JPS6218812A - Ultrasonic solid delay line - Google Patents

Ultrasonic solid delay line

Info

Publication number
JPS6218812A
JPS6218812A JP15886585A JP15886585A JPS6218812A JP S6218812 A JPS6218812 A JP S6218812A JP 15886585 A JP15886585 A JP 15886585A JP 15886585 A JP15886585 A JP 15886585A JP S6218812 A JPS6218812 A JP S6218812A
Authority
JP
Japan
Prior art keywords
ultrasonic
wave
delay line
ultrasonic solid
longitudinal wave
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP15886585A
Other languages
Japanese (ja)
Other versions
JP2512708B2 (en
Inventor
Takeo Yokoyama
横山 武男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SWCC Corp
Original Assignee
Showa Electric Wire and Cable Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Electric Wire and Cable Co filed Critical Showa Electric Wire and Cable Co
Priority to JP60158865A priority Critical patent/JP2512708B2/en
Priority to US06/867,536 priority patent/US4684906A/en
Priority to DE86107623T priority patent/DE3689161T2/en
Priority to EP86107623A priority patent/EP0213288B1/en
Publication of JPS6218812A publication Critical patent/JPS6218812A/en
Application granted granted Critical
Publication of JP2512708B2 publication Critical patent/JP2512708B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Piezo-Electric Or Mechanical Vibrators, Or Delay Or Filter Circuits (AREA)

Abstract

PURPOSE:To form an inexpensive ultrasonic solid delay line which is easily manufactured and has an extremely high center frequency by forming polygonal multiple reflecting surfaces on an ultrasonic solid delay medium, arranging an input and an output transducer on the reflecting surface, and diffusing and reflecting the spuriousness of a longitudinal wave on a main boundary surface. CONSTITUTION:Hexagonal multiple reflecting surfaces 2-7 are formed on the ultrasonic solid delay medium 1 like glass; and an output transducer 10 which radiates a longitudinal wave 8 are arranged on the reflecting surfaces 2 and 4 and an output transducer 11 which receives the longitudinal wave on other reflecting surfaces 5 and 7 are arranged on the other reflecting surfaces 5 and 7. Further, the width of the input and output transducers 10 and 11 is as large as the thickness of the ultrasonic solid delay medium and the transducers cross main boundary surfaces 12 and 13 at right angles. Therefore, the input and output transducers 10 and 11 have a function of neither transmitting nor receiving mode waves other than a 0 mode substantially, so the constitution of a nondispersive mode delay line is simplified.

Description

【発明の詳細な説明】 [発明の技術分野] 本発明は、超音波固体遅延線に間し、特に、特性が良く
、製造が容易で、コストが低順な中心周波数が極めて高
い、例えば100MHz程度の、高周波の超音波固体遅
延線に係わる。
Detailed Description of the Invention [Technical Field of the Invention] The present invention relates to an ultrasonic solid-state delay line, particularly an ultrasonic solid-state delay line having an extremely high center frequency, for example 100 MHz, which has good characteristics, is easy to manufacture, and has a low cost. It is concerned with high-frequency ultrasonic solid-state delay lines.

[発明の技術的背景] 従来から、低周波の超音波固体遅延線が知られている(
特公昭47−27574号、特公昭46−22818号
公報、U S P 3,581,247 )。こ□れら
の低周波の超音波固体遅延線では多角形の多重反射面を
形成し、第7図のように反射面30.31に入力トラン
スジューサ32と出力トランスジューサ33とを配置し
、一般的には横波バルク波を用いて、そのスプリアスを
前記反射面に直交する主境界面34.35に設けた吸収
材または乱反射面36.37により吸収あるいは乱反射
している。
[Technical Background of the Invention] Low-frequency ultrasonic solid-state delay lines have been known (
Japanese Patent Publication No. 47-27574, Japanese Patent Publication No. 46-22818, USP 3,581,247). □These low-frequency ultrasonic solid-state delay lines form polygonal multiple reflection surfaces, and as shown in FIG. A transverse bulk wave is used, and the spurious is absorbed or diffusely reflected by an absorbing material or a diffused reflection surface 36.37 provided on the main boundary surface 34.35 orthogonal to the reflecting surface.

ところで近時、例えば高品位テレビジョンでは、例えば
100M1izの中心周波数の極めて高い超音波固体遅
延線が要求されている。
Nowadays, for example, high-definition televisions require ultrasonic solid-state delay lines with an extremely high center frequency of, for example, 100M1iz.

このため、同しく横波バルク波を用いて、第8図のよう
にそのサイドローブ等拡がった波38が反別してスプリ
アスにならないよう程度に遅延媒体Mの厚さtを人、出
力トランスジューサ32.33に比べて厚くしていた。
For this reason, using the same transverse bulk wave, the thickness t of the delay medium M is adjusted to the extent that the sidelobes and other spread waves 38 do not separate and become spurious as shown in FIG. 8, and the output transducer 32.33 It was thicker than that.

[背景技術の問題点] このような超音波固体遅延線は、第7〜8図のように人
、出力トランスジューサ32.33に比へて厚い遅延媒
体Mの部分39によるスプリアスが発生しやすく、遅延
媒体の主境界面に入射する波は大射角が大きいため仮令
第7図のように吸収材を付着しても吸収効果が薄くその
まま反射しやすく、また遅延媒体が厚くなり、かつ1個
づつ製造するためコスI・が高くなるという難点がある
[Problems with Background Art] As shown in FIGS. 7 and 8, such an ultrasonic solid state delay line tends to generate spurious signals due to the portion 39 of the delay medium M, which is thicker than the person and the output transducer 32, 33. The wave incident on the main boundary surface of the delay medium has a large angle of incidence, so even if an absorbing material is attached as shown in Figure 7, the absorption effect is weak and it is easy to be reflected. There is a drawback that the cost I. is high because it is manufactured in batches.

[発明の目的] 本発明は上記従来の難点に鑑みなされたもので、特性が
良く、製造が容易で、コストが低床な中心周波数が極め
て高い100M)Iz径程度、高周波のノンディスパー
シブな超音波固体遅延線を提供せんとするものである。
[Object of the Invention] The present invention has been made in view of the above-mentioned conventional difficulties. It is intended to provide an ultrasonic solid state delay line.

。 [発明の概要] このような目的を達成するために本発明の超音波固体遅
延線によれば、超音波固体遅延媒体に多角形の多重反射
面を形成し、前記反射面の一部に縦波を放射する入力ト
ランスジューサと前記縦波が他の反射面において縦波−
横波変換および横波−縦波変換された縦波を入射する出
力トランスジューサとを配置し、前記反射面に直交する
主境界面の少なくとも一部に前記入力トランスジューサ
から放射された前記縦波のスプリアスを前記主境界面に
おいて乱反射させる超音波乱反射領域を設けたものであ
る。
. [Summary of the Invention] In order to achieve such an object, according to the ultrasonic solid-state delay line of the present invention, a polygonal multiple reflection surface is formed in the ultrasonic solid-state delay medium, and a part of the reflection surface has longitudinal An input transducer emits a wave and the longitudinal wave is reflected at another reflective surface.
an output transducer that receives longitudinal waves that have been subjected to transverse wave conversion and transverse wave-longitudinal wave conversion; An ultrasonic diffused reflection area is provided at the main boundary surface to cause diffused reflection.

[発明の実施例コ 以下、本発明の好ましい実施例を図面により説明する。[Embodiments of the invention] Preferred embodiments of the present invention will be described below with reference to the drawings.

本発明の超音波固体遅延線は、第1〜2図に示すように
、ガラスのような超音波固体遅延媒体1には、6角形の
多重反射面2〜7が形成され、前記反射面の一部2.4
に、縦波8(点線で示す〉を放射する入力トランスジュ
ーサ10と前記縦波が他の反射面5.7において縦波−
横波9(実線で示す)変換および横波−縦波変換された
縦波を入射する出力トランスジューサ11とが配置され
ている。なお、図示の例では多重反射面2〜7は5角形
に形成されているが、遅延線の遅延量に応して他の多角
形とすることができる。
As shown in FIGS. 1 and 2, the ultrasonic solid-state delay line of the present invention has hexagonal multiple reflection surfaces 2 to 7 formed on an ultrasonic solid-state delay medium 1 such as glass. Part 2.4
, an input transducer 10 emits a longitudinal wave 8 (shown in dotted line) and said longitudinal wave is reflected at another reflecting surface 5.7.
An output transducer 11 is arranged to receive a transverse wave 9 (indicated by a solid line) conversion and a transverse-longitudinal converted longitudinal wave. In the illustrated example, the multiple reflection surfaces 2 to 7 are formed in a pentagonal shape, but they can be formed in other polygonal shapes depending on the amount of delay of the delay line.

反射面2〜7に直交する2つの平行な主境界面12.1
3の少なくとも一部、図示の例では殆ど全面に、前記入
力トランスジューサ10から放射された縦波のスプリア
ス16(第3〜4図)を主境界面12.13において乱
反射させる超音波乱反射領域14.15が設けられてい
る。
Two parallel main boundary surfaces 12.1 orthogonal to reflective surfaces 2-7
Ultrasonic diffuse reflection region 14.3, which diffusely reflects longitudinal wave spurious waves 16 (FIGS. 3 and 4) radiated from the input transducer 10 at the main boundary surface 12.13, is formed on at least a part of, in the illustrated example, almost the entire surface of, ultrasonic wave diffused reflection region 14.3. 15 are provided.

入力トランスジューサ10および出力トランスジューサ
11は超音波固体遅延媒体の厚さと同幅(1,で示す)
であり、かつ前記主境界面12.13と直交(lRで示
す)している。但し、トランスジューサ10の電極(図
示せず)は超音波光媒体lの厚さと同幅(t、)にする
必要はない。
The input transducer 10 and the output transducer 11 have the same width as the thickness of the ultrasonic solid delay medium (denoted by 1).
and is perpendicular to the main boundary surface 12.13 (indicated by lR). However, the electrode (not shown) of the transducer 10 does not need to have the same width (t, ) as the thickness of the ultrasonic optical medium l.

主境界面12.13の面の粗さは伝搬超音波の波長入の
λ/20乃至λ15である。画の徂ざが伝搬超音波の波
長λのλ/20より細かいとき、λ/5より粗いときは
所望の乱反射をしないので、何れも好ましくない。
The surface roughness of the main boundary surfaces 12 and 13 is λ/20 to λ15 at the wavelength of the propagating ultrasound. When the width of the image is finer than λ/20 of the wavelength λ of the propagating ultrasonic wave, and when it is coarser than λ/5, the desired diffused reflection will not occur, and both are unfavorable.

このように構成された超音波固体遅延線によれば、超音
波固体遅延媒体1の反射面2に配置された入力トランス
ジューサ10からその面に90°て放射された縦波8は
遅延媒体1中を伝播してゆく。
According to the ultrasonic solid-state delay line configured in this way, the longitudinal wave 8 radiated from the input transducer 10 disposed on the reflecting surface 2 of the ultrasonic solid-state delay medium 1 at an angle of 90° to that surface is reflected in the delay medium 1. will be propagated.

この縦波は池の反射面5において縦波−横波変換されて
横波9として他の反射面6へ曲げられて進行する。
This longitudinal wave is converted into a longitudinal wave and a transverse wave at the reflecting surface 5 of the pond, and is bent as a transverse wave 9 and propagates to another reflecting surface 6.

この様子を第5図により説明する。This situation will be explained with reference to FIG.

固体媒体■と流体媒体■との境界面5に縦波8がαの角
度で入射すると、反射波は縦波8aの池に横波9も現わ
れる。縦波の反射角αは入射角αに等しいが、横波の反
射角βはこれと異なる。これらの反射における反射角相
互の関係は、5ina /Sinβ=Cpl/Cslと
なる。なお、Cplは媒体I中の縦波の伝播速度、Cs
lは媒体■中の横波の伝播速度である。
When a longitudinal wave 8 is incident on the interface 5 between the solid medium (2) and the fluid medium (2) at an angle α, a transverse wave 9 also appears in the reflected wave 8a. The reflection angle α of longitudinal waves is equal to the incidence angle α, but the reflection angle β of transverse waves is different. The relationship between the reflection angles in these reflections is 5ina/Sinβ=Cpl/Csl. Note that Cpl is the propagation velocity of longitudinal waves in medium I, Cs
l is the propagation velocity of the transverse wave in the medium (2).

入射縦波8と反射縦波8aの振幅の割合は媒体Iのポア
ソン比をパラメータとして入射角αに依存し、反射縦波
8aの振幅が0(零)になる入射角がある。この反射縦
波8aの振幅が0になる入射角においては、入射縦波8
は完全に横波9への変換が起きる。例えば、媒体Iがポ
アソン比約0゜14の石英ガラス、流体媒体■が空気の
場合、入射角αが約45°て反射縦波8aの振幅がOに
なり、入射縦波8は完全に横波9への変換が起きる。
The ratio of the amplitudes of the incident longitudinal wave 8 and the reflected longitudinal wave 8a depends on the incident angle α using the Poisson's ratio of the medium I as a parameter, and there is an incident angle at which the amplitude of the reflected longitudinal wave 8a becomes 0 (zero). At the angle of incidence where the amplitude of the reflected longitudinal wave 8a becomes 0, the incident longitudinal wave 8a
is completely converted into a transverse wave 9. For example, when the medium I is quartz glass with a Poisson's ratio of about 0°14 and the fluid medium 2 is air, the incident angle α is about 45°, the amplitude of the reflected longitudinal wave 8a is O, and the incident longitudinal wave 8 is completely a transverse wave. A conversion to 9 occurs.

この横波9の反射角βは約30″′となる。第1図の縦
波の反射角α、横波の反射角βは第5図のそれに対応し
ている。
The reflection angle β of this transverse wave 9 is about 30''. The reflection angle α of the longitudinal wave and the reflection angle β of the transverse wave in FIG. 1 correspond to those in FIG.

この横波は反射面6において横波−横波の全反射を受け
、ざらに他の反射面7において、上記変換とは逆の横波
−縦波変換された縦波は超音波固体遅延媒体1の反射面
4に配置された出力トランスジューサ11にその面に9
0”で入射する。
This transverse wave undergoes total reflection of the transverse wave-transverse wave at the reflecting surface 6, and at another reflecting surface 7, the longitudinal wave which has been converted into a transverse wave-longitudinal wave, which is the opposite of the above conversion, is reflected by the reflecting surface of the ultrasonic solid delay medium 1. Output transducer 11 located at 4 and 9 on its face
It is incident at 0''.

前述のように本発明による超音波固体遅延線は入力トラ
ンスジューサlOおよび出力トランスジューサ11が超
音波固体遅延媒体の厚さと同幅(t。)であるので、人
、出力トランスジューサ10.1】は0モード以外のモ
ート波を発信、受信しない機能を実質的に帯有するから
、ノンディスパーシブモード遅延線の構成を容易にする
。但し、第3図に示すように、殆と主境界面12.13
に平行に近い波が発生し、スプリアス16となる。従来
技術では、このスプリアスは前述のように第7〜8図の
構成で防止していたのであるが、本発明では主境界面1
2.13の少なくとも一部、図示の例では殆ど全面に、
超音波乱反射領域14.15を設けたので、入力トラン
スジューサ10から放射され主境界面12.13に平行
に近い角度で入射した縦波8のスプリアス16は第5図
で説明したように少なくともその一部が縦波−横波のモ
ート変換され、あるいは縦波−縦波変換され横波あるい
は縦波として乱反射(第4図において代表的に17で示
す)されるから、スプリアス波はこの超音波乱反射領域
14.15で消滅し、取り除かれる。さらに、主境界面
12.13の超音波乱反射領域14.15上にエポキシ
樹脂等の超音波吸収材を接着すれば、このスプリアス波
が主境界面12.13において吸収され、スプリアス波
の除去効果が向上する。
As mentioned above, in the ultrasonic solid-state delay line according to the present invention, the input transducer 10 and the output transducer 11 have the same width (t.) as the thickness of the ultrasonic solid-state delay medium, so that the output transducer 10.1 is in zero mode. Since the non-dispersive mode delay line substantially has the function of not transmitting or receiving any other moat waves, it is easy to configure a non-dispersive mode delay line. However, as shown in Figure 3, most of the main boundary surfaces 12.13
A wave nearly parallel to is generated, resulting in a spurious signal 16. In the prior art, this spurious was prevented by the configuration shown in FIGS. 7 and 8 as described above, but in the present invention, the main interface 1
2.13, in the illustrated example almost the entire surface,
Since the ultrasonic diffuse reflection region 14.15 is provided, at least one of the spurious waves 16 of the longitudinal wave 8 emitted from the input transducer 10 and incident at an angle close to parallel to the main boundary surface 12.13 is reduced as explained in FIG. Since the ultrasonic wave is converted into a longitudinal wave-transverse wave moat or longitudinal wave-longitudinal wave converted and diffusely reflected as a transverse wave or longitudinal wave (representatively indicated by 17 in FIG. It expires at .15 and is removed. Furthermore, if an ultrasonic absorbing material such as epoxy resin is bonded onto the ultrasonic diffuse reflection region 14.15 of the main boundary surface 12.13, this spurious wave will be absorbed at the main boundary surface 12.13, and the spurious wave removal effect will be improved. will improve.

なお、入力トランスジューサ10および出力トランスジ
ューサ11が2つの平行な主項n面12.13と直交し
ているので、入力トランスジューサ10から放射された
直進波が主境界面12.13間において直進して出力ト
ランスジューサ11に入射する。
In addition, since the input transducer 10 and the output transducer 11 are orthogonal to the two parallel principal term n-planes 12.13, the rectilinear wave radiated from the input transducer 10 travels straight between the principal boundary surfaces 12.13 and is output. incident on the transducer 11.

このような超音波固体遅延線を製造するに当たっては、
第6図に示すように、予め設計した形状寸法の多角形の
多重反射面2〜7(第1図)を形成した超音波固体遅延
媒体1のブロック40を準備する。反射面の一部2.4
に錫電極41.42を蒸着で付ける。その上に、入力ト
ランスジューサストリップ43と化カドランスジューサ
ストリップ44とを配置する。この状態で遅延時間を測
定し、反射面6を必要量だけ研暦する(主調整)。
In manufacturing such an ultrasonic solid delay line,
As shown in FIG. 6, a block 40 of the ultrasonic solid retardation medium 1 is prepared, on which polygonal multiple reflection surfaces 2 to 7 (FIG. 1) of pre-designed dimensions are formed. Part of the reflective surface 2.4
Tin electrodes 41 and 42 are attached by vapor deposition. Above this, an input transducer strip 43 and a transducer strip 44 are placed. In this state, the delay time is measured and the reflective surface 6 is polished by the required amount (main adjustment).

これをスラーrシングマシンで切断し、入力トランスジ
ューサ10と出力トランスジューサ11とを備えた各ユ
ニット45を得る。この際、遅延時間を測定し、必要な
らば反射面6を併置する(微調M)。各ユニット45の
主境界面に粗面加工を施して超音波乱反射領域36.3
7を形成する(第4図)。
This is cut by a slurring machine to obtain each unit 45 having an input transducer 10 and an output transducer 11. At this time, the delay time is measured, and if necessary, a reflective surface 6 is placed in parallel (fine adjustment M). The main boundary surface of each unit 45 is roughened to form an ultrasonic diffused reflection area 36.3.
7 (Figure 4).

このような製造技法によれば、予め設計した形状寸法の
多角形の多重反射面を形成した超音波固体遅延媒体のブ
ロックに、入力トランスジューサストリップと出力トラ
ンスジューサストリップを設けた状態で遅延時間を調整
した後、全体を各ユニットに切断するので、得られた各
ユニットに遅延時間が不揃いとなることはなく、高品質
のlB音波固体遅延線が得られる。また、入力トランス
ジューサおよび出力トランスジューサは超音波固体遅延
媒体の厚さと同幅で切断されるから、ノンディスパーシ
ブモード遅延線の構成を容易にする。
According to this manufacturing technique, an input transducer strip and an output transducer strip are provided in a block of ultrasonic solid delay medium formed with a polygonal multi-reflection surface of a pre-designed geometry, and the delay time is adjusted. After that, the whole is cut into units, so that the delay times of the obtained units will not be uneven, and a high-quality 1B sonic solid-state delay line can be obtained. Additionally, since the input and output transducers are cut to have the same width as the thickness of the ultrasonic solid delay medium, it is easy to construct a non-dispersive mode delay line.

[発明の効果] 以上の実施例からも明らかなように本発明によれば、超
音波固体遅延媒体に多角形の多重反射面を形成し、入力
トランスジューサから放射された縦波が縦波−横波変換
および横波−縦波変換されて出力トランスジューサに入
射されるようにすると共に、反射面に直交する主境界面
の少なくとも一部に入力トランスジューサから放射され
た前記縦波のスプリアスを前記主境界面において乱反射
させる超音波乱反射領域を設けたので、サイドローブ等
拡がった波を完全に吸収でき直進波のみ使用でき特性が
良く、中心周波数が極めて高い、例えば100M)lz
程度の、高周波のノンディスパーシブな超音波固体遅延
線が得られる。
[Effects of the Invention] As is clear from the above embodiments, according to the present invention, polygonal multiple reflection surfaces are formed in the ultrasonic solid delay medium, so that the longitudinal waves radiated from the input transducer are divided into longitudinal waves and transverse waves. converting and transverse wave-longitudinal wave conversion to be incident on the output transducer, and at least a portion of the main interface perpendicular to the reflecting surface, the spurious of the longitudinal wave radiated from the input transducer is at the main interface. Since we have provided an ultrasonic diffused reflection area, it can completely absorb spread waves such as side lobes, and only straight waves can be used.It has good characteristics and has an extremely high center frequency, for example 100M)lz.
A high-frequency, non-dispersive ultrasonic solid-state delay line of approximately 100% is obtained.

ざらに、超音波固体遅延媒体の厚さを薄くすることがで
き材料が節約される。また、製造が容易で、高品質の超
音波固体遅延線が提供される。
In general, the thickness of the ultrasonic solid retardation medium can be reduced and material is saved. Also, an ultrasonic solid state delay line that is easy to manufacture and of high quality is provided.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明による超音波固体遅延線の平面図、第2
図は同遅延線の側面図、第3図は同遅延線の完成前の側
面図、第4図は同遅延線の完成後の側面図、第5図は同
遅延線の動作説明図、第6図は同遅延線を製造する際の
説明図、第7〜8図は従来の遅延線の側面図である。 1−・・超音波固体遅延媒体 2〜7・・・多重反射面 8・・・縦波 9・・・横波 10・・・入力トランスジューサ 11・・・出力トランスジューサ 12.13・・・主境界面 14.15・・・超音波乱反射領域 16・・・スプリアス
FIG. 1 is a plan view of an ultrasonic solid state delay line according to the present invention, and FIG.
The figure is a side view of the delay line, Figure 3 is a side view of the delay line before completion, Figure 4 is a side view of the delay line after completion, Figure 5 is an explanatory diagram of the operation of the delay line, and Figure 5 is a side view of the delay line before completion. FIG. 6 is an explanatory diagram when manufacturing the same delay line, and FIGS. 7 and 8 are side views of the conventional delay line. 1-...Ultrasonic solid delay medium 2-7...Multiple reflection surface 8...Longitudinal wave 9...Transverse wave 10...Input transducer 11...Output transducer 12.13...Main interface 14.15... Ultrasonic diffused reflection area 16... Spurious

Claims (1)

【特許請求の範囲】 1、超音波固体遅延媒体に多角形の多重反射面を形成し
、前記反射面の一部に縦波を放射する入力トランスジュ
ーサと前記縦波が他の反射面において縦波−横波変換お
よび横波−縦波変換された縦波を入射する出力トランス
ジューサとを配置し、前記反射面に直交する主境界面の
少なくとも一部に前記入力トランスジューサから放射さ
れた前記縦波のスプリアスを前記主境界面において乱反
射させる超音波乱反射領域を設けたことを特徴とする超
音波固体遅延線。 2、前記入力トランスジューサおよび出力トランスジュ
ーサは超音波固体遅延媒体の厚さと同幅であり、かつ前
記主境界面と直交している特許請求の範囲第1項記載の
超音波固体遅延線。 3、前記主境界面の面の粗さは伝搬超音波の波長λのλ
/20乃至λ/5である特許請求の範囲第1項記載の超
音波固体遅延線。
[Claims] 1. An input transducer which forms a polygonal multiple reflection surface on an ultrasonic solid delay medium and emits a longitudinal wave on a part of the reflection surface, and the longitudinal wave emits a longitudinal wave on another reflection surface. - an output transducer that receives longitudinal waves that have been subjected to transverse wave conversion and transverse wave-longitudinal wave conversion; An ultrasonic solid delay line characterized in that an ultrasonic diffused reflection area is provided at the main boundary surface to cause diffused reflection of ultrasonic waves. 2. The ultrasonic solid delay line according to claim 1, wherein the input transducer and the output transducer have the same width as the thickness of the ultrasonic solid delay medium and are orthogonal to the main boundary surface. 3. The surface roughness of the main boundary surface is λ of the wavelength λ of the propagating ultrasonic wave.
The ultrasonic solid state delay line according to claim 1, wherein the ultrasonic solid state delay line has a wavelength of λ/20 to λ/5.
JP60158865A 1985-06-14 1985-07-17 Ultrasonic solid delay line Expired - Lifetime JP2512708B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP60158865A JP2512708B2 (en) 1985-07-17 1985-07-17 Ultrasonic solid delay line
US06/867,536 US4684906A (en) 1985-06-14 1986-05-28 Solid ultrasonic delay line
DE86107623T DE3689161T2 (en) 1985-06-14 1986-06-04 Ultrasound solid-state delay line.
EP86107623A EP0213288B1 (en) 1985-06-14 1986-06-04 Solid ultrasonic delay line

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60158865A JP2512708B2 (en) 1985-07-17 1985-07-17 Ultrasonic solid delay line

Publications (2)

Publication Number Publication Date
JPS6218812A true JPS6218812A (en) 1987-01-27
JP2512708B2 JP2512708B2 (en) 1996-07-03

Family

ID=15681088

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60158865A Expired - Lifetime JP2512708B2 (en) 1985-06-14 1985-07-17 Ultrasonic solid delay line

Country Status (1)

Country Link
JP (1) JP2512708B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6989961B2 (en) 2002-06-21 2006-01-24 Alps Electric Co., Ltd. Magnetic head with medium sliding surface having varied curvature and recording/reproducing apparatus

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5148940U (en) * 1974-10-11 1976-04-13
JPS58191515A (en) * 1982-04-30 1983-11-08 Showa Electric Wire & Cable Co Ltd Ultrasonic wave solid-state delay line

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5148940U (en) * 1974-10-11 1976-04-13
JPS58191515A (en) * 1982-04-30 1983-11-08 Showa Electric Wire & Cable Co Ltd Ultrasonic wave solid-state delay line

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6989961B2 (en) 2002-06-21 2006-01-24 Alps Electric Co., Ltd. Magnetic head with medium sliding surface having varied curvature and recording/reproducing apparatus

Also Published As

Publication number Publication date
JP2512708B2 (en) 1996-07-03

Similar Documents

Publication Publication Date Title
JPS6250729A (en) Acoustooptic modulator
JPS6218812A (en) Ultrasonic solid delay line
US4684906A (en) Solid ultrasonic delay line
JPS61288511A (en) Ultrasonic wave solid-state delay line
US4821004A (en) Method for the elimination of spurious echos in electro-acoustic delay lines using bulk waves and delay line applying this method
JPS6218520A (en) Ultrasonic optical modulator
JPH04103211A (en) Ultrasonic wave solid-state delay line
JPH0486013A (en) Ultrasonic solid-state delay line
JP2001285012A (en) Surface acoustic wave filter
JPH0417658B2 (en)
JPS6133518B2 (en)
US4510470A (en) Electro-acoustic delay line operating in transmission
JPH05277105A (en) Probe for ultrasonic diagnostic device
JPS6218521A (en) Ultrasonic optical modulator
JPS5936019Y2 (en) ultrasonic solid state retarder
JPS6110309A (en) Surface acoustic wave device
JPS6347078Y2 (en)
JP2804561B2 (en) Ultrasonic probe
JPS5921545Y2 (en) surface wave filter
JPS61288512A (en) Ultrasonic wave solid-state delay line
JPH0115167B2 (en)
JPH04105409A (en) Ultrasonic wave solid-state delay line
JPH075698Y2 (en) Ultrasonic delay line
JPS6333371Y2 (en)
JPH04138709A (en) Ultrasonic solid-state delay line