JPS62190737A - Low temperature auto-prober - Google Patents
Low temperature auto-proberInfo
- Publication number
- JPS62190737A JPS62190737A JP3323286A JP3323286A JPS62190737A JP S62190737 A JPS62190737 A JP S62190737A JP 3323286 A JP3323286 A JP 3323286A JP 3323286 A JP3323286 A JP 3323286A JP S62190737 A JPS62190737 A JP S62190737A
- Authority
- JP
- Japan
- Prior art keywords
- probe
- infrared light
- wafer
- prober
- low temperature
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000000523 sample Substances 0.000 claims abstract description 36
- 239000004065 semiconductor Substances 0.000 claims description 13
- 238000012360 testing method Methods 0.000 abstract description 19
- 230000005540 biological transmission Effects 0.000 abstract description 3
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 abstract description 3
- 239000007789 gas Substances 0.000 abstract description 2
- 239000001307 helium Substances 0.000 abstract description 2
- 229910052734 helium Inorganic materials 0.000 abstract description 2
- 239000012212 insulator Substances 0.000 abstract 1
- 238000010586 diagram Methods 0.000 description 4
- 238000001816 cooling Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- 230000001678 irradiating effect Effects 0.000 description 2
- 229910000980 Aluminium gallium arsenide Inorganic materials 0.000 description 1
- 229910001218 Gallium arsenide Inorganic materials 0.000 description 1
- 238000009529 body temperature measurement Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000002950 deficient Effects 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 230000005284 excitation Effects 0.000 description 1
- 239000003574 free electron Substances 0.000 description 1
- 230000005527 interface trap Effects 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 239000005022 packaging material Substances 0.000 description 1
- 230000000087 stabilizing effect Effects 0.000 description 1
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
- 239000010937 tungsten Substances 0.000 description 1
Landscapes
- Testing Or Measuring Of Semiconductors Or The Like (AREA)
Abstract
Description
【発明の詳細な説明】
[概要]
低温測定用のオートプローバは、1μm以上の長波長帯
の赤外線を照射して、その照射光で目視しながらプロー
ブの位置決め調整をおこなう。そうすれば、光照射の影
響をなくした低温度での測定値が得られる。[Detailed Description of the Invention] [Summary] An autoprober for low temperature measurement irradiates infrared rays in a long wavelength range of 1 μm or more, and adjusts the positioning of the probe while visually observing the irradiated light. In this way, measured values can be obtained at low temperatures without the influence of light irradiation.
[産業上の利用分野] 本発明は低温用オートプローバに関する。[Industrial application field] The present invention relates to an autoprober for low temperatures.
最近、半導体装置はコンピュータなどの要求から高速動
作素子が要望され、それは常温の動作だけでなく、低温
動作をも積極的に考慮した新素子が開発されている。例
えば、高電子移動度トランジスタ(HE MT ! H
igh Electron Mobility Tr。Recently, high-speed operation elements have been required for semiconductor devices due to the demands of computers, etc., and new elements are being developed that actively consider not only operation at room temperature but also operation at low temperatures. For example, high electron mobility transistor (HE MT! H
igh Electron Mobility Tr.
)がその例である。) is an example.
このような低温動作させる半導体装置は、当然、低温度
においてウェハーの状態でプローブテスト(探針試験)
を行なうことが望ましい。Semiconductor devices that operate at such low temperatures naturally undergo probe tests (probe tests) in wafer form at low temperatures.
It is desirable to do this.
[従来の技術]
従来、ICなどの半導体装置は、ウェハー上に多数の素
子が形成され、これを個々のチップに分割する前に、プ
ローブ(探針)を接触させて、それらの素子の電気的特
性の良否を判別しており、これをウェハーのプローブテ
ストと云い、その測定装置をプローバと呼んでいる。[Prior Art] Conventionally, in semiconductor devices such as ICs, a large number of elements are formed on a wafer, and before the wafer is divided into individual chips, a probe is brought into contact with the wafer to detect the electricity of those elements. This is called a wafer probe test, and the measuring device is called a prober.
それは、ウェハー状態で予めプローブテストを行なって
おけば、不良チップをパッケージに組み≠Xとパッケー
ジ等の材料が節約されるから第3図は通常の室温でのプ
ローバのテストヘッドの概要を示しており、1はウニバ
ー、2は可動ステージ、3はプローブ、4は可視光源、
5は顕微鏡である。This is because if a probe test is performed in advance on a wafer, defective chips can be assembled into a package and packaging materials can be saved. Figure 3 shows an outline of a prober test head at normal room temperature. 1 is Unibar, 2 is a movable stage, 3 is a probe, 4 is a visible light source,
5 is a microscope.
被測定ウェハーには、半導体素子が規則正しく並んでお
り、測定の初期に可視光を利用して、顕微鏡で目視しな
がらプローブの位置を正しく合わせておくと、以降は自
動的に可動ステージ2が移動して、ウェハー上の半導体
素子を次々に測定することができ、そのため、オートプ
ローバと呼ばれている。Semiconductor elements are regularly arranged on the wafer to be measured, and if the probe is positioned correctly using visible light and visually inspected with a microscope at the beginning of the measurement, the movable stage 2 will move automatically from then on. It can measure semiconductor devices on a wafer one after another, and is therefore called an autoprober.
オートプローバは上記のテストヘッドの他、コンピュー
タを備えており、また、第3図のテストヘッドは函体1
0(破線で示す)に囲まれ、その中央上部に設けた空洞
から可視光を照射して、顕微鏡で目視しながらマニピュ
レータを動かして、プローブの位置合わせをおこなって
いる。また、最近では、複数のプローブを個々に調整す
る繁雑さを避けるため、既に位置合わせしたプローブを
植立させたプローブカードを利用する場合も多い。In addition to the above test head, the autoprober is equipped with a computer, and the test head shown in Fig. 3 is equipped with a box 1.
0 (indicated by a broken line), visible light is irradiated from a cavity provided in the upper center of the probe, and the probe is aligned by moving a manipulator while visually observing it with a microscope. Furthermore, recently, in order to avoid the complexity of individually adjusting a plurality of probes, a probe card on which already aligned probes are planted is often used.
しかし、このプローブカードも半導体素子に対して位置
合わせすることが必要である。However, this probe card also needs to be aligned with respect to the semiconductor element.
[発明が解決しようとする問題点]
ところで、このようなプローブの位置合わせは、特に可
視光を照射しなければ微細な位置調整が難しい。従って
、従来より室温で動作させる半導体装置ではタングステ
ンランプ等の可視光を照射して位置合わせをおこなって
いる。[Problems to be Solved by the Invention] Incidentally, it is difficult to finely adjust the position of such a probe unless it is irradiated with visible light. Therefore, conventionally, in semiconductor devices operated at room temperature, alignment has been performed by irradiating visible light from a tungsten lamp or the like.
しかし、例えば、77°にのような低温度で動作させる
半導体素子を、同温度でプローブテストしようとすると
、可視光による励起エネルギーが生じて、それがウェハ
ーの半導体素子に蓄積し、それがが残留(記憶)して、
動作状態が正しく測れないと云う問題がある。この記憶
動作は、界面トラップ準位に光エネルギーフォノンの影
響を受けて、自由電子が取り込まれ、そこにチャージが
蓄まるものと考えられている。However, when semiconductor devices operated at low temperatures, such as 77°, are probe tested at the same temperature, excitation energy from visible light is generated, which accumulates in the semiconductor devices on the wafer, causing remain (remember),
There is a problem that the operating state cannot be measured correctly. This memory operation is thought to occur because free electrons are taken into the interface trap level under the influence of optical energy phonons, and charges are accumulated there.
そのため、低温動作を測定しようとする場合、可視光を
照射して位置合わせすることができないから、従来、低
温動作素子は組み立てしたブラ・ツクボックス(暗箱)
内で、そのブラックボックスを低温度に冷却して、動作
特性を測定する方法が採られている。即ち、オートプロ
ーバを使用していないのが現状である。Therefore, when trying to measure low-temperature operation, it is not possible to align the position by irradiating visible light, so conventionally, low-temperature operation elements are assembled in a black box (dark box).
The method used is to cool the black box to a low temperature and measure its operating characteristics. That is, the current situation is that an autoprober is not used.
しかしながら、このように、プローブテストに代えて、
組み立てした半導体素子を測定するのは、非常に工数が
かかつてコストが高(なる欠点がある。However, in this way, instead of a probe test,
Measuring assembled semiconductor devices has the drawbacks of being very time-consuming and expensive.
本発明は、このような欠点を解消させて、低温度でのプ
ローブテストが可能な低温用オートプローバを提案する
ものである。The present invention solves these drawbacks and proposes a low-temperature autoprober that is capable of performing probe tests at low temperatures.
[問題点を解決するための手段]
その目的は、プローブの位置決めのために、波長1μm
以上の長波長帯の赤外線光を照射するようにした低温用
オートブローバによって達成される。[Means for solving the problem] The purpose is to use a wavelength of 1 μm for positioning the probe.
This is achieved by a low-temperature auto blower that irradiates infrared light in the above long wavelength range.
[作用]
即ち、本発明は、1μm以上の長波長帯の赤外線を照射
して、赤外光でプローブの位置合わせをおこなう。そう
すれば、照射光の影響な(、プローブテストをおこなう
ことができる。[Function] That is, the present invention irradiates infrared rays in a long wavelength band of 1 μm or more to align the probe using infrared light. In this way, you can perform a probe test to determine the effects of the irradiation light.
[実施例] 以下、図面を参照して詳細に説明する。[Example] A detailed description will be given below with reference to the drawings.
第1図は本発明に関わりある赤外線の波長と暗電流との
関係図表である。即ち、第1図はn型AlGa As層
上に設けた絶縁性GaAs層を試料とし、これを77°
K(液体窒素温度)の低温に冷却して、その暗電流を赤
外線の波長を変化させて測定したデータの図表である。FIG. 1 is a graph showing the relationship between the wavelength of infrared rays and dark current, which is relevant to the present invention. That is, in Figure 1, an insulating GaAs layer provided on an n-type AlGaAs layer is used as a sample, and this is heated at 77°.
It is a graph of data obtained by cooling to a low temperature of K (liquid nitrogen temperature) and measuring its dark current by changing the wavelength of infrared rays.
図表から明らかなように、波長0.5〜1μmでは暗電
流が大きいが、波長1μmで暗電流が減少して、1.2
μm以上の長波長では殆ど赤外線光を照射した影響がな
い。暗電流比とはブラックボックス内での暗電流との比
率のことで、暗電流比−1とはブラックボックス内と同
一と云う意味である。As is clear from the graph, the dark current is large at a wavelength of 0.5 to 1 μm, but at a wavelength of 1 μm, the dark current decreases to 1.2 μm.
At long wavelengths of μm or more, there is almost no effect of irradiation with infrared light. The dark current ratio is the ratio of the dark current inside the black box to the dark current inside the black box, and the dark current ratio -1 means the same as inside the black box.
従って、少なくとも1μm以上の長波長帯の赤外線中で
プローブテストをおこなえば、ブラックボックス内と同
じく、低温特性を正しく得ることができ、例えば、低温
用オートプローバのテストヘッドを第2図の概要図のよ
うに作成する。即ち、函体20を保温材料で包んでおき
、ウェハー11を載置する可動ステージ12をタライオ
ヘソド(15°Kまで冷却が可能な冷却体)で構成し、
函体20の中を真空吸引して、他方よりヘリウム(li
e)ガスを流入させる。そして、透過窓16を介してウ
ェハー11に、赤外線光源14から1.2μm波長の赤
外線光を照射して、顕微鏡15で目視しながらプローブ
カード13を位置合わせする。かくすれば、真空中では
ないから、マニピュレータの微調整もでき、且つ、自動
送りも容易になって、オートプローバによるプローブテ
ストができる。Therefore, by performing a probe test in infrared light in a long wavelength range of at least 1 μm or more, it is possible to accurately obtain low-temperature characteristics as in a black box.For example, the test head of a low-temperature autoprober is Create it like this. That is, the box 20 is wrapped in a heat-retaining material, and the movable stage 12 on which the wafer 11 is placed is made of a Talaiohesod (a cooling body capable of cooling down to 15°K).
Vacuum suction is applied to the inside of the box 20, and helium (li) is pumped from the other side.
e) Allow gas to flow. Then, the wafer 11 is irradiated with infrared light with a wavelength of 1.2 μm from the infrared light source 14 through the transmission window 16, and the probe card 13 is aligned while being visually observed with the microscope 15. In this way, since it is not in a vacuum, the manipulator can be finely adjusted, automatic feeding becomes easy, and a probe test using an autoprober can be performed.
かくして、低温動作させる半導体素子を、77゜K程度
の低温度でプローブテストすることができ、゛ 工数
が削減されて、且つ、低温での素子特性が安定化される
。In this way, a semiconductor device operated at a low temperature can be probe tested at a temperature as low as about 77°K, thereby reducing the number of man-hours and stabilizing device characteristics at low temperatures.
尚、本発明にかかるオートブローバにおいて、プローブ
カードを用いる場合は、個々の針の微調整をおこなう必
要がないので、函体20の中を真空状態にすることもで
き、また、IC等のピン数の多い場合にも対応できる。In the auto blower according to the present invention, when using a probe card, there is no need to make fine adjustments to the individual needles, so the inside of the box 20 can be kept in a vacuum state, and the pins of IC, etc. It can also be used in cases where there are many numbers.
[発明の効果コ
以上の説明から判るように、本発明によれば低温動作の
半導体装置の低温度プローブテストが可能になり、その
信頼性の向上とコストダウンに寄与するものである。[Effects of the Invention] As can be seen from the above description, the present invention enables low-temperature probe testing of semiconductor devices operating at low temperatures, contributing to improved reliability and cost reduction.
第1図は赤外線の波長と暗電流の関係図表、第2図は本
発明にかかる低温用オートプローバのテストヘッドの概
要図、
第3図は従来のテストヘッドの概要図である。
図において、
1はウェハー、 2,12は可動ステージ、3
はプローブ、 4は可視光源、5は顕微鏡、
10.20は函体、13はプローブカード、
14は赤外線光源、15は赤外線顕微鏡、 16は透
過窓を示している。
寺、7し衷心を長
ビ絆セ1−孝υ瑣五と峰電庚とシn仔図表第1図
、4ジた8小。加力、3オート7・ロー八・の才設字ゾ
@2図FIG. 1 is a diagram showing the relationship between infrared wavelength and dark current, FIG. 2 is a schematic diagram of a test head for a low temperature autoprober according to the present invention, and FIG. 3 is a schematic diagram of a conventional test head. In the figure, 1 is a wafer, 2 and 12 are movable stages, and 3
is a probe, 4 is a visible light source, 5 is a microscope,
10.20 is a box, 13 is a probe card,
14 is an infrared light source, 15 is an infrared microscope, and 16 is a transmission window. Temple, 7 and the heart of the long-term relationship 1-Xiao 5, Mineden Geng and Shin-Tsai chart 1st figure, 4th grade and 8th grade. Adding force, 3 auto 7, low 8, Saiseiji zo @ 2 diagrams
Claims (1)
を接触させて素子特性を測定する低温用オートプローバ
において、プローブの位置決めのために、波長1μm以
上の長波長帯の赤外線光を照射するようにしたことを特
徴とする低温用オートプローバ。In low-temperature autoprobers that measure device characteristics by bringing probes into contact with semiconductor devices on a wafer at low temperatures below room temperature, infrared light in a long wavelength band of 1 μm or more is irradiated to position the probes. Auto prober for low temperature.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3323286A JPS62190737A (en) | 1986-02-17 | 1986-02-17 | Low temperature auto-prober |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3323286A JPS62190737A (en) | 1986-02-17 | 1986-02-17 | Low temperature auto-prober |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS62190737A true JPS62190737A (en) | 1987-08-20 |
Family
ID=12380710
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP3323286A Pending JPS62190737A (en) | 1986-02-17 | 1986-02-17 | Low temperature auto-prober |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS62190737A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6484728A (en) * | 1987-09-28 | 1989-03-30 | Tokyo Electron Ltd | Alignment |
JP2004128509A (en) * | 2002-10-02 | 2004-04-22 | Suss Microtec Test Systems Gmbh | Prober for testing substrate at low temperature |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5068069A (en) * | 1973-10-17 | 1975-06-07 | ||
JPS5740950A (en) * | 1980-08-22 | 1982-03-06 | Mitsubishi Electric Corp | Semiconductor evaluation device |
JPS5941846A (en) * | 1982-08-31 | 1984-03-08 | Nippon Telegr & Teleph Corp <Ntt> | Prober for low temperature |
JPS5992584A (en) * | 1982-11-18 | 1984-05-28 | Agency Of Ind Science & Technol | Probe for testing superconductive thin film functional integrated circuit element |
-
1986
- 1986-02-17 JP JP3323286A patent/JPS62190737A/en active Pending
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5068069A (en) * | 1973-10-17 | 1975-06-07 | ||
JPS5740950A (en) * | 1980-08-22 | 1982-03-06 | Mitsubishi Electric Corp | Semiconductor evaluation device |
JPS5941846A (en) * | 1982-08-31 | 1984-03-08 | Nippon Telegr & Teleph Corp <Ntt> | Prober for low temperature |
JPS5992584A (en) * | 1982-11-18 | 1984-05-28 | Agency Of Ind Science & Technol | Probe for testing superconductive thin film functional integrated circuit element |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6484728A (en) * | 1987-09-28 | 1989-03-30 | Tokyo Electron Ltd | Alignment |
JP2004128509A (en) * | 2002-10-02 | 2004-04-22 | Suss Microtec Test Systems Gmbh | Prober for testing substrate at low temperature |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5025145A (en) | Method and apparatus for determining the minority carrier diffusion length from linear constant photon flux photovoltage measurements | |
KR100734186B1 (en) | Apparatus and method for dynamic diagnostic testing of integrated circuits | |
US6549022B1 (en) | Apparatus and method for analyzing functional failures in integrated circuits | |
US7694246B2 (en) | Test method for yielding a known good die | |
KR100315605B1 (en) | Rapid Testing Apparatus and Method for Semiconductor Devices at Elevated Temperatures | |
TWI392867B (en) | Fault analysis method and device thereof | |
JP5009506B2 (en) | Method and system for determining one or more characteristics of a sample | |
US9110127B2 (en) | Apparatus and method for electrical characterization by selecting and adjusting the light for a target depth of a semiconductor | |
US5581194A (en) | Method and apparatus for passive optical characterization of semiconductor substrates subjected to high energy (MEV) ion implantation using high-injection surface photovoltage | |
US5977788A (en) | Elevated temperature measurement of the minority carrier lifetime in the depletion layer of a semiconductor wafer | |
Shinagawa et al. | An automated electro-optic probing system for ultra-high-speed IC's | |
TWI245356B (en) | Method for inspecting semiconductor device | |
US6501260B1 (en) | Bar tester | |
US6326220B1 (en) | Method for determining near-surface doping concentration | |
US5309088A (en) | Measurement of semiconductor parameters at cryogenic temperatures using a spring contact probe | |
US6521479B1 (en) | Repackaging semiconductor IC devices for failure analysis | |
US4786864A (en) | Photon assisted tunneling testing of passivated integrated circuits | |
JPS62190737A (en) | Low temperature auto-prober | |
US4875004A (en) | High speed semiconductor characterization technique | |
Martin et al. | A fast Wafer Level Reliability (fWLR) Monitoring concept as a continuous reliability indicator for wafer mass production | |
JP2006073572A (en) | Semiconductor crystal defect testing method and equipment thereof, and semiconductor device manufacturing method using the semiconductor crystal defect testing equipment | |
JP2913344B2 (en) | An inspection device and an inspection method for a semiconductor element. | |
US20230305057A1 (en) | Wafer level electron beam prober | |
Koyama et al. | Novel variable‐temperature chuck for use in the detection of deep levels in processed semiconductor wafers | |
JPS62190844A (en) | Low temperature prober |