JPS6219079B2 - - Google Patents

Info

Publication number
JPS6219079B2
JPS6219079B2 JP3372177A JP3372177A JPS6219079B2 JP S6219079 B2 JPS6219079 B2 JP S6219079B2 JP 3372177 A JP3372177 A JP 3372177A JP 3372177 A JP3372177 A JP 3372177A JP S6219079 B2 JPS6219079 B2 JP S6219079B2
Authority
JP
Japan
Prior art keywords
layer
cathode
anode
layers
present
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP3372177A
Other languages
Japanese (ja)
Other versions
JPS53118381A (en
Inventor
Yukyasu Usunaga
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Co Ltd filed Critical Nippon Electric Co Ltd
Priority to JP3372177A priority Critical patent/JPS53118381A/en
Publication of JPS53118381A publication Critical patent/JPS53118381A/en
Publication of JPS6219079B2 publication Critical patent/JPS6219079B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/86Types of semiconductor device ; Multistep manufacturing processes therefor controllable only by variation of the electric current supplied, or only the electric potential applied, to one or more of the electrodes carrying the current to be rectified, amplified, oscillated or switched
    • H01L29/861Diodes
    • H01L29/87Thyristor diodes, e.g. Shockley diodes, break-over diodes

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Thyristors (AREA)

Description

【発明の詳細な説明】 本発明は2端子サイリスタに関する。[Detailed description of the invention] The present invention relates to a two-terminal thyristor.

従来、サイリスタは逆阻止3端子サイリスタが
主流を占めてきた。しかし、逆阻止3端子サイリ
スタはゲート回路を必要とし、この方式によりゲ
ートに信号を加えてサイリスタを動作させていた
が、高耐圧化の動向に対して、絶縁の問題が無視
できない。
Conventionally, reverse blocking three-terminal thyristors have been the mainstream. However, reverse-blocking three-terminal thyristors require a gate circuit, and in this method, a signal is applied to the gate to operate the thyristor, but with the trend toward higher voltage resistance, insulation problems cannot be ignored.

このため、dv/dt点弧素子、VBO点弧素子、
そして光点弧素子等が重要となつてくる。本発明
は前者のdv/dt点弧素子、即ち2端子サイリス
タに関するものである。
For this reason, the dv/dt ignition element, the V BO ignition element,
Then, light ignition elements and the like become important. The present invention relates to the former dv/dt ignition element, that is, a two-terminal thyristor.

この様なdv/dt点弧素子の実施例は殆んどな
いに等しく、通常はVBO点弧素子として、SSS或
いはDIAC等で実用化されているに過ぎない。こ
の様なサイリスタが実用化されない主な理由の一
つに意図したdv/dtの値を設計し得えないこと
にあると考えられる。これは、カソードもしくは
アノード側の構成として、最初に点弧される部分
の形状およびそれにともなつて連続的に導通され
る部分の形状の適切なる設計がなされていないた
めである。又、通常の逆阻止3端子サイリスタの
dv/dt耐量の分布はロツト内でも大きくバラツ
キがあり、ロツト間では更に著しい。従つて、規
格値に対し十分大きな値になるように設計されて
いる。これはシリコンへの拡散条件を可能な限り
コントロールしてもバラツキを小さくすることは
困難であり、この要因の一つにシリコンウエーハ
内の比抵抗のバラツキが数十%になつていること
が考えられるためにある。
There are almost no examples of such a dv/dt ignition element, and it is usually only put into practical use as a VBO ignition element in SSS or DIAC. It is thought that one of the main reasons why such thyristors are not put into practical use is that it is not possible to design the intended value of dv/dt. This is because the configuration of the cathode or anode side has not been appropriately designed for the shape of the part that is ignited first and the shape of the part that is continuously conducted. Also, the normal reverse blocking 3-terminal thyristor
The distribution of dv/dt tolerance varies widely within a lot, and even more significantly between lots. Therefore, it is designed to have a value that is sufficiently larger than the standard value. This is because it is difficult to reduce the variation even if the diffusion conditions into silicon are controlled as much as possible, and one of the reasons for this is that the variation in resistivity within the silicon wafer is several tens of percent. It's there to help you.

本発明の目的は上記欠点を取除き、高耐圧を主
体とする任意にdv/dt耐量を設計し、簡単な
dv/dt点弧用の2端子サイリスタを提供するこ
とにある。
The purpose of the present invention is to eliminate the above-mentioned drawbacks, to design arbitrary DV/DT resistance mainly based on high voltage resistance, and to provide simple
The object of the present invention is to provide a two-terminal thyristor for DV/DT ignition.

本発明の特徴は、最初に点弧するカソードもし
くはアノードの幅が他のカソードもしくはアノー
ドの幅より大とし、最初に点弧するカソードもし
くはアノードとこのカソードもしくはアノードと
一番近い他のカソードもしくはアノードとの間隔
を少数キヤリアの拡散長より小さくしたことであ
る。
A feature of the present invention is that the width of the cathode or anode that is lit first is larger than the width of other cathodes or anodes, and that the cathode or anode that is lit first is connected to the other cathode or anode that is closest to this cathode or anode. This is because the distance between the two carriers is made smaller than the diffusion length of the minority carriers.

さらに本発明の特徴は最初に点弧されるカソー
ドもしくはアノードを素子のほぼ中央部に設けた
ことである。
A further feature of the present invention is that the cathode or anode, which is ignited first, is provided approximately at the center of the device.

さらに本発明の特徴は、中性子照射により比抵
抗のバラツキを数%以下としたシリコン単結晶と
基板として用いたことである。
Furthermore, the present invention is characterized by the use of a silicon single crystal whose specific resistance has been reduced to a few percent or less by neutron irradiation and used as the substrate.

このような本発明は、素子内において最初に点
弧される部分を特定することが出来るから効果的
に素子全面への拡がりを設計値通りに実現するこ
とが出来る。さらに基板に中性子照射を行えば、
シリコンへの拡散が十分に制御出来るので特性偏
差が小のものとなる。さらに、最初に点弧する部
分を素子の中央部に設ければ、素子全体が導通す
る時間が短かいものとなるから、レスポンスの早
いものとなる。
According to the present invention, since it is possible to specify the part of the element in which the ignition occurs first, it is possible to effectively spread the ignition over the entire surface of the element as designed. Furthermore, if the substrate is irradiated with neutrons,
Since diffusion into silicon can be sufficiently controlled, characteristic deviations are small. Furthermore, if the part that fires first is provided in the center of the element, the time during which the entire element is conductive is shortened, resulting in faster response.

以下、図面を参照して本発明を説明する。第1
図および第2図は本発明の第1の実施例を示すも
ので第1図に於て、N形シリコン基体のN1層1
の両面からガリウム、ボロン或いはアルミニウム
等のP形不純物を熱拡散或いはエピタキシヤルに
よりP型のP1層2およびP2層3を形成し、リン、
ヒ素或いはアンチモン等のN形不純物でカソード
のN2層4を形成する。
The present invention will be described below with reference to the drawings. 1st
1 and 2 show a first embodiment of the present invention. In FIG. 1, an N 1 layer 1 of an N type silicon substrate is shown.
P-type impurities such as gallium, boron, or aluminum are thermally diffused or epitaxially formed on both sides of the P-type P1 layer 2 and P2 layer 3, and phosphorus,
The cathode N2 layer 4 is formed with an N-type impurity such as arsenic or antimony.

この様にして形成されたサイリスタの両表面に
オーミツク金属層5および6を設けさらにそれら
の上に温度補償板7および8をそれぞれ接続す
る。
Ohmic metal layers 5 and 6 are provided on both surfaces of the thyristor thus formed, and temperature compensating plates 7 and 8 are connected thereon, respectively.

ここに使用されるN形シリコン基板は予め、中
性子照射により比抵抗のバラツキを数十%から数
%に押える処置を施したものを使用する。第2図
は第1図の平面図を示す。第1図及び第2図に於
て、dv/dtのある値により最初に点弧するカソ
ード(エミツタ)9のカソード幅をaとし、平行
に隣接するカソード10及び11の幅をcとする
と、これらの第1の関係は常にa>cにならなけ
ればならない。もしa≦cであれば、全面への拡
がりをより効果的にし難いことによる。
The N-type silicon substrate used here is one that has been treated in advance by neutron irradiation to reduce the variation in resistivity from several tens of percent to several percent. FIG. 2 shows a plan view of FIG. In FIGS. 1 and 2, if the cathode width of the cathode (emitter) 9 that fires first due to a certain value of dv/dt is a, and the width of the parallel adjacent cathodes 10 and 11 is c, The first of these relationships must always be a>c. This is because if a≦c, it is difficult to spread over the entire surface more effectively.

次の条件は少数キヤリアの拡散長Lに対するカ
ソード間隔の関係はL>bでなければならない。
もしL≦bであれば点弧しない部分を生ずる虞れ
が考えられる。以上により、a>c及びb<Lな
る如くするとdv/dt設計が極めて簡略化され容
易に実用化が可能となる。
The next condition is that the relationship between the cathode spacing and the diffusion length L of minority carriers must be L>b.
If L≦b, there is a possibility that some parts will not ignite. As described above, by setting a>c and b<L, the dv/dt design is extremely simplified and can be easily put into practical use.

従つて、dv/dt点弧素子の製作が既存の方法
で任意に設計し製作され、高耐圧及び絶縁の問題
から解放される。さらに最初に点弧するカソード
9が素子の中央部に設けられているので、左右の
カソード11,10の部分が同時に導通され、短
い時間で素子全体が導通状態となる。
Therefore, the fabrication of the dv/dt ignition element can be arbitrarily designed and fabricated using existing methods, freeing from high voltage breakdown and insulation problems. Furthermore, since the cathode 9 that is fired first is provided in the center of the element, the left and right cathodes 11 and 10 are simultaneously conductive, and the entire element becomes conductive in a short time.

第3図および第4図は本発明の第2の実施例を
示すもので、カソードのN2層14の巾aは他の
カソード層15および16の巾より大であり、層
14と層15との間隔bはベース層13の少数キ
ヤリア拡散長より小の値となつている。このよう
にカソード層を円形状に形成すれば、同心円状に
導通領域が広がつてゆくから、特に動作領域が円
形の素子には有利となる。
3 and 4 show a second embodiment of the invention, in which the width a of the N2 layer 14 of the cathode is larger than the widths of the other cathode layers 15 and 16; The distance b between the base layer 13 and the base layer 13 is smaller than the minority carrier diffusion length of the base layer 13. If the cathode layer is formed into a circular shape in this way, the conduction region expands concentrically, which is particularly advantageous for an element having a circular operating region.

又、第4図の層15を最も巾の大なる層とすれ
ば、導通領域は外側と内側に同時に広がるからさ
らに短い時間で全領域が導通する。
Furthermore, if the layer 15 in FIG. 4 is the widest layer, the conductive area spreads outward and inward at the same time, so that the entire area becomes conductive in an even shorter time.

さらに、動作領域が円形状の場合、カソードも
しくはアノードの形状をインボリユート形とすれ
ば、効果が大となる。
Furthermore, if the operating region is circular, the effect will be greater if the cathode or anode has an involute shape.

さらに、半導体の一主表面および他主表面のカ
ソード層およびアノード層に本発明を適用すれば
有効な双方向性の2端子サイリスタが構成され
る。
Furthermore, if the present invention is applied to the cathode layer and anode layer on one main surface and the other main surface of the semiconductor, an effective bidirectional two-terminal thyristor will be constructed.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の第1の実施例の断面図であ
り、第2図は第1図の上面図である。第3図は本
発明の第2の実施例の断面図であり、第4図は第
3図の上面図である。 尚図において、1はN形シリコン基体、2,3
および13はP形層、4,9,10,14,15
および16はカソード、5および6はオーミツク
金属層、7および8は温度補償板、12は最初に
点弧される部分に、点弧前に流れるリーク電流、
aは最初に点弧されるカソード幅、cは最初に点
弧されるカソードに最も近いカソードの幅、bは
最初に点弧されるカソードとそれに最も近いカソ
ードとの間隔である。
FIG. 1 is a sectional view of a first embodiment of the present invention, and FIG. 2 is a top view of FIG. 1. FIG. 3 is a sectional view of a second embodiment of the invention, and FIG. 4 is a top view of FIG. 3. In the figure, 1 is an N-type silicon substrate, 2, 3
and 13 are P-type layers, 4, 9, 10, 14, 15
and 16 is a cathode, 5 and 6 are ohmic metal layers, 7 and 8 are temperature compensation plates, 12 is a leakage current that flows in the part that is first ignited before ignition,
a is the width of the cathode that is fired first, c is the width of the cathode that is closest to the cathode that is fired first, and b is the distance between the cathode that is fired first and the cathode that is closest to it.

Claims (1)

【特許請求の範囲】[Claims] 1 半導体基板の一主表面に一導電型のベース層
を設け、該ベース層内に前記一主表面から延在す
る逆導電型のカソード層もしくはアノード層が設
けられており、該ベース層と前記カソード層もし
くはアノード層が短絡されたサイリスタにおい
て、前記カソード層もしくはアノード層は複数個
に分割されて並べられており、前記複数個のカソ
ード層もしくはアノード層のうち中央のものが他
のいずれのカソード層もしくはアノード層より前
記並びの方向の幅が広く、前記幅の広いカソード
層もしくはアノード層と最も近い他のカソード層
もしくはアノード層との間隔が前記ベース層の少
数キヤリアの拡散長より小であることを特徴とす
るサイリスタ。
1. A base layer of one conductivity type is provided on one main surface of a semiconductor substrate, and a cathode layer or an anode layer of an opposite conductivity type extending from the one main surface is provided within the base layer, and the base layer and the In a thyristor in which a cathode layer or an anode layer is short-circuited, the cathode layer or anode layer is divided into a plurality of layers and arranged, and the central one among the plurality of cathode layers or anode layers is connected to any other cathode. or an anode layer, and the distance between the wide cathode layer or anode layer and the nearest other cathode layer or anode layer is smaller than the minority carrier diffusion length of the base layer. A thyristor characterized by:
JP3372177A 1977-03-25 1977-03-25 2-terminal thyristor Granted JPS53118381A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3372177A JPS53118381A (en) 1977-03-25 1977-03-25 2-terminal thyristor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3372177A JPS53118381A (en) 1977-03-25 1977-03-25 2-terminal thyristor

Publications (2)

Publication Number Publication Date
JPS53118381A JPS53118381A (en) 1978-10-16
JPS6219079B2 true JPS6219079B2 (en) 1987-04-25

Family

ID=12394256

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3372177A Granted JPS53118381A (en) 1977-03-25 1977-03-25 2-terminal thyristor

Country Status (1)

Country Link
JP (1) JPS53118381A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009218291A (en) * 2008-03-07 2009-09-24 Sanken Electric Co Ltd Bidirectional thyristor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009218291A (en) * 2008-03-07 2009-09-24 Sanken Electric Co Ltd Bidirectional thyristor

Also Published As

Publication number Publication date
JPS53118381A (en) 1978-10-16

Similar Documents

Publication Publication Date Title
US4450467A (en) Gate turn-off thyristor with selective anode penetrating shorts
US4127863A (en) Gate turn-off type thyristor with separate semiconductor resistive wafer providing emitter ballast
US3641403A (en) Thyristor with degenerate semiconductive region
JPH0642542B2 (en) High-voltage semiconductor device manufacturing method
JP2862027B2 (en) Insulated gate bipolar transistor
US4275408A (en) Thyristor
US3476992A (en) Geometry of shorted-cathode-emitter for low and high power thyristor
US4901120A (en) Structure for fast-recovery bipolar devices
JPS6362905B2 (en)
JPH0691244B2 (en) Gate turn-off thyristor manufacturing method
JPS6074677A (en) Composite type thyristor
US4402001A (en) Semiconductor element capable of withstanding high voltage
JPS5933272B2 (en) semiconductor equipment
JPS6219079B2 (en)
US3510736A (en) Integrated circuit planar transistor
JPS5912026B2 (en) thyristor
EP0128268B1 (en) Semiconductor device having a control electrode
EP0064614B1 (en) Improved emitter structure for semiconductor devices
JPS6364060B2 (en)
JP2802459B2 (en) Photo Triac
US3448354A (en) Semiconductor device having increased resistance to second breakdown
US5420046A (en) Method for manufacturing optically triggered lateral thyristor
JPS5933988B2 (en) Electrostatic induction thyristor
CA1050171A (en) Semiconductor heat sensitive switching device
JPS6145395B2 (en)