 図5において、コンピュータ900は、CPU901と、RAM902と、ROM903と、HDD904と、通信I/F(インタフェース)905と、入出力I/F906と、メディアI/F907とを備える。通信I/F905は、外部の通信回路915に接続される。入出力I/F906は、入出力装置916に接続される。メディアI/F907は、記録媒体917からデータを読み書きする。ROM903には、CPUによって実行される制御プログラム、各種データ等が格納されている。CPU901は、RAM902に読み込んだアプリケーションプログラムを実行することにより、制御システム10の各種機能を実現する。
FIG. 5 is a block diagram of a computer 900 that constitutes the control system 10.
In FIG. 5, a computer 900 includes a CPU 901, a RAM 902, a ROM 903, an HDD 904, a communication I/F (interface) 905, an input/output I/F 906, and a media I/F 907. Communication I/F 905 is connected to an external communication circuit 915. Input/output I/F 906 is connected to input/output device 916. The media I/F 907 reads and writes data from the recording medium 917. The ROM 903 stores control programs executed by the CPU, various data, and the like. The CPU 901 implements various functions of the control system 10 by executing application programs loaded into the RAM 902.
 なお、本発明は、前記した実施形態に限定されるものではなく、本発明の要旨を逸脱しない範囲で種々の変更や変形を行うことができる。 Note that the present invention is not limited to the embodiments described above, and various changes and modifications can be made without departing from the gist of the present invention.
 例えば、前記した実施形態は、本発明の要旨を分かり易く説明するために詳細に説明したものである。そのため、本発明は、必ずしも説明した全ての構成要素を備えるものに限定されるものではない。また、本発明は、ある構成要素に他の構成要素を追加したり、一部の構成要素を他の構成要素に変更したりすることができる。また、本発明は、一部の構成要素を削除することもできる。 For example, the embodiments described above have been described in detail in order to explain the gist of the present invention in an easy-to-understand manner. Therefore, the present invention is not necessarily limited to having all the components described. Further, in the present invention, other components can be added to certain components, or some components can be changed to other components. Further, in the present invention, some components can also be deleted.
 また、例えば、制御システム10は、再生可能エネルギーで製造した水素を買い取り、水素貯蔵装置35に貯蔵して、火力発電プラント40での水素混焼に利用するようにしてもよい。これにより、安価な電力を使った水素製造を実現し、水素不足を解消し易くすることができる。 Furthermore, for example, the control system 10 may purchase hydrogen produced using renewable energy, store it in the hydrogen storage device 35, and use it for hydrogen co-combustion in the thermal power plant 40. This makes it possible to produce hydrogen using inexpensive electricity, making it easier to resolve hydrogen shortages.
 10  制御システム
 20  原子力発電プラント
 21  原子力プラント制御手段
 30  水素製造装置
 31  水素製造装置制御手段
 35  水素貯蔵装置
 40  火力発電プラント
 41  火力プラント制御手段
 51  中央給電指令所
 52  電力取引所
 60  電力系情報
 61  系統負荷要求
 62  燃料消費量
 63  電力価格(市場の電力価格)
 64  容量市場価格
 65  調整力市場価格
 71  原子力発電指令(原子力発電プラントの発電指令)
 72  水素製造指令
 73  ガバナ指令
 74  電力供給指令
 75  蒸気供給指令
 76  原子力発生電力
 77  蒸気
 78,79  水素
 81  火力発電指令(火力発電プラントの発電指令)
 82  水素混焼率
 84  水素供給指令
 85  燃料指令
 86  火力発生電力
 91,92  変圧器
 99  再生可能エネルギー発電施設
 100  発電システム
 101  電力系統
 900  コンピュータ
 901  CPU
 902  RAM
 903  ROM
 904  HDD
 905  通信I/F(インタフェース)
 906  入出力I/F
 907  メディアI/F
 915  通信回路
 916  入出力装置
 917  記録媒体
10 Control system 20 Nuclear power plant 21 Nuclear plant control means 30 Hydrogen production equipment 31 Hydrogen production equipment control means 35 Hydrogen storage device 40 Thermal power plant 41 Thermal power plant control means 51 Central power dispatch center 52 Power exchange 60 Power system information 61 System Load demand 62 Fuel consumption 63 Electricity price (market electricity price)
64 Capacity market price 65 Adjustment power market price 71 Nuclear power generation directive (power generation directive for nuclear power plants)
72 Hydrogen production directive 73 Governor directive 74 Electricity supply directive 75 Steam supply directive 76 Nuclear power generation 77 Steam 78,79 Hydrogen 81 Thermal power generation directive (power generation directive for thermal power plants)
82 Hydrogen co-combustion rate 84 Hydrogen supply command 85 Fuel command 86 Thermal power generation 91,92 Transformer 99 Renewable energy power generation facility 100 Power generation system 101 Power system 900 Computer 901 CPU
902 RAM
903 ROM
904 HDD
905 Communication I/F (interface)
906 Input/output I/F
907 Media I/F
915 Communication circuit 916 Input/output device 917 Recording medium

Claims (14)

  1.  水素製造装置を備える原子力発電プラントと、水素を燃料の一部として用いる火力発電プラントと、を含んでなる発電システムを制御する、発電システムの制御システムであって、
     系統負荷要求、市場の電力価格、および火力発電プラントの燃料消費量を入力して前記原子力発電プラントの発電指令と前記火力発電プラントの発電指令を計算し、前記原子力発電プラントと前記火力発電プラントに送出する
    ことを特徴とする発電システムの制御システム。
    A power generation system control system that controls a power generation system including a nuclear power generation plant equipped with a hydrogen production device and a thermal power generation plant that uses hydrogen as part of its fuel,
    A power generation command for the nuclear power plant and a power generation command for the thermal power plant are calculated by inputting the system load request, the market power price, and the fuel consumption of the thermal power plant, and the power generation command for the nuclear power plant and the thermal power plant is calculated. A control system for a power generation system characterized by sending out electricity.
  2.  請求項1に記載の発電システムの制御システムにおいて、
     前記市場の電力価格に含まれる容量市場価格が調整力市場価格以上である場合に、前記原子力発電プラントを一定の発電出力で運転するとともに、前記火力発電プラントを負荷追従運転する第1種運用を行い、
     一方、容量市場価格が調整力市場価格未満である場合に、前記原子力発電プラントを負荷追従運転しながら余剰の蒸気を前記水素製造装置に導いて水素を製造するとともに、前記火力発電プラントを前記水素製造装置で製造された水素と燃料とを混焼する第2種運用を行う
    ことを特徴とする発電システムの制御システム。
    The control system for a power generation system according to claim 1,
    When the capacity market price included in the market electricity price is equal to or higher than the adjustment power market price, the nuclear power plant is operated at a constant power generation output, and the thermal power plant is operated in a load-following operation. conduct,
    On the other hand, when the capacity market price is less than the regulating power market price, surplus steam is guided to the hydrogen production device to produce hydrogen while the nuclear power plant is operated in a load following manner, and the thermal power plant is operated to produce hydrogen. A control system for a power generation system characterized by performing type 2 operation in which hydrogen and fuel produced in a production device are co-combusted.
  3.  請求項2に記載の発電システムの制御システムにおいて、
     前記第1種運用では、「原子力発電指令=原子力定格発電出力」とし、「火力発電指令=系統負荷要求-原子力発電指令」として、前記原子力発電プラントの発電指令と前記火力発電プラントの発電指令を計算する
    ことを特徴とする発電システムの制御システム。
    The control system for a power generation system according to claim 2,
    In the Type 1 operation, the power generation command for the nuclear power plant and the power generation command for the thermal power plant are set as "nuclear power generation command = nuclear rated power output" and "thermal power generation command = system load request - nuclear power generation command". A control system for a power generation system characterized by calculation.
  4.  請求項2に記載の発電システムの制御システムにおいて、
     前記第1種運用では、前記系統負荷要求を取得する際に、前記系統負荷要求の受入量の上限を「原子力定格発電出力+火力定格発電出力」とし、下限を「原子力定格発電出力+火力最低発電出力」とする
    ことを特徴とする発電システムの制御システム。
    The control system for a power generation system according to claim 2,
    In the Type 1 operation, when obtaining the system load request, the upper limit of the acceptance amount of the system load request is set as "nuclear rated power output + thermal power rated power output", and the lower limit is set as "nuclear power rated power output + thermal power minimum A control system for a power generation system characterized by a power generation output.
  5.  請求項1に記載の発電システムの制御システムにおいて、
     前記市場の電力価格に含まれる容量市場価格が調整力市場価格以上である場合に、前記原子力発電プラントを一定の発電出力で運転しながら一部の蒸気を前記水素製造装置に導いて水素を製造するとともに、前記火力発電プラントを前記水素製造装置で製造された水素と燃料とを混焼する第1種運用を行い、
     一方、容量市場価格が調整力市場価格未満である場合に、前記原子力発電プラントを負荷追従運転しながら余剰の蒸気を前記水素製造装置に導いて水素を製造するとともに、前記火力発電プラントを前記水素製造装置で製造された水素と燃料とを混焼する第2種運用を行う
    ことを特徴とする発電システムの制御システム。
    The control system for a power generation system according to claim 1,
    When the capacity market price included in the market electricity price is equal to or higher than the adjustment power market price, some steam is guided to the hydrogen production device to produce hydrogen while operating the nuclear power plant at a constant power generation output. At the same time, the thermal power plant is operated in a first type operation in which hydrogen produced by the hydrogen production device and fuel are co-combusted,
    On the other hand, when the capacity market price is less than the regulating power market price, surplus steam is guided to the hydrogen production device to produce hydrogen while the nuclear power plant is operated in a load following manner, and the thermal power plant is operated to produce hydrogen. A control system for a power generation system characterized by performing type 2 operation in which hydrogen and fuel produced in a production device are co-combusted.
  6.  請求項5に記載の発電システムの制御システムにおいて、
     前記第1種運用では、「原子力発電指令=原子力定格発電出力-水素製造用電力」とし、「火力発電指令=系統負荷要求-原子力発電指令」として、前記原子力発電プラントの発電指令と前記火力発電プラントの発電指令を計算する
    ことを特徴とする発電システムの制御システム。
    The control system for a power generation system according to claim 5,
    In the Type 1 operation, "Nuclear Power Generation Directive = Nuclear Power Rated Power Output - Electric Power for Hydrogen Production" and "Thermal Power Generation Directive = System Load Request - Nuclear Power Generation Directive" are used to specify the power generation command for the nuclear power plant and the thermal power generation command. A control system for a power generation system characterized by calculating a power generation command for a plant.
  7.  請求項5に記載の発電システムの制御システムにおいて、
     前記第1種運用では、前記系統負荷要求を取得する際に、前記系統負荷要求の受入量の上限を「原子力定格発電出力+火力最低発電出力-水素製造用電力」とし、下限を「原子力定格発電出力+火力最低発電出力-水素製造用電力」とする
    ことを特徴とする発電システムの制御システム。
    The control system for a power generation system according to claim 5,
    In the Type 1 operation, when acquiring the system load request, the upper limit of the acceptance amount of the system load request is set as "nuclear rated power generation output + minimum thermal power generation output - hydrogen production power", and the lower limit is set as "nuclear rated power generation output + minimum thermal power generation output - hydrogen production power". A control system for a power generation system characterized by the following: power generation output + minimum thermal power generation output - electric power for hydrogen production.
  8.  請求項2又は請求項5に記載の発電システムの制御システムにおいて、
     前記第2種運用では、「火力発電指令=火力定格発電出力」とし、「原子力発電指令=系統負荷要求-火力発電指令+水素製造用電力」として、原子力発電指令と火力発電指令を計算する
    ことを特徴とする発電システムの制御システム。
    In the control system for a power generation system according to claim 2 or claim 5,
    In the above-mentioned Type 2 operation, the nuclear power generation command and the thermal power generation command are calculated as "thermal power generation command = thermal power rated power generation output" and "nuclear power generation command = system load demand - thermal power generation command + electricity for hydrogen production". A power generation system control system featuring:
  9.  請求項2又は請求項5に記載の発電システムの制御システムにおいて、
     前記第2種運用では、前記系統負荷要求を取得する際に、前記系統負荷要求の受入量の上限を「原子力定格発電出力+火力定格発電出力-水素製造用電力」とし、下限を「原子力最低発電出力+火力定格発電出力」とする
    ことを特徴とする発電システムの制御システム。
    In the control system for a power generation system according to claim 2 or claim 5,
    In the Type 2 operation, when obtaining the system load request, the upper limit of the acceptance amount of the system load request is set to "nuclear rated power generation output + thermal power rated power generation output - hydrogen production power", and the lower limit is set to "nuclear minimum A control system for a power generation system characterized by the following: power generation output + thermal power rated power generation output.
  10.  請求項1に記載の発電システムの制御システムにおいて、
     前記制御システムは、
     電力系統の需給ギャップを解消するように前記原子力発電プラントの目標負荷を決定するとともに、前記火力発電プラントからの二酸化炭素の排出量を最小とするように前記火力発電プラントの目標負荷を決定し、
     前記原子力発電プラントに、発電する際に、前記系統負荷要求に基づいてタービンを負荷運用して余剰の蒸気を前記水素製造装置に導いて水素を製造させ、
     前記火力発電プラントに、前記水素製造装置で製造された水素と燃料とをガバナフリー制御運転で混焼して一定出力で運転させる
    ことを特徴とする発電システムの制御システム。
    The control system for a power generation system according to claim 1,
    The control system includes:
    determining a target load for the nuclear power plant so as to eliminate a supply-demand gap in an electric power system, and determining a target load for the thermal power plant so as to minimize carbon dioxide emissions from the thermal power plant;
    causing the nuclear power plant to produce hydrogen by operating a turbine under load based on the system load request and guiding excess steam to the hydrogen production device when generating electricity;
    A control system for a power generation system, characterized in that the thermal power generation plant is operated at a constant output by co-firing hydrogen and fuel produced by the hydrogen production device in a governor-free control operation.
  11.  請求項1に記載の発電システムの制御システムにおいて、
     前記制御システムは、前記市場の電力価格に含まれる容量市場価格と調整力市場価格を比較し、より価格の高い市場の電力を応札して、前記原子力発電プラントの出力を制御する
    ことを特徴とする発電システムの制御システム。
    The control system for a power generation system according to claim 1,
    The control system compares a capacity market price included in the market power price with an adjustment power market price, bids for power in the market with a higher price, and controls the output of the nuclear power plant. Control system for power generation system.
  12.  請求項11に記載の発電システムの制御システムにおいて、
     前記制御システムは、火力発電指令および水素貯蔵量および水素混焼率を決定し、前記火力発電プラントの出力を制御する
    ことを特徴とする発電システムの制御システム。
    The control system for a power generation system according to claim 11,
    A control system for a power generation system, wherein the control system determines a thermal power generation command, a hydrogen storage amount, and a hydrogen co-combustion rate, and controls an output of the thermal power plant.
  13.  電力系統の需給ギャップを解消するように原子力発電プラントを負荷制御するとともに、系統周波数が安定するように火力発電プラントを発電させて系統周波数を調整する
    ことを特徴とする発電システムの制御システム。
    A control system for a power generation system characterized by controlling the load on a nuclear power plant to eliminate the supply-demand gap in an electric power system, and adjusting the system frequency by causing a thermal power plant to generate power so as to stabilize the system frequency.
  14.  水素製造装置を備える原子力発電プラントと、水素を燃料の一部として用いる火力発電プラントと、を含んでなる発電システムを制御する制御システムによる発電システムの制御方法であって、
     前記制御システムが系統負荷要求、電力価格、および火力発電の燃料消費量を入力して前記原子力発電プラントの発電指令と前記火力発電プラントの発電指令を計算し、前記原子力発電プラントと前記火力発電プラントに送出する工程を含む
    ことを特徴とする発電システムの制御方法。
    A method for controlling a power generation system using a control system for controlling a power generation system including a nuclear power generation plant equipped with a hydrogen production device and a thermal power generation plant using hydrogen as part of the fuel, the method comprising:
    The control system calculates a power generation command for the nuclear power plant and a power generation command for the thermal power plant by inputting the system load request, the electricity price, and the fuel consumption of the thermal power plant, and calculates the power generation command for the nuclear power plant and the thermal power plant. 1. A method for controlling a power generation system, comprising a step of sending power to a power generation system.
PCT/JP2022/014571 2022-03-25 2022-03-25 Control system and control method for power generation system WO2023181386A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/014571 WO2023181386A1 (en) 2022-03-25 2022-03-25 Control system and control method for power generation system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/014571 WO2023181386A1 (en) 2022-03-25 2022-03-25 Control system and control method for power generation system

Publications (1)

Publication Number Publication Date
WO2023181386A1 true WO2023181386A1 (en) 2023-09-28

Family

ID=88100304

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/014571 WO2023181386A1 (en) 2022-03-25 2022-03-25 Control system and control method for power generation system

Country Status (1)

Country Link
WO (1) WO2023181386A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS525435A (en) * 1975-07-02 1977-01-17 Hitachi Ltd Load instruction process
JPH01259795A (en) * 1988-04-08 1989-10-17 Nippon Atom Ind Group Co Ltd Control method of output form power system
JPH05249288A (en) * 1992-03-05 1993-09-28 Power Reactor & Nuclear Fuel Dev Corp Compound reactor power generation system
JP3229202U (en) * 2020-07-22 2020-12-03 一博 黒岡 Power generation system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS525435A (en) * 1975-07-02 1977-01-17 Hitachi Ltd Load instruction process
JPH01259795A (en) * 1988-04-08 1989-10-17 Nippon Atom Ind Group Co Ltd Control method of output form power system
JPH05249288A (en) * 1992-03-05 1993-09-28 Power Reactor & Nuclear Fuel Dev Corp Compound reactor power generation system
JP3229202U (en) * 2020-07-22 2020-12-03 一博 黒岡 Power generation system

Similar Documents

Publication Publication Date Title
Moradi et al. Operational strategy optimization in an optimal sized smart microgrid
Senjyu et al. A hybrid power system using alternative energy facilities in isolated island
Such et al. Battery energy storage and wind energy integrated into the Smart Grid
Zhou et al. Operation of stand-alone microgrids considering the load following of biomass power plants and the power curtailment control optimization of wind turbines
CN113256045B (en) Park comprehensive energy system day-ahead economic dispatching method considering wind and light uncertainty
CN111934362A (en) Multi-power-supply coordinated optimization peak regulation method for fluctuation characteristics of renewable energy
Zhao et al. Economic-effective multi-energy management considering voltage regulation networked with energy hubs
Li et al. Event-triggered decentralized coordinated control method for economic operation of an islanded electric-hydrogen hybrid DC microgrid
JP6754880B2 (en) Power supply system
Ivanova et al. District heating technologies: Is it chance for CHP plants in variable and competitive operation conditions?
CN112446546A (en) Comprehensive energy system two-stage optimal configuration method considering energy reliability
Xu et al. Unlock the flexibility of combined heat and power for frequency response by coordinative control with batteries
Belkhier et al. Novel design and adaptive coordinated energy management of hybrid fuel‐cells/tidal/wind/PV array energy systems with battery storage for microgrids
Wu et al. Capacity planning of carbon-free microgrid with hydrogen storage considering robust short-term off-grid operation
Asaduz-Zaman et al. Optimum economic dispatch of interconnected microgrid with energy storage system
WO2023181386A1 (en) Control system and control method for power generation system
JP5469120B2 (en) Power generation output control system and control method for distributed power supply
JP3930426B2 (en) Fuel cell combined power generation system
Ali et al. Hierarchical control combined with higher order sliding mode control for integrating wind/tidal/battery/hydrogen powered DC offshore microgrid
JP2007318940A (en) Mutual power supplement controller and control method between distributed cogeneration plants for enterprise
JP2022077667A (en) Hydrogen manufacturing system
Zhu et al. Analysis and control of distributed energy resources
WO2018078812A1 (en) Voltage adjustment system and method for controlling same
CN217173884U (en) Thermal power generating unit full-capacity long-life limit peak shaving system
CN110429662A (en) A kind of cogeneration units unit commitment formulating method and system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22933524

Country of ref document: EP

Kind code of ref document: A1