JPS6218923B2 - - Google Patents

Info

Publication number
JPS6218923B2
JPS6218923B2 JP55056546A JP5654680A JPS6218923B2 JP S6218923 B2 JPS6218923 B2 JP S6218923B2 JP 55056546 A JP55056546 A JP 55056546A JP 5654680 A JP5654680 A JP 5654680A JP S6218923 B2 JPS6218923 B2 JP S6218923B2
Authority
JP
Japan
Prior art keywords
temperature
control voltage
voltage
dfa
variable resistor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55056546A
Other languages
Japanese (ja)
Other versions
JPS56153809A (en
Inventor
Takuro Oguchi
Shinichi Murai
Zenichi Oosawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP5654680A priority Critical patent/JPS56153809A/en
Priority to EP81301812A priority patent/EP0039215B1/en
Priority to DE8383111066T priority patent/DE3176043D1/en
Priority to DE8383111065T priority patent/DE3176289D1/en
Priority to EP83111065A priority patent/EP0108408B1/en
Priority to EP83111066A priority patent/EP0108409B1/en
Priority to DE8181301812T priority patent/DE3171674D1/en
Priority to US06/257,551 priority patent/US4352053A/en
Publication of JPS56153809A publication Critical patent/JPS56153809A/en
Publication of JPS6218923B2 publication Critical patent/JPS6218923B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05FSYSTEMS FOR REGULATING ELECTRIC OR MAGNETIC VARIABLES
    • G05F1/00Automatic systems in which deviations of an electric quantity from one or more predetermined values are detected at the output of the system and fed back to a device within the system to restore the detected quantity to its predetermined value or values, i.e. retroactive systems
    • G05F1/10Regulating voltage or current
    • G05F1/46Regulating voltage or current wherein the variable actually regulated by the final control device is dc
    • G05F1/462Regulating voltage or current wherein the variable actually regulated by the final control device is dc as a function of the requirements of the load, e.g. delay, temperature, specific voltage/current characteristic
    • G05F1/463Sources providing an output which depends on temperature
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03LAUTOMATIC CONTROL, STARTING, SYNCHRONISATION, OR STABILISATION OF GENERATORS OF ELECTRONIC OSCILLATIONS OR PULSES
    • H03L1/00Stabilisation of generator output against variations of physical values, e.g. power supply
    • H03L1/02Stabilisation of generator output against variations of physical values, e.g. power supply against variations of temperature only
    • H03L1/022Stabilisation of generator output against variations of physical values, e.g. power supply against variations of temperature only by indirect stabilisation, i.e. by generating an electrical correction signal which is a function of the temperature
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03BGENERATION OF OSCILLATIONS, DIRECTLY OR BY FREQUENCY-CHANGING, BY CIRCUITS EMPLOYING ACTIVE ELEMENTS WHICH OPERATE IN A NON-SWITCHING MANNER; GENERATION OF NOISE BY SUCH CIRCUITS
    • H03B5/00Generation of oscillations using amplifier with regenerative feedback from output to input
    • H03B5/30Generation of oscillations using amplifier with regenerative feedback from output to input with frequency-determining element being electromechanical resonator
    • H03B5/32Generation of oscillations using amplifier with regenerative feedback from output to input with frequency-determining element being electromechanical resonator being a piezoelectric resonator
    • H03B5/36Generation of oscillations using amplifier with regenerative feedback from output to input with frequency-determining element being electromechanical resonator being a piezoelectric resonator active element in amplifier being semiconductor device
    • H03B5/362Generation of oscillations using amplifier with regenerative feedback from output to input with frequency-determining element being electromechanical resonator being a piezoelectric resonator active element in amplifier being semiconductor device the amplifier being a single transistor
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03BGENERATION OF OSCILLATIONS, DIRECTLY OR BY FREQUENCY-CHANGING, BY CIRCUITS EMPLOYING ACTIVE ELEMENTS WHICH OPERATE IN A NON-SWITCHING MANNER; GENERATION OF NOISE BY SUCH CIRCUITS
    • H03B5/00Generation of oscillations using amplifier with regenerative feedback from output to input
    • H03B5/30Generation of oscillations using amplifier with regenerative feedback from output to input with frequency-determining element being electromechanical resonator
    • H03B5/32Generation of oscillations using amplifier with regenerative feedback from output to input with frequency-determining element being electromechanical resonator being a piezoelectric resonator
    • H03B5/36Generation of oscillations using amplifier with regenerative feedback from output to input with frequency-determining element being electromechanical resonator being a piezoelectric resonator active element in amplifier being semiconductor device
    • H03B5/366Generation of oscillations using amplifier with regenerative feedback from output to input with frequency-determining element being electromechanical resonator being a piezoelectric resonator active element in amplifier being semiconductor device and comprising means for varying the frequency by a variable voltage or current
    • H03B5/368Generation of oscillations using amplifier with regenerative feedback from output to input with frequency-determining element being electromechanical resonator being a piezoelectric resonator active element in amplifier being semiconductor device and comprising means for varying the frequency by a variable voltage or current the means being voltage variable capacitance diodes

Description

【発明の詳細な説明】 本発明は、所望の温度特性の制御電圧を出力す
る制御電圧発生回路に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a control voltage generation circuit that outputs a control voltage with desired temperature characteristics.

増幅器や発振器等の電子回路は、周囲温度の変
化によつて利得や発振周波数等の特性が変化する
ものであり、従つて温度補償手段を付加して周囲
温度の変化によつても特性が変化しないようにす
るのが一般的である。このような温度補償手段
は、例えばサーミスタにより構成し、温度変化に
対応してバイアス電圧等の制御電圧を変化させる
ことが考えられるが、電子回路の温度特性が直線
的でないことにより、完全な温度補償は困難であ
つた。
Electronic circuits such as amplifiers and oscillators have characteristics such as gain and oscillation frequency that change due to changes in ambient temperature. Therefore, temperature compensation means can be added to prevent the characteristics from changing due to changes in ambient temperature. It is common practice to avoid this. Such a temperature compensation means may be configured with a thermistor, for example, and change a control voltage such as a bias voltage in response to temperature changes, but since the temperature characteristics of electronic circuits are not linear, Compensation was difficult.

又完全な温度補償を施す場合は、電子回路の特
性を種々の周囲温度で測定し、測定温度点に於け
る特性が一定となるように、バイアス電圧等の制
御電圧を設定することになるが、例えば常温を基
準温度として制御電圧を設定し、基準温度に於け
る特性と他の測定温度点に於ける特性が等しくな
るように制御電圧を設定する為の調整を行なう
と、先に設定した基準温度に於ける制御電圧が変
化することになる。即ち各調整温度点に於ける制
御電圧の設定を独立的に行なうことができないの
で、調整が煩雑になる欠点があつた。
In addition, when performing complete temperature compensation, the characteristics of the electronic circuit must be measured at various ambient temperatures, and control voltages such as bias voltages must be set so that the characteristics at the measurement temperature point are constant. For example, if you set the control voltage using room temperature as the reference temperature, and make adjustments to set the control voltage so that the characteristics at the reference temperature and the characteristics at other measured temperature points are equal, the previously set The control voltage at the reference temperature will change. That is, since it is not possible to independently set the control voltage at each adjustment temperature point, there is a drawback that the adjustment becomes complicated.

本発明は、前述の従来の欠点を改善したもの
で、バイアス電圧等の制御電圧を各調整温度点に
於いて独立的に設定し、所望の温度特性の制御電
圧を発生し得るようにすることを目的とするもの
である。以下実施例について詳細に説明する。
The present invention improves the above-mentioned conventional drawbacks by independently setting control voltages such as bias voltages at each adjustment temperature point, and making it possible to generate control voltages with desired temperature characteristics. The purpose is to Examples will be described in detail below.

第1図は本発明の一実施例の回路図であり、
R1〜R8は抵抗、Sは負特性感温抵抗即ちサーミ
スタ、Pは正特性感温抵抗即ちポジスタ、D1
D2はダイオード、DFA1,DFA2は差動増幅器、
RV1〜RV3は可変抵抗、OPAは演算増幅器、
OUTは制御電圧の出力端子、+V,−Vは電源電
圧である。演算増幅器OPAの正入力端子には抵
抗R7,R8により分圧された一定の電圧が加えら
れ、負入力端子には抵抗R3〜R5を介して可変抵
抗RV1〜RV3により調整された電圧が加えられ
て、加算回路を構成している。
FIG. 1 is a circuit diagram of an embodiment of the present invention,
R 1 to R 8 are resistors, S is a negative temperature sensitive resistor or thermistor, P is a positive temperature sensitive resistor or positor, D 1 ,
D 2 is a diode, DFA 1 and DFA 2 are differential amplifiers,
RV 1 to RV 3 are variable resistors, OPA is an operational amplifier,
OUT is a control voltage output terminal, and +V and -V are power supply voltages. A constant voltage divided by resistors R 7 and R 8 is applied to the positive input terminal of the operational amplifier OPA, and the voltage is adjusted by variable resistors RV 1 to RV 3 via resistors R 3 to R 5 to the negative input terminal. The added voltage is added to form an adder circuit.

又差動増幅器DFA1,DFA2の出力が可変抵抗
RV1,RV3に加えられ、可変抵抗RV1,RV3によ
つて調整された電圧が可変抵抗RV2によつて調整
された電圧と加算される。例えば常温を基準温度
とし、基準温度に於けるサーミスタSの抵抗値と
抵抗R1とが等しく、又ポジスタPの抵抗値と抵
抗R2とが等しいとすると、a点及びb点は零電
位となり、差動増幅器DFA1,DFA2の出力は零
となる。従つて可変抵抗RV2によつて調整した電
圧に比例した制御電圧が出力される。即ち基準温
度に於いては可変抵抗RV2によつて制御電圧を設
定することができる。
Also, the outputs of differential amplifiers DFA 1 and DFA 2 are variable resistors.
The voltage applied to RV 1 and RV 3 and adjusted by variable resistors RV 1 and RV 3 is added to the voltage adjusted by variable resistor RV 2 . For example, if room temperature is the reference temperature, and the resistance value of the thermistor S and the resistance R 1 at the reference temperature are equal, and the resistance value of the POSISTOR P and the resistance R 2 are equal, then points a and b have zero potential. , the outputs of the differential amplifiers DFA 1 and DFA 2 become zero. Therefore, a control voltage proportional to the voltage adjusted by variable resistor RV 2 is output. That is, at the reference temperature, the control voltage can be set by the variable resistor RV2 .

基準温度より高い高温に於いては、サーミスタ
Sの抵抗値が小さくなり、a点の電位が負の或る
大きさとなるので、差動増幅器DFA1の出力はa
点の電位に対応したものとなる。従つて可変抵抗
RV1の調整によつて差動増幅器DFA1の出力電圧
が分圧されて、可変抵抗RV2により調整された電
圧に加算される。即ち高温に於ける制御電圧を可
変抵抗RV1によつて設定できることになる。なお
ポジスタPの抵抗値は大きくなつてb点の電位は
正の或る大きさとなるが、ダイオードD2により
阻止されて、差動増幅器DFA2の出力は零のまま
となる。
At a high temperature higher than the reference temperature, the resistance value of the thermistor S decreases and the potential at point a becomes negative to a certain extent, so the output of the differential amplifier DFA 1 becomes a
It corresponds to the potential at the point. Therefore variable resistance
By adjusting RV 1 , the output voltage of differential amplifier DFA 1 is divided and added to the voltage adjusted by variable resistor RV 2 . In other words, the control voltage at high temperatures can be set by the variable resistor RV1 . Note that the resistance value of the posistor P increases and the potential at point b becomes positive to a certain extent, but this is blocked by the diode D2 and the output of the differential amplifier DFA2 remains zero.

又基準温度より低い低温に於いては、サーミス
タSの抵抗値が大きくなつてa点の電位は正の或
る大きさとなるが、ダイオードD1により阻止さ
れて差動増幅器DFA1の出力は零となり、ポジス
タPの抵抗値は小さくなるからb点の電位は負の
或る大きさとなり、差動増幅器DFA2の出力電圧
はb点の電位に対応した大きさとなる。従つて可
変抵抗RV3により分圧された電圧が可変抵抗RV2
により調整された電圧に加算されるから、低温に
於いては可変抵抗RV3によつて制御電圧を設定す
ることができる。
Also, at a low temperature lower than the reference temperature, the resistance value of the thermistor S increases and the potential at point a becomes positive to a certain extent, but this is blocked by the diode D1 and the output of the differential amplifier DFA1 becomes zero. Since the resistance value of the POSISTOR P becomes small, the potential at point b becomes a certain negative magnitude, and the output voltage of the differential amplifier DFA 2 becomes a magnitude corresponding to the potential at point b. Therefore, the voltage divided by variable resistor RV 3 is applied to variable resistor RV 2
Since it is added to the voltage regulated by , the control voltage can be set by the variable resistor RV 3 at low temperatures.

第2図は制御電圧の設定範囲の説明図であり、
基準温度をtbとすると、基準温度tbに於いて制御
電圧をVG1に設定することにより低温ta及び高温
tcの温度範囲では実線で示すように制御電圧の設
定範囲が得られ、又基準温度tbに於ける制御電圧
をVG2に設定すると、点線で示すように制御電圧
の設定範囲が得られる。そして各調整温度点での
制御電圧は独立的に設定できるものとなる。
FIG. 2 is an explanatory diagram of the setting range of the control voltage,
If the reference temperature is tb, by setting the control voltage to V G1 at the reference temperature tb, the low temperature ta and high temperature can be changed.
In the temperature range tc, the control voltage setting range is obtained as shown by the solid line, and when the control voltage at the reference temperature tb is set to V G2 , the control voltage setting range is obtained as shown by the dotted line. The control voltage at each adjustment temperature point can be set independently.

第3図は本発明の他の実施例の回路図であり、
第1図のポジスタPを抵抗R12に、又抵抗R2をサ
ーミスタS2に置換した構成に相当し、サーミスタ
S1,S2は同一の抵抗温度特性のものを用いること
もできる。この実施例に於いても、a点及びb点
の電位が温度によつて変化するので、基準温度に
於ける制御電圧を可変抵抗RV2により設定した
後、高温に於ける制御電圧は可変抵抗RV1によ
り、又低温に於ける制御電圧は可変抵抗RV3によ
りそれぞれ設定することができる。
FIG. 3 is a circuit diagram of another embodiment of the present invention,
This corresponds to the configuration in which the POSISTOR P in Fig. 1 is replaced with a resistor R 12 , and the resistor R 2 is replaced with a thermistor S 2 .
S 1 and S 2 may have the same resistance temperature characteristics. In this embodiment as well, since the potentials at points a and b change depending on the temperature, the control voltage at the reference temperature is set by the variable resistor RV 2 , and then the control voltage at the high temperature is set by the variable resistor RV2. The control voltage at low temperatures can be set by means of RV 1 and by variable resistor RV 3 respectively.

又サーミスタS1,S2の代わりにそれぞれポジス
タを接続することもできるもので、その場合は高
温に於ける制御電圧は可変抵抗RV3により、又低
温に於ける制御電圧は可変抵抗RV1によりそれぞ
れ設定することができる。又基準温度に於ける制
御電圧を設定する可変抵抗RV2を固定の分圧回路
とし、演算増幅器OPAの正入力端子に可変抵抗
による可変分圧回路を接続して、基準温度に於け
る制御電圧を設定する構成とすることもできる。
又ダイオードD1,D2の接続極性を反対にすれば
高温に於ける設定が低温に於ける設定となるよう
に調整温度点の関係が高低反転する。又サーミス
タ及びポジスタの抵抗温度特性に応じてダイオー
ドD1,D2を省略することも可能である。
It is also possible to connect a POSISTOR in place of the thermistors S 1 and S 2. In that case, the control voltage at high temperatures is controlled by variable resistor RV 3 , and the control voltage at low temperatures is controlled by variable resistor RV 1. Each can be set. In addition, the variable resistor RV 2 that sets the control voltage at the reference temperature is a fixed voltage divider circuit, and the positive input terminal of the operational amplifier OPA is connected to a variable voltage divider circuit with a variable resistor to set the control voltage at the reference temperature. It is also possible to configure a configuration in which .
If the connection polarities of the diodes D 1 and D 2 are reversed, the relationship between the adjusted temperature points is reversed so that the setting at a high temperature becomes the setting at a low temperature. It is also possible to omit the diodes D 1 and D 2 depending on the resistance-temperature characteristics of the thermistor and posistor.

第4図は本発明の更に他の実施例の回路図であ
り、前述の各実施例が基準温度と低温及び高温の
3点の調整温度点を有するのに対し、この実施例
は基準温度と第1,第2の低温及び第1,第2の
高温の5点の調整温度点を有するものである。同
図に於いて、S11,S12はサーミスタ、P11,P12
ポジスタ、R13〜R24は抵抗、DFA11〜DFA14は差
動増幅器、RV11〜RV15は可変抵抗、OPA1は演算
増幅器、OUTは制御電圧の出力端子、+V,−V
は電源電圧である。サーミスタS11,S12はそれぞ
れ抵抗温度特性を相違させるか、或は同一の抵抗
温度特性の場合、組合せる抵抗R13,R14の値を異
つたものとする。又ポジスタP11,P12についても
同様に抵抗温度特性を相違させるか組合せる抵抗
R15,R16の値を異つたものとする。従つてa〜d
点の電位は各調整温度点に於いて相違し、例えば
差動増幅器DFA11〜DFA14の差動出力電圧の温度
による変化を第5図のVa〜Vdに示すように選定
する。
FIG. 4 is a circuit diagram of still another embodiment of the present invention, and while each of the embodiments described above has three adjustment temperature points: a reference temperature, a low temperature, and a high temperature, this embodiment has a reference temperature and three adjustment temperature points. It has five adjustment temperature points: first and second low temperatures and first and second high temperatures. In the figure, S 11 and S 12 are thermistors, P 11 and P 12 are posistors, R 13 to R 24 are resistors, DFA 11 to DFA 14 are differential amplifiers, RV 11 to RV 15 are variable resistors, and OPA 1 is operational amplifier, OUT is control voltage output terminal, +V, -V
is the power supply voltage. The thermistors S 11 and S 12 have different resistance-temperature characteristics, or if they have the same resistance-temperature characteristics, the values of the combined resistors R 13 and R 14 are different. Similarly, for POSISTORs P 11 and P 12 , the resistance temperature characteristics are different or the resistances are combined.
Let the values of R 15 and R 16 be different. Therefore a~d
The potentials at the points are different at each adjustment temperature point, and for example, the temperature-dependent changes in the differential output voltages of the differential amplifiers DFA 11 to DFA 14 are selected as shown in Va to Vd in FIG.

第5図に於ける温度t3を基準温度とすると、基
準温度に於ける制御電圧は可変抵抗RV13により
設定することができ、基準温度t3より高い第1の
高温t4に於いては可変抵抗RV12により、又更に高
い第2の高温t5に於いては可変抵抗RV11によりそ
れぞれ制御電圧を設定することができる。又基準
温度t3より低い第1の低温t2に於いては可変抵抗
RV14により、又更に低い第2の低温t1に於いては
可変抵抗RV15によりそれぞれ制御電圧を設定す
ることができる。
If the temperature t 3 in FIG. 5 is the reference temperature, the control voltage at the reference temperature can be set by the variable resistor RV 13 , and at the first high temperature t 4 higher than the reference temperature t 3 . The control voltage can be set by variable resistor RV 12 and, at a second higher temperature t 5 , by variable resistor RV 11 respectively. Also, at the first low temperature t2 lower than the reference temperature t3 , the variable resistance
The control voltage can be set by means of RV 14 or, at a lower second temperature t 1 , by means of variable resistor RV 15 .

第6図は制御電圧の設定範囲の説明図であり、
基準温度t3に於ける制御電圧に対して、各温度
t1,t2,t4,t5に於ける正又は負の電圧が加算され
るものであるから、例えば第1の高温t4では基準
温度t3に於ける制御電圧より大きい制御電圧を出
力し、第2の高温t5では基準温度t3に於ける制御
電圧より小さい制御電圧を出力するように設定す
ることも可能となる。
FIG. 6 is an explanatory diagram of the control voltage setting range,
For the control voltage at the reference temperature t3 , each temperature
Since the positive or negative voltages at t 1 , t 2 , t 4 , and t 5 are added, for example, at the first high temperature t 4 , a control voltage higher than the control voltage at the reference temperature t 3 is applied. It is also possible to output a control voltage that is smaller than the control voltage at the reference temperature t 3 at the second high temperature t 5 .

第7図は本発明の更に他の実施例の回路図であ
り、それぞれ抵抗温度特性が異なるポジスタP21
〜P23とサーミスタS21〜S23を直列に接続して感
温回路を構成したものであつて、D21〜D23はダイ
オード、DFA21〜DFA23は差動増幅器、R25〜R33
は抵抗、RV21〜RV23は可変抵抗、OPA2は演算増
幅器、OUTは制御電圧の出力端子、+V,−Vは
電源電圧である。各感温回路の特性は例えば第8
図の曲線A,B,Cの如く、合成抵抗値が最小に
なる温度が異なるものである。この時のDFA21
DFA23の差動増幅器の入力電圧は、第9図A′,
B′,C′となり温度t1に於いては差動増幅器
DFA21,t2に於いては差動増幅器DFA22,t3に於
いては差動増幅器DFA23の出力がそれぞれ最大と
なり、温度t1,t2,t3に於いて可変抵抗RV21
RV22,RV23により、それぞれ独立に制御電圧を
設定することが可能となる。
FIG. 7 is a circuit diagram of still another embodiment of the present invention, in which each posistor P 21 has different resistance-temperature characteristics.
~ P23 and thermistors S21 ~ S23 are connected in series to form a temperature sensing circuit, where D21 ~ D23 are diodes, DFA21 ~ DFA23 are differential amplifiers, and R25 ~ R33
is a resistor, RV 21 to RV 23 are variable resistors, OPA 2 is an operational amplifier, OUT is a control voltage output terminal, and +V and -V are power supply voltages. The characteristics of each temperature sensing circuit are, for example,
As shown by curves A, B, and C in the figure, the temperatures at which the combined resistance value becomes minimum are different. DFA 21 at this time ~
The input voltage of the differential amplifier of DFA 23 is shown in Fig. 9A',
B′, C′ and at temperature t 1 , the differential amplifier
At DFA 21 and t 2 , the output of the differential amplifier DFA 22 and at t 3 the output of the differential amplifier DFA 23 becomes maximum, respectively, and at temperatures t 1 , t 2 , and t 3 , the output of the variable resistor RV 21 ,
RV 22 and RV 23 allow each control voltage to be set independently.

以上説明したように、本発明は、抵抗とサーミ
スタやポジスタ等の感温抵抗とにより分圧した電
圧を入力として差動出力電圧を可変抵抗RV1
RV3,RV11,RV12,RV14,RV15,RV21〜RV23
加える差動増幅器DFA1,DFA2,DFA11
DFA14,DFA21〜DFA23と、差動出力電圧を可変
抵抗によつて調整した電圧を合成する演算増幅器
OPA,OPA1,OPA2を備えたものであり、各調
整温度点に於ける制御電圧を独立的に設定できる
利点がある。従つて所望の温度特性の制御電圧を
容易に設定することができるものである。
As explained above, the present invention inputs a voltage divided by a resistor and a temperature-sensitive resistor such as a thermistor or a posistor, and outputs a differential output voltage to the variable resistor RV 1 ,
Differential amplifier DFA 1 , DFA 2 , DFA 11 to be added to RV 3 , RV 11 , RV 12 , RV 14 , RV 15 , RV 21 to RV 23
DFA 14 , DFA 21 to DFA 23 , and an operational amplifier that synthesizes the differential output voltage adjusted by a variable resistor.
It is equipped with OPA, OPA 1 and OPA 2 , and has the advantage that the control voltage at each adjustment temperature point can be set independently. Therefore, the control voltage for desired temperature characteristics can be easily set.

なお出力端子OUTに出力インピーダンス変換
用或は制御電圧の変化範囲の拡大用の増幅器を接
続することも可能であり、又ホトカプラ等を介し
て制御電圧を出力する構成を採用することができ
る。即ち制御電圧を加える回路の構成に対応した
制御電圧の出力回路を設けることができるもので
ある。
Note that it is also possible to connect an amplifier for converting the output impedance or for expanding the range of change of the control voltage to the output terminal OUT, and it is also possible to adopt a configuration in which the control voltage is output via a photocoupler or the like. That is, it is possible to provide a control voltage output circuit corresponding to the configuration of the circuit to which the control voltage is applied.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例の回路図、第2図は
制御電圧の設定範囲の説明図、第3図,第4図及
び第7図は本発明のそれぞれ異なる実施例の回路
図、第5図は第4図の差動増幅器の差動出力電圧
と温度との関係曲線図、第6図は第4図の制御電
圧の設定範囲の説明図、第8図は第7図のサーミ
スタとポジスタとの直列接続の感温回路の合成抵
抗値の温度特性曲線図。第9図は第7図に於ける
差動増幅器の入力電圧の温度特性曲線図である。 DFA1,DFA2,DFA11〜DFA14,DFA21
DFA23は差動増幅器、RV1〜RV3,RV11〜RV15
RV21〜RV23は可変抵抗、OPA,OPA1,OPA2
演算増幅器、D1,D2,D21〜D23はダイオード、
S,S1,S11,S12,S21〜S23はサーミスタ、P,
P11,P12,P21〜P23はポジスタ、OUTは出力端子
である。
FIG. 1 is a circuit diagram of an embodiment of the present invention, FIG. 2 is an explanatory diagram of a control voltage setting range, FIGS. 3, 4, and 7 are circuit diagrams of different embodiments of the present invention, Figure 5 is a relationship curve between the differential output voltage and temperature of the differential amplifier in Figure 4, Figure 6 is an explanatory diagram of the setting range of the control voltage in Figure 4, and Figure 8 is the thermistor in Figure 7. FIG. 2 is a diagram showing the temperature characteristic curve of the combined resistance value of a thermosensing circuit connected in series with a POSISTOR. FIG. 9 is a temperature characteristic curve diagram of the input voltage of the differential amplifier in FIG. 7. DFA 1 , DFA 2 , DFA 11 ~ DFA 14 , DFA 21 ~
DFA 23 is a differential amplifier, RV 1 ~ RV 3 , RV 11 ~ RV 15 ,
RV 21 to RV 23 are variable resistors, OPA, OPA 1 , OPA 2 are operational amplifiers, D 1 , D 2 , D 21 to D 23 are diodes,
S, S 1 , S 11 , S 12 , S 21 to S 23 are thermistors, P,
P 11 , P 12 , P 21 to P 23 are posistors, and OUT is an output terminal.

Claims (1)

【特許請求の範囲】[Claims] 1 抵抗と感温抵抗とにより分圧した電圧を入力
とし、差動出力電圧を可変抵抗に加える複数の差
動増幅器、前記可変抵抗によつて調整した電圧を
合成して制御電圧とする演算回路とを備えたこと
を特徴とする制御電圧発生回路。
1. A plurality of differential amplifiers that input a voltage divided by a resistor and a temperature-sensitive resistor and apply a differential output voltage to a variable resistor, and an arithmetic circuit that synthesizes the voltage adjusted by the variable resistor to obtain a control voltage. A control voltage generation circuit comprising:
JP5654680A 1980-04-28 1980-04-28 Control voltage generating circuit Granted JPS56153809A (en)

Priority Applications (8)

Application Number Priority Date Filing Date Title
JP5654680A JPS56153809A (en) 1980-04-28 1980-04-28 Control voltage generating circuit
EP81301812A EP0039215B1 (en) 1980-04-28 1981-04-24 Temperature compensating voltage generator circuit
DE8383111066T DE3176043D1 (en) 1980-04-28 1981-04-24 Temperature compensating voltage generator circuit
DE8383111065T DE3176289D1 (en) 1980-04-28 1981-04-24 Temperature compensating voltage generator circuit
EP83111065A EP0108408B1 (en) 1980-04-28 1981-04-24 Temperature compensating voltage generator circuit
EP83111066A EP0108409B1 (en) 1980-04-28 1981-04-24 Temperature compensating voltage generator circuit
DE8181301812T DE3171674D1 (en) 1980-04-28 1981-04-24 Temperature compensating voltage generator circuit
US06/257,551 US4352053A (en) 1980-04-28 1981-04-27 Temperature compensating voltage generator circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5654680A JPS56153809A (en) 1980-04-28 1980-04-28 Control voltage generating circuit

Publications (2)

Publication Number Publication Date
JPS56153809A JPS56153809A (en) 1981-11-28
JPS6218923B2 true JPS6218923B2 (en) 1987-04-25

Family

ID=13030082

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5654680A Granted JPS56153809A (en) 1980-04-28 1980-04-28 Control voltage generating circuit

Country Status (1)

Country Link
JP (1) JPS56153809A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0618012B2 (en) * 1983-01-25 1994-03-09 セイコーエプソン株式会社 Constant voltage circuit

Also Published As

Publication number Publication date
JPS56153809A (en) 1981-11-28

Similar Documents

Publication Publication Date Title
US3967188A (en) Temperature compensation circuit for sensor of physical variables such as temperature and pressure
US5053692A (en) Temperature dependent power supply for use with a bridge transducer
JPS6144242B2 (en)
JPH02210272A (en) Power supply circuit and output compensating circuit for bridge type measuring device furnished with aforementioned circuit
JP3233946B2 (en) Approximate cubic function generator, temperature-compensated crystal oscillation circuit using the same, and temperature compensation method
EP0104770B1 (en) Temperature-dependent voltage generator circuitry
US4109196A (en) Resistance measuring circuit
JPH07141039A (en) Temperature compensating voltage generating circuit
US8556506B2 (en) Temperature-current transducer
US4196382A (en) Physical quantities electric transducers temperature compensation circuit
JPS59107612A (en) Constant current device
JP3435501B2 (en) Temperature compensation circuit
JPS6218923B2 (en)
US6725166B1 (en) Flow pickup circuit
US4591796A (en) Performance predictable linearizing or function modifying circuit
JPS6218924B2 (en)
US3528022A (en) Temperature compensating networks
JPS63187672A (en) Apd bias circuit
JP2975411B2 (en) Temperature compensated piezoelectric oscillator
JPS6122766B2 (en)
JP2702407B2 (en) Temperature compensation circuit
JPS6116605A (en) Variable gain amplifying circuit
JP3420946B2 (en) Gain control device and gain control method
JPS6218925B2 (en)
JPH0238994B2 (en) 2SENSHIKI DENSOKI