JP2702407B2 - Temperature compensation circuit - Google Patents

Temperature compensation circuit

Info

Publication number
JP2702407B2
JP2702407B2 JP6161967A JP16196794A JP2702407B2 JP 2702407 B2 JP2702407 B2 JP 2702407B2 JP 6161967 A JP6161967 A JP 6161967A JP 16196794 A JP16196794 A JP 16196794A JP 2702407 B2 JP2702407 B2 JP 2702407B2
Authority
JP
Japan
Prior art keywords
voltage
temperature
inverting amplifier
output
amplifier
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP6161967A
Other languages
Japanese (ja)
Other versions
JPH0832357A (en
Inventor
直実 志賀
Original Assignee
福島日本電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 福島日本電気株式会社 filed Critical 福島日本電気株式会社
Priority to JP6161967A priority Critical patent/JP2702407B2/en
Publication of JPH0832357A publication Critical patent/JPH0832357A/en
Application granted granted Critical
Publication of JP2702407B2 publication Critical patent/JP2702407B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は温度変動がある装置の温
度補償を行うために温度変化対応の温度補償電圧を生じ
る温度補償回路に関し、特に温度に必らずしも比例しな
い温度補償電圧を必要とする装置用に適する温度補償回
路に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a temperature compensating circuit for generating a temperature compensating voltage corresponding to a temperature change in order to perform temperature compensation of a device having a temperature fluctuation, and more particularly to a temperature compensating circuit which is not necessarily proportional to the temperature. The present invention relates to a temperature compensation circuit suitable for a required device.

【0002】[0002]

【従来の技術】従来のこの種の温度補償回路が、公開特
許公報,昭63−296506号に開示されている。こ
の温度補償回路は、増幅器の利得変動を補正するための
電圧制御形の可変減衰器に印加する温度補償電圧を発生
させるために、温度変化に応じて変化する電圧を出力す
る可変電圧発生手段と、温度変化にかかわらず常に一定
の電圧を発生する定電圧発生手段と、ある一定の温度範
囲においては上記可変電圧発生手段の出力電圧を温度補
償電圧としこの温度範囲以外の温度では上記定電圧発生
手段の出力電圧を温度補償電圧とする切換回路とを有す
る。
2. Description of the Related Art A conventional temperature compensating circuit of this kind is disclosed in Japanese Patent Laid-Open Publication No. 63-296506. The temperature compensating circuit includes a variable voltage generating unit that outputs a voltage that changes according to a temperature change in order to generate a temperature compensation voltage to be applied to a voltage-controlled variable attenuator for correcting a gain variation of the amplifier. A constant voltage generating means for constantly generating a constant voltage regardless of a temperature change, and an output voltage of the variable voltage generating means as a temperature compensation voltage in a certain temperature range, and a constant voltage generation at a temperature outside this temperature range. A switching circuit for setting the output voltage of the means to a temperature compensation voltage.

【0003】[0003]

【発明が解決しようとする課題】上述した従来技術によ
る温度補償回路により生成される温度補償電圧は、温度
対上記温度補償電圧特性の屈曲点(つまり温度補償電圧
の変化率の変る温度である)が上記一定電圧で固定され
ており、上記屈曲点がそれぞれ異る多様な装置用として
は融通性に欠けるという欠点があった。
The temperature compensation voltage generated by the above-described prior art temperature compensation circuit is the inflection point of the temperature compensation voltage characteristic (that is, the temperature at which the rate of change of the temperature compensation voltage changes). However, there is a drawback that it is inflexible for various devices having different bending points, since the device is fixed at the above-mentioned constant voltage.

【0004】また、上記温度補償電圧の温度に対する変
化率(傾斜)を変化させるには、上記可変電圧発生手段
において、回路定数の微妙な調整を必要とするという欠
点があった。
Further, there is a disadvantage that the variable voltage generating means requires fine adjustment of circuit constants in order to change the rate of change (gradient) of the temperature compensation voltage with respect to temperature.

【0005】[0005]

【課題を解決するための手段】本発明の温度補償回路
は、温度上昇に伴って電圧が低下する第1電圧を生じる
感温素子と、前記第1電圧を反転増幅する第1反転増幅
器と、前記第1電圧が所定電圧以上の場合には前記所定
電圧対応の予め定めた電圧を生じるように前記第1電圧
を反転増幅する第2反転増幅器と、前記第1反転増幅器
の出力と前記第2反転増幅器の出力とを加算する加算器
とを備える。
According to the present invention, there is provided a temperature compensating circuit comprising: a temperature-sensitive element for generating a first voltage whose voltage decreases with a rise in temperature; a first inverting amplifier for inverting and amplifying the first voltage; A second inverting amplifier for inverting and amplifying the first voltage so as to generate a predetermined voltage corresponding to the predetermined voltage when the first voltage is equal to or higher than a predetermined voltage; an output of the first inverting amplifier; An adder for adding the output of the inverting amplifier.

【0006】前記温度補償回路の一つは、前記第1電圧
が所定電圧以下の場合には、前記第1反転増幅器と前記
第2反転増幅器とが、ほぼ同じ増幅度を有する構成をと
ることができる。
[0006] One of the temperature compensation circuits may be configured such that when the first voltage is equal to or lower than a predetermined voltage, the first inverting amplifier and the second inverting amplifier have substantially the same amplification. it can.

【0007】前記温度補償回路の別の一つは、前記感温
素子が、絶対温度にほぼ比例する前記第1電圧を生じ、
前記第2反転増幅器が、前記第1電圧を前記所定電圧以
下に制限する定電圧ダイオード回路を備え、前記加算器
が、第1反転増幅器の出力と前記第2反転増幅器の出力
とを反転加算する演算増幅器である構成をとることがで
きる。
Another one of the temperature compensation circuits is that the temperature-sensitive element generates the first voltage substantially proportional to an absolute temperature,
The second inverting amplifier includes a constant voltage diode circuit that limits the first voltage to the predetermined voltage or less, and the adder inverts and adds an output of the first inverting amplifier and an output of the second inverting amplifier. A configuration that is an operational amplifier can be employed.

【0008】[0008]

【実施例】次に本発明について図面を参照して説明す
る。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Next, the present invention will be described with reference to the drawings.

【0009】図1は本発明の一実施例の回路図である。
図2は本実施例の主要特性を示す図であり、(a)は多
段増幅器1の温度補償なしの場合の相対利得−温度特
性、(b)は感温素子2の出力電圧−温度特性、(c)
は可変減衰器13の相対減衰量−電圧特性、(d)は反
転増幅器4および5の出力電圧−温度特性、(e)は反
転増幅器3の出力電圧−温度特性、(f)は多段増幅器
1の相対出力−温度特性を示している。
FIG. 1 is a circuit diagram of one embodiment of the present invention.
FIGS. 2A and 2B are diagrams showing main characteristics of the present embodiment, wherein FIG. 2A shows a relative gain-temperature characteristic when the multistage amplifier 1 does not have temperature compensation, FIG. 2B shows an output voltage-temperature characteristic of the temperature sensitive element 2, and FIG. (C)
Is the relative attenuation-voltage characteristic of the variable attenuator 13, (d) is the output voltage-temperature characteristic of the inverting amplifiers 4 and 5, (e) is the output voltage-temperature characteristic of the inverting amplifier 3, and (f) is the multistage amplifier 1. 5 shows the relative output-temperature characteristics of FIG.

【0010】図1および図2を併せ参照すると、本実施
例の多段増幅器1は、入力端子1から供給されたマイク
ロ波の入力信号Piを、温度変化による利得変動を補償
したうえ増幅し、出力端子16に出力信号Poを生じ
る。多段増幅器1は、入力端子11と出力端子16との
間に縦続接続した複数の増幅器12,14,…,15
と、これら増幅器間の適切な個所に設けられこれら増幅
器の利得温度補償を行う可変減衰器13とを備えてい
る。可変減衰器13は、温度補償電圧V3に制御されて
マイクロ波信号の減衰量を変化させ、多段増幅器1の利
得制御を行う。また、感温素子2と反転増幅器3,4お
よび5と定電圧ダイオード(ツェナーダイオード)D1
と抵抗器R1ないしR12とが、多段増幅器1の利得−
温度特性を温度補償してほぼ平坦にするのに適切な温度
補償電圧V3を生じる、温度補償回路を構成する。
Referring to FIGS. 1 and 2, a multi-stage amplifier 1 of this embodiment amplifies a microwave input signal Pi supplied from an input terminal 1 while compensating for a gain variation due to a temperature change, and outputs the amplified signal. An output signal Po is generated at the terminal 16. The multistage amplifier 1 includes a plurality of amplifiers 12, 14,..., 15 connected in cascade between an input terminal 11 and an output terminal 16.
And a variable attenuator 13 provided at an appropriate position between the amplifiers and performing gain temperature compensation of the amplifiers. The variable attenuator 13 changes the amount of attenuation of the microwave signal under the control of the temperature compensation voltage V3, and controls the gain of the multi-stage amplifier 1. Further, the temperature sensing element 2, the inverting amplifiers 3, 4 and 5, and the constant voltage diode (Zener diode) D1
And resistors R1 to R12 determine the gain of multi-stage amplifier 1.
A temperature compensating circuit for generating a temperature compensating voltage V3 suitable for temperature compensation of the temperature characteristic to make it substantially flat.

【0011】上記増幅器の増幅素子が、FET(電界効
果トランジスタ)である場合、これら増幅器の各各は、
−0.015dB/°C程度の利得−温度特性を有す
る。この利得−温度特性は、増幅器の設計によっては必
らずしも一次傾斜とならず、屈曲点を持った特性とな
る。図2(a)は、多段増幅器1中の20段の増幅器1
2,14,…,15のみ(つまり可変減衰器13を除い
た回路)の相対利得−温度特性を示している。この相対
利得−温度特性は、温度Tの−25°Cから0°Cの間
では−5dB/25°Cの一次傾斜を有し、0°Cを屈
曲点とし、0°Cから25°Cの間では−10dB/2
5°Cの一次傾斜を有する。また、可変減衰器13は、
PINダイオードを用いた電圧制御型の可変減衰器であ
り、図2(c)の相対減衰量−電圧特性に示す如く、
5.0Vから6.0Vの温度補償電圧V3範囲におい
て、20dB/1Vの一次傾斜の減衰量変化を示す。
When the amplifier element of the amplifier is an FET (field effect transistor), each of these amplifiers
It has gain-temperature characteristics of about -0.015 dB / ° C. This gain-temperature characteristic does not necessarily have a primary slope depending on the design of the amplifier, but has a characteristic having a bending point. FIG. 2A shows a 20-stage amplifier 1 in the multi-stage amplifier 1.
, 15 (that is, the circuit excluding the variable attenuator 13) shows the relative gain-temperature characteristics. This relative gain-temperature characteristic has a primary slope of −5 dB / 25 ° C. between -25 ° C. and 0 ° C. of the temperature T, where 0 ° C. is a bending point, and 0 ° C. to 25 ° C. -10dB / 2 between
It has a primary slope of 5 ° C. Also, the variable attenuator 13
This is a voltage-controlled variable attenuator using a PIN diode, and as shown in a relative attenuation-voltage characteristic of FIG.
In the temperature compensation voltage V3 range from 5.0 V to 6.0 V, the attenuation change of the primary slope of 20 dB / 1 V is shown.

【0012】従って、多段増幅器1の出力端子16にお
いて図2(f)に示すような平坦な利得−温度特性の相
対出力ΔPoを得るためには、可変減衰器12に印加す
る温度補償電圧V3の出力電圧−温度特性を、図2
(e)に示す如き−25°Cから0°Cの間が−0.2
5V/25°Cの一次傾斜,0°Cが屈曲点,0°Cか
ら25°Cの間が−0.5V/25°Cの一次傾斜にす
る必要がある。本実施例の温度補償回路は、図2(e)
の如き屈曲点を挟んで傾斜の異なる出力電圧−温度特性
の温度補償電圧V3を得る回路である。
Therefore, in order to obtain a flat relative output ΔPo having a gain-temperature characteristic at the output terminal 16 of the multistage amplifier 1 as shown in FIG. 2 (f), the temperature compensation voltage V 3 applied to the variable attenuator 12 must be adjusted. FIG. 2 shows the output voltage-temperature characteristics.
As shown in (e), the range between −25 ° C. and 0 ° C. is −0.2.
It is necessary to have a primary slope of 5V / 25 ° C, a bending point of 0 ° C, and a primary slope of -0.5V / 25 ° C between 0 ° C and 25 ° C. FIG. 2E shows the temperature compensation circuit of this embodiment.
And a circuit for obtaining a temperature compensation voltage V3 having an output voltage-temperature characteristic having different inclinations with respect to the inflection point.

【0013】本実施例の温度補償回路において、感温素
子2は、図2(b)に示す如く、温度T変化に対応する
第1電圧V2を生じる。この第1電圧V2は、温度上昇
に伴って電圧が低下し、−25°Cから25°Cの間で
−0.5V/50°C(=°K)の一次傾斜を示してい
る。この一次傾斜の第1電圧V2を生じる感温素子2と
しては、LM3911型Temperature Co
ntroller(National Semicon
ductor社製,アメリカ合衆国)がある。また、出
力電圧−温度特性が一次傾斜を示す第1電圧V2を得る
ためには、上記公報(第1図および第4図)に示された
如く、サーミスタ回路の出力電圧を演算増幅器等で反転
して用いることもできる。
In the temperature compensation circuit of this embodiment, the temperature sensing element 2 generates a first voltage V2 corresponding to a change in temperature T as shown in FIG. The first voltage V <b> 2 decreases as the temperature rises, and exhibits a primary slope of −0.5 V / 50 ° C. (= ° K) between −25 ° C. and 25 ° C. As the temperature sensing element 2 that generates the first voltage V2 having the primary slope, the LM3911 type Temperature Co.
ntroller (National Semiconductor)
ductor, USA). In order to obtain the first voltage V2 whose output voltage-temperature characteristic shows a primary slope, as shown in the above-mentioned publication (FIGS. 1 and 4), the output voltage of the thermistor circuit is inverted by an operational amplifier or the like. It can also be used.

【0014】第1電圧V2は、反転増幅器4および抵抗
器R5,R6,R7(以上、抵抗値1KΩ)からなる第
1反転増幅器の入力端と、反転増幅器5,抵抗器R8,
R9,R10,R11(以上、抵抗値1KΩ),R12
(抵抗値100KΩ)および定電圧ダイオードD1(ツ
ェナー電圧Vzは2.75V)からなる第2反転増幅器
の入力端とに供給される。ここで、反転増幅器4の−入
力端子には抵抗器R6を介して第1電圧V2がそのまま
印加されるが、反転増幅器5の−入力端子には、抵抗器
R11およびR9を介し、定電圧ダイオードD1により
ツェナー電圧Vz以上が電圧制限(クリップ)された第
1電圧V2が印加されることに留意されたい。なお、第
1電圧V2がツェナー電圧Vz以下の場合には、抵抗器
R11による第1電圧V2の電圧降下は無視できる程度
である。
The first voltage V2 is supplied to an input terminal of a first inverting amplifier comprising an inverting amplifier 4 and resistors R5, R6, and R7 (having a resistance value of 1 KΩ), an inverting amplifier 5, a resistor R8,
R9, R10, R11 (above, resistance value 1 KΩ), R12
(A resistance value of 100 KΩ) and a constant voltage diode D1 (zener voltage Vz is 2.75 V) and is supplied to an input terminal of a second inverting amplifier. Here, the first voltage V2 is directly applied to the minus input terminal of the inverting amplifier 4 via the resistor R6, while the minus voltage terminal is applied to the minus input terminal of the inverting amplifier 5 via the resistors R11 and R9. It should be noted that the first voltage V2 whose voltage is equal to or higher than the zener voltage Vz is clipped by D1. When the first voltage V2 is equal to or lower than the zener voltage Vz, the voltage drop of the first voltage V2 due to the resistor R11 is negligible.

【0015】上記第1反転増幅器および上記第2反転増
幅器は、第1電圧V2を増幅度1で反転増幅し、出力電
圧V4およびV5をそれぞれ出力する。但し、第1電圧
V2がツェナー電圧Vz以上の場合には、上記第2反転
増幅器は、入力された第1電圧V2がツェナー電圧Vz
でクリップされて−入力端子に印加されるため、ツェナ
ー電圧Vzの反転である一定電圧−2.75Vの出力電
圧V5を生じる(図2(d)参照)。この出力電圧V5
の出力電圧−温度特性は、温度T=0°C,つまりツェ
ナー電圧Vzの反転である−2.75Vにおいて屈曲点
がある。
The first inverting amplifier and the second inverting amplifier invert and amplify the first voltage V2 with an amplification factor of 1, and output output voltages V4 and V5, respectively. However, when the first voltage V2 is equal to or higher than the zener voltage Vz, the second inverting amplifier sets the input first voltage V2 to the zener voltage Vz.
And is applied to the-input terminal, thereby generating an output voltage V5 of a constant voltage of -2.75 V which is an inversion of the zener voltage Vz (see FIG. 2D). This output voltage V5
Has an inflection point at the temperature T = 0 ° C., that is, −2.75 V which is the inversion of the zener voltage Vz.

【0016】出力電圧V4とV5とは反転増幅器3およ
び抵抗器R1,R3,R4(以上、抵抗値2KΩ),R
2(抵抗値2KΩ)からなる加算器で加算され、この加
算器は温度補償電圧V3を生じる。つまり、抵抗器R3
を通った出力電圧V4と抵抗器R4を通った出力電圧V
5とは、共に、反転増幅器3の−入力端子に供給されて
加算されることになる。そして、反転増幅器3と抵抗器
R1とR2とが、増幅度−1の演算増幅器を構成し、図
2(e)に示す如き温度補償電圧V3を生じる。なお、
上記加算器の出力する温度補償電圧V3は、下記の式か
ら導かれる。但し、式中のR1,R3,R4の各各はそ
れぞれ同符号抵抗器の抵抗値を示す。
The output voltages V4 and V5 correspond to the inverting amplifier 3 and the resistors R1, R3, R4 (the resistance value is 2 KΩ), R
2 (a resistance value of 2 KΩ), and the adder generates a temperature compensation voltage V3. That is, the resistor R3
Output voltage V4 through resistor R4 and output voltage V4 through resistor R4
5 are supplied to the minus input terminal of the inverting amplifier 3 and added together. Then, the inverting amplifier 3 and the resistors R1 and R2 constitute an operational amplifier having an amplification degree of -1, and generate a temperature compensation voltage V3 as shown in FIG. In addition,
The temperature compensation voltage V3 output from the adder is derived from the following equation. Here, each of R1, R3, and R4 in the equation indicates the resistance value of the same sign resistor.

【0017】V4/R3+V5/R4=−V5/R1 故に、V5=−R1(V4/R3+V5/R4) 上述のとおり、可変減衰器13がこの温度補償電圧V3
によって減衰量制御される結果、多段増幅器1は、図2
(f)に示す如き、平坦な利得−温度特性の相対出力Δ
Poを示す出力信号Poを出力端子16に得ることがで
きる。なお、図2(e)に示した電圧V3xは定電圧ダ
イオードD1が省かれた場合の反転増幅器5の出力電圧
を示し、図2(f)に示した相対出力ΔPoxは電圧V
3xにより可変減衰器13を制御した場合の多段増幅器
1の出力端子16における相対出力を示す。このように
反転増幅器3からの出力電圧の温度特性に屈曲がない場
合には、温度Tの0°Cから25°Cまでを適切に温度
補償すると、逆に−25°Cから0°Cの範囲では過補
償になる。
V4 / R3 + V5 / R4 = -V5 / R1 Therefore, V5 = -R1 (V4 / R3 + V5 / R4) As described above, the variable attenuator 13 uses the temperature compensation voltage V3
As a result, the multi-stage amplifier 1
(F), the relative output Δ of flat gain-temperature characteristics
An output signal Po indicating Po can be obtained at the output terminal 16. The voltage V3x shown in FIG. 2E indicates the output voltage of the inverting amplifier 5 when the constant voltage diode D1 is omitted, and the relative output ΔPox shown in FIG.
The relative output at the output terminal 16 of the multistage amplifier 1 when the variable attenuator 13 is controlled by 3x is shown. As described above, when the temperature characteristic of the output voltage from the inverting amplifier 3 has no bending, if the temperature T is appropriately compensated from 0 ° C. to 25 ° C., on the contrary, the temperature from −25 ° C. to 0 ° C. In the range, it becomes overcompensated.

【0018】ここで、本実施例の第1反転増幅器,第2
反転増幅器および加算器の各各は、増幅度−1の反転増
幅器の例で説明したが、帰還用の抵抗器R5,R8およ
びR1等を適切に設定することによりこれら反転増幅器
の増幅度を変化させ、所望の温度対温度補償電圧特性
(傾斜)の温度補償電圧V3を容易に生成することがで
きる。また、温度補償電圧V3の屈曲点は、定電圧ダイ
オードD1のツェナー電圧Vzを変えることによって容
易に調整できる。
Here, the first inverting amplifier and the second
Each of the inverting amplifier and the adder has been described with reference to the example of the inverting amplifier having the amplification degree of -1. However, the amplification degree of these inverting amplifiers can be changed by appropriately setting the feedback resistors R5, R8, and R1. As a result, the temperature compensation voltage V3 having a desired temperature-temperature compensation voltage characteristic (gradient) can be easily generated. The inflection point of the temperature compensation voltage V3 can be easily adjusted by changing the zener voltage Vz of the constant voltage diode D1.

【0019】なお、本実施例では加算器は反転加算器を
用い,感温素子には負温度特性のものを用いたが、上記
加算器に正加算器を用いるか,感温素子2に上述のサー
ミスタ回路の如き正温度特性のものを用いると、温度対
温度補償特性が屈曲点に関して本実施例と逆の傾斜温度
補償電圧V3を得ることができる。
In this embodiment, an inverting adder is used as the adder and a negative temperature characteristic element is used as the temperature-sensitive element. However, a positive adder may be used as the adder or the temperature-sensitive element 2 may be used as described above. Using a thermistor circuit having a positive temperature characteristic such as the thermistor circuit described above, it is possible to obtain a gradient temperature compensation voltage V3 whose temperature versus temperature compensation characteristic is opposite to that of the present embodiment with respect to the inflection point.

【0020】[0020]

【発明の効果】以上説明したように本発明は、感温素子
が生じた第1電圧を第1反転増幅器および所定電圧以上
はこの所定電圧対応の電圧を生じる第2反転増幅器でそ
れぞれ反転増幅し、上記第1反転増幅器の出力と上記第
2反転増幅器の出力とを加算器で加算して温度補償電圧
を生じるので、所望の温度対温度補償電圧特性およびそ
の傾斜屈曲点を有する温度補償電圧を容易に生成するこ
とができるという効果がある。
As described above, according to the present invention, the first voltage generated by the temperature sensing element is inverted and amplified by the first inverting amplifier and the second inverting amplifier which generates a voltage corresponding to the predetermined voltage when the voltage is equal to or higher than the predetermined voltage. Since the output of the first inverting amplifier and the output of the second inverting amplifier are added by an adder to generate a temperature compensation voltage, a temperature compensation voltage having a desired temperature-temperature compensation voltage characteristic and its slope inflection point can be obtained. There is an effect that it can be easily generated.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施例の回路図である。FIG. 1 is a circuit diagram of one embodiment of the present invention.

【図2】本実施例の主要特性を示す図であり、(a)は
多段増幅器1の温度補償なしの場合の相対利得−温度特
性、(b)は感温素子2の出力電圧−温度特性、(c)
は可変減衰器13の相対減衰量−電圧特性、(d)は反
転増幅器4および5の出力電圧−温度特性、(e)は反
転増幅器3の出力電圧−温度特性、(f)は多段増幅器
1の相対出力−温度特性を示している。
FIGS. 2A and 2B are diagrams showing main characteristics of the present embodiment, in which FIG. 2A shows a relative gain-temperature characteristic when the multistage amplifier 1 does not have temperature compensation, and FIG. 2B shows an output voltage-temperature characteristic of the thermosensitive element 2; , (C)
Is a relative attenuation-voltage characteristic of the variable attenuator 13, (d) is an output voltage-temperature characteristic of the inverting amplifiers 4 and 5, (e) is an output voltage-temperature characteristic of the inverting amplifier 3, and (f) is a multistage amplifier 1. 5 shows the relative output-temperature characteristics of FIG.

【符号の説明】[Explanation of symbols]

1 多段増幅器 2 感温素子 3〜5 反転増幅回路 11 入力端子 12,14,15 増幅器 13 可変減衰器 16 出力端子 R1〜R12 抵抗器 D1 定電圧ダイオード DESCRIPTION OF SYMBOLS 1 Multistage amplifier 2 Temperature sensing element 3-5 Inverting amplifier circuit 11 Input terminal 12,14,15 Amplifier 13 Variable attenuator 16 Output terminal R1-R12 Resistor D1 Constant voltage diode

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 温度変化に対応する第1電圧を生じる感
温素子と、前記第1電圧を反転増幅する第1反転増幅器
と、前記第1電圧が所定電圧以上の場合には前記所定電
圧対応の予め定めた電圧を生じるように前記第1電圧を
反転増幅する第2反転増幅器と、前記第1反転増幅器の
出力と前記第2反転増幅器の出力とを加算する加算器と
を備えることを特徴とする温度補償回路。
1. A temperature-sensitive element for generating a first voltage corresponding to a temperature change, a first inverting amplifier for inverting and amplifying the first voltage, and, when the first voltage is equal to or higher than a predetermined voltage, corresponding to the predetermined voltage. A second inverting amplifier for inverting and amplifying the first voltage so as to generate the predetermined voltage, and an adder for adding an output of the first inverting amplifier and an output of the second inverting amplifier. Temperature compensation circuit.
【請求項2】 前記第1電圧が前記所定電圧以下の場合
には、前記第1反転増幅器と前記第2反転増幅器とが、
ほぼ同じ増幅度を有することを特徴とする請求項1記載
の温度補償回路。
2. When the first voltage is equal to or less than the predetermined voltage, the first inverting amplifier and the second inverting amplifier include:
2. The temperature compensation circuit according to claim 1, wherein the temperature compensation circuit has substantially the same amplification degree.
【請求項3】 前記感温素子が、温度上昇に伴って電圧
が低下する前記第1電圧を生じ、 前記第2反転増幅器が、前記第1電圧を前記所定電圧以
下に制限する定電圧ダイオード回路を備え、 前記加算器が、第1反転増幅器の出力と前記第2反転増
幅器の出力とを反転加算する演算増幅器であることを特
徴とする請求項1記載の温度補償回路。
3. The constant-voltage diode circuit, wherein the temperature-sensitive element generates the first voltage whose voltage decreases as the temperature rises, and wherein the second inverting amplifier limits the first voltage to the predetermined voltage or less. The temperature compensating circuit according to claim 1, wherein the adder is an operational amplifier that inverts and adds the output of the first inverting amplifier and the output of the second inverting amplifier.
JP6161967A 1994-07-14 1994-07-14 Temperature compensation circuit Expired - Fee Related JP2702407B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6161967A JP2702407B2 (en) 1994-07-14 1994-07-14 Temperature compensation circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6161967A JP2702407B2 (en) 1994-07-14 1994-07-14 Temperature compensation circuit

Publications (2)

Publication Number Publication Date
JPH0832357A JPH0832357A (en) 1996-02-02
JP2702407B2 true JP2702407B2 (en) 1998-01-21

Family

ID=15745488

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6161967A Expired - Fee Related JP2702407B2 (en) 1994-07-14 1994-07-14 Temperature compensation circuit

Country Status (1)

Country Link
JP (1) JP2702407B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4511697B2 (en) * 2000-07-27 2010-07-28 Necエンジニアリング株式会社 Temperature compensation circuit
JP5267321B2 (en) 2009-05-18 2013-08-21 富士通株式会社 Amplifier, transmitter, and gain compensation method

Also Published As

Publication number Publication date
JPH0832357A (en) 1996-02-02

Similar Documents

Publication Publication Date Title
US7658102B2 (en) Thermal flow sensor having an amplifier section for adjusting the temperature of the heating element
KR100386812B1 (en) Temperature detecting circuit and liquid crystal driving device using same
JP2948054B2 (en) Transceiver
US7956598B2 (en) Voltage dividing circuit and magnetic sensor circuit
JPS6144242B2 (en)
US7154351B2 (en) Approximate n-th order function generating device and temperature compensation crystal oscillation circuit
KR100252721B1 (en) Driver circuit for correcting the temperature
US5621306A (en) Temperature compensation voltage-generating circuit
JP2702407B2 (en) Temperature compensation circuit
US8556506B2 (en) Temperature-current transducer
US7180358B2 (en) CMOS exponential function generating circuit with temperature compensation technique
EP1079515A1 (en) MOSFET amplifier circuit
JP3833472B2 (en) Temperature compensation for electronic equipment
KR100202589B1 (en) Temperature measuring device and temperature compensating method thereof
JP2007173982A (en) Temperature compensation amplifier
KR100261315B1 (en) Signal conditioning circuit for pressure sensor
JPH11160347A (en) Sensor circuit
JPH0273104A (en) Temperature compensating circuit for semiconductor sensor
JPS60253288A (en) Bias monitor circuit for laser diode
KR100376483B1 (en) Cubic function generation circuit
KR20000003731A (en) Voltage output device of temperature compensation
JPS6218923B2 (en)
JPH11142256A (en) Parallel offset correcting sensor device
JPH0916276A (en) Variable voltage driving circuit
JP2005072866A (en) Temperature compensated variable attenuator and high frequency amplifier using the same

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19970819

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081003

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091003

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091003

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101003

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111003

Year of fee payment: 14

LAPS Cancellation because of no payment of annual fees