JPS61288511A - Ultrasonic wave solid-state delay line - Google Patents

Ultrasonic wave solid-state delay line

Info

Publication number
JPS61288511A
JPS61288511A JP13037985A JP13037985A JPS61288511A JP S61288511 A JPS61288511 A JP S61288511A JP 13037985 A JP13037985 A JP 13037985A JP 13037985 A JP13037985 A JP 13037985A JP S61288511 A JPS61288511 A JP S61288511A
Authority
JP
Japan
Prior art keywords
wave
longitudinal
ultrasonic
transducer
faces
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP13037985A
Other languages
Japanese (ja)
Other versions
JPH0758877B2 (en
Inventor
Takeo Yokoyama
横山 武男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SWCC Corp
Original Assignee
Showa Electric Wire and Cable Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Electric Wire and Cable Co filed Critical Showa Electric Wire and Cable Co
Priority to JP60130379A priority Critical patent/JPH0758877B2/en
Priority to US06/867,536 priority patent/US4684906A/en
Priority to EP86107623A priority patent/EP0213288B1/en
Priority to DE86107623T priority patent/DE3689161T2/en
Publication of JPS61288511A publication Critical patent/JPS61288511A/en
Publication of JPH0758877B2 publication Critical patent/JPH0758877B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Piezo-Electric Or Mechanical Vibrators, Or Delay Or Filter Circuits (AREA)

Abstract

PURPOSE:To obtain a non-dispersive delay line having a high frequency whose center frequency is nearly 100MHz with good characteristic and ease of manufacture by forming a polygonal multiplex reflecting face to an ultrasonic wave solid-state delay medium, arranging transducers and providing an ultrasonic wave absorbing member. CONSTITUTION:For example, pentagonal multiple reflection faces 2-7 are formed to an ultrasonic wave solid-state delay medium 1, an input transducer 10 irradiating a longitudinal wave 8 and an output transducer 11 receiving longitudinal waves subjected to longitudinal/lateral wave conversion 9 coming from reflected faces, 5, 7 and subjected to lateral/longitudinal wave conversion are arranged to reflection faces 5, 7. A longitudinal spurious wave irradiated from the transducer 10 is subjected to longitudinal/lateral wave conversion at major boundary faces 12, 13 and the converted lateral wave is made incident on ultrasonic wave absorbing member 14, 15, which are provided at least at a part of the main boundary faces 12, 13 in parallel with and orthogonal to the faces 2-7, the thickness of the input transducer 10 and the output transducer 11 is the same as that of the ultrasonic wave solid-state delay medium and they are orthogonal to the major boundary faces 12, 13.

Description

【発明の詳細な説明】 [発明の技術分野] 本発明は、超音波固体遅延線に関し、特に、特性が良く
、製造が容易で、コストが低減な中心周波数が極めて高
い、例えば!00MHz程度の、高周波の超音波固体遅
延線に係わる。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to an ultrasonic solid-state delay line, and in particular to an ultrasonic solid-state delay line that has good characteristics, is easy to manufacture, has a low cost, and has an extremely high center frequency, for example! It is related to a high frequency ultrasonic solid state delay line of about 00 MHz.

[発明の技術的背景] 1に来から、低周波の超音波固体遅延線が知られている
(特公昭47−27574号、特公昭46−22818
号公報、U S P 3,581,247 )。これら
の低周波の超音波固体遅延線では多角形の多重反射面を
形成し、第7図のように反射面30.31に入力トラン
スジューサ32と出力トランスジューサ33とを配置し
、一般的には横波バルク波を用いて、そのスプリアスを
前記反射面に直交する主境界面34.35に設けた吸収
材または乱反射面36.37により吸収あるいは乱反射
している。
[Technical Background of the Invention] Low-frequency ultrasonic solid-state delay lines have been known since 1997 (Japanese Patent Publication No. 47-27574, Japanese Patent Publication No. 46-22818).
No. 3,581,247). These low-frequency ultrasonic solid-state delay lines form polygonal multiple reflection surfaces, and as shown in FIG. Using a bulk wave, the spurious waves are absorbed or diffusely reflected by an absorbing material or a diffused reflection surface 36.37 provided on a main boundary surface 34.35 orthogonal to the reflecting surface.

ところで近時、例えば高品位テレビジョンでは、例えは
100MHzの中心周波数の極めて高い超音波固体遅延
線が要求されている。
Nowadays, for example, high-definition televisions require ultrasonic solid-state delay lines with an extremely high center frequency of, for example, 100 MHz.

このため、同じく横波バルク波を用いて、第8図のよう
にそのサイドローブ等拡がった波38が反射してスプリ
アスにならないよう程度に遅延媒体Mの厚さtを人、出
力トランスジューサ32.33に比べて厚くしていた。
For this reason, similarly using a transverse bulk wave, the thickness t of the delay medium M is adjusted to the extent that the sidelobes and other expanded waves 38 are not reflected and become spurious as shown in FIG. 8, and the output transducer 32. It was thicker than that.

[背景技術の問題点] このような超音波固体遅延線は、第7〜8図のように人
、出力トランスジューサ32.33に比べて厚い遅延媒
体Mの部分39によるスプリアスが発生しやすく、遅延
媒体の主境界面に入射する波は入射角が大きいため仮令
第7図のように吸収材を付着しても吸収効果が薄くその
まま反射しやすく、また遅延媒体が厚くなり、かつ1個
づつ製造するためコストが高くなるという難点がある。
[Problems in the Background Art] As shown in FIGS. 7 and 8, such an ultrasonic solid state delay line is prone to spurious noise due to the portion 39 of the delay medium M, which is thicker than the output transducer 32 and 33, resulting in a delay. The waves incident on the main boundary surface of the medium have a large angle of incidence, so even if an absorbing material is attached as shown in Figure 7, the absorption effect is weak and it is easy to be reflected, and the retardation medium becomes thick and has to be manufactured one by one. This has the disadvantage of increasing costs.

[発明の目的] 本発明は上記従来の難点に鑑みなされたもので、特性が
良く、製造が容易で、コストが低減な中心周波数が極め
て高い100MHz程度の、高周波のノンディスパーシ
ブな超音波固体遅延線を提供せんとするものである。
[Object of the Invention] The present invention has been made in view of the above-mentioned conventional difficulties, and provides a high-frequency non-dispersive ultrasonic solid with an extremely high center frequency of about 100 MHz, which has good characteristics, is easy to manufacture, and has a low cost. It is intended to provide a delay line.

[発明の概要コ このような目的を達成するために本発明の超音波固体遅
延線によれば、超音波固体遅延媒体に多角形の多重反射
面を形成し、前記反射面の一部に縦波を放射する入カド
ランスジューサと前記縦波が他の反射面において縦波−
横波変換および横波−縦波変一換された縦波を入射する
出力トランスジューサとを配置し、前記反射面に直交す
る主境界面の少なくとも一部に前記入カドランスジュー
サから放射された前記縦波のスプリアスが前記主境界面
において縦波−横波変換された横波が入射される超音波
吸収材オを設けたものである。
[Summary of the Invention] In order to achieve the above object, the ultrasonic solid delay line of the present invention is provided by forming a polygonal multiple reflection surface on the ultrasonic solid delay medium, and forming a vertical reflection surface on a part of the reflection surface. An incoming quadratic transducer that emits waves and the longitudinal waves emit longitudinal waves at another reflecting surface.
an output transducer that receives longitudinal waves that have been subjected to transverse wave conversion and transverse wave-longitudinal wave conversion; The ultrasonic wave absorbing material is provided with an ultrasonic absorbing material on which a transverse wave, which has been converted into a longitudinal wave and a transverse wave, is incident on the main boundary surface.

[発明の実施例] 以下、本発明の好ましい実施例を図面により説明する。[Embodiments of the invention] Preferred embodiments of the present invention will be described below with reference to the drawings.

本発明の超音波固体遅延線は、第1〜2図に示すように
、ガラスのような超音波固体遅延媒体1には、5角形の
多重反射面2〜7が形成され、前記反射面の一部2.4
に、縦波8(点線で示す)を放射する入カドランスジュ
ーサ10と前記縦波が他の反射面5.7において縦波−
横波9(実線で示す)変換および横波−縦波変換された
縦波を入射する出力トランスジューサ11とが配置され
ている。なお、図示の例では多重反射面2〜7は5角形
に形成されているが、遅延線の遅延量に応じて他の多角
形とすることができる。
As shown in FIGS. 1 and 2, in the ultrasonic solid state delay line of the present invention, pentagonal multiple reflection surfaces 2 to 7 are formed in an ultrasonic solid state delay medium 1 such as glass, and each of the reflection surfaces Part 2.4
, an input transducer 10 emits a longitudinal wave 8 (indicated by a dotted line), and the longitudinal wave is reflected at another reflecting surface 5.7.
An output transducer 11 is arranged to receive a transverse wave 9 (indicated by a solid line) conversion and a transverse-longitudinal converted longitudinal wave. In the illustrated example, the multiple reflection surfaces 2 to 7 are formed in a pentagonal shape, but they can be formed in other polygonal shapes depending on the amount of delay of the delay line.

反射面2〜7に直交する2つの平行な主境界面12.1
3の少なくとも一部、図示の例では殆ど全面に、前記入
力トランスジューサ10から放射された縦波のスプリア
スが主境界面12.13において縦波−横波変換され、
た横波が入射されるエポキシ樹脂等の超音波吸収材14
.15が設けられている。
Two parallel main boundary surfaces 12.1 orthogonal to reflective surfaces 2-7
3, in the illustrated example almost the entire surface, the longitudinal wave spurious emitted from the input transducer 10 undergoes longitudinal-transverse wave conversion at the main interface 12.13;
Ultrasonic absorbing material 14 such as epoxy resin on which transverse waves are incident
.. 15 are provided.

入カドランスジューサ10および出力トランスジューサ
11は超音波固体遅延媒体と同ff(t。
The input transducer 10 and the output transducer 11 have the same ff(t) as an ultrasonic solid state delay medium.

で示す)であり、かつ前記主境界面12.13と直交(
zRて示す)している。
), and perpendicular to the main boundary surface 12.13 (shown by
(indicated by zR).

また、主境界面12.13はウェハーソーイングマシン
のようなスライシングマシンで切断されて得られる程度
の平滑度に平滑化されている。
Further, the main boundary surfaces 12, 13 are smoothed to a degree of smoothness obtained by cutting with a slicing machine such as a wafer sawing machine.

このように構成された超音波固体遅延線によれば、超音
波固体遅延媒体lの反射面2に配置された入力トランス
ジューサ10からその面に90°で放射された縦波8は
遅延媒体1中を伝播してゆく。
According to the ultrasonic solid-state delay line configured in this way, the longitudinal wave 8 radiated at 90° from the input transducer 10 placed on the reflecting surface 2 of the ultrasonic solid-state delay medium 1 to that surface is reflected in the delay medium 1. will be propagated.

この縦波は他の反射面5において縦波−横波変換されて
横波9として他の反射面6へ曲げられて進行する。
This longitudinal wave is converted into a longitudinal wave and a transverse wave at another reflecting surface 5, and is bent as a transverse wave 9 and propagates to another reflecting surface 6.

この様子を第5図により説明する。This situation will be explained with reference to FIG.

固体媒体■と流体媒体■との境界面5に縦波8がαの角
度で入射すると、反射波は縦波8aの他に横波9も現わ
れる。縦波の反射角αは入射角αに等しいが、横波の反
射角βはこれと異なる。これらの反射における反射角相
互の関係は、5ina /Sinβ=Cpl/Cslと
なる。なお、C10は媒体■中の縦波の伝播速度、Cs
lは媒体■中の横波の伝播速度である。
When a longitudinal wave 8 is incident on the interface 5 between the solid medium (2) and the fluid medium (2) at an angle α, a transverse wave 9 appears in addition to the longitudinal wave 8a as reflected waves. The reflection angle α of longitudinal waves is equal to the incidence angle α, but the reflection angle β of transverse waves is different. The relationship between the reflection angles in these reflections is 5ina/Sinβ=Cpl/Csl. In addition, C10 is the propagation speed of longitudinal waves in the medium 2, Cs
l is the propagation velocity of the transverse wave in the medium (2).

入射縦波8と反射縦波8aの振幅の割合は媒体■のポア
ソン比をパラメータとして入射角αに依存し、反射縦波
8aの振幅が0(零)になる入射角がある。この反射縦
波8aの振幅がOになる入射角においては、入射縦波8
は完全に横波9への変換が起きる。例えば、媒体Iがポ
アソン比的0314の石英ガラス、流体媒体■が空気の
場合、入射角αが約456て反射縦波8aの振幅がOに
なり、入射縦波8は完全に横波9への変換が起きる。
The ratio of the amplitudes of the incident longitudinal wave 8 and the reflected longitudinal wave 8a depends on the incident angle α using the Poisson's ratio of the medium (1) as a parameter, and there is an incident angle at which the amplitude of the reflected longitudinal wave 8a becomes 0 (zero). At the angle of incidence where the amplitude of the reflected longitudinal wave 8a becomes O, the incident longitudinal wave 8a
is completely converted into a transverse wave 9. For example, when the medium I is quartz glass with a Poisson's ratio of 0314 and the fluid medium (2) is air, the incident angle α is approximately 456, the amplitude of the reflected longitudinal wave 8a is O, and the incident longitudinal wave 8 is completely converted into a transverse wave 9. A transformation occurs.

この横波9の反射角βは約30°となる。第1図の縦波
の反射角α、横波の反射角βは第5図のそれに対応して
いる。
The reflection angle β of this transverse wave 9 is about 30°. The reflection angle α of the longitudinal wave and the reflection angle β of the transverse wave in FIG. 1 correspond to those in FIG. 5.

この横波は反射面6において積波−横波の全反射を受け
、さらに他の反射面7において、上記変換とは逆の横波
−縦波変換された縦波は超音波固体遅延媒体lの反射面
4に配置された出力トランスジユーサ11にその面に9
0°で入射する。
This transverse wave undergoes total reflection of a multi-transverse wave at the reflecting surface 6, and furthermore, at another reflecting surface 7, the longitudinal wave which has been converted into a transverse wave-longitudinal wave, which is the opposite of the above conversion, is transferred to the reflecting surface of the ultrasonic solid delay medium l. Output transducer 11 located at 4 and 9 on its side
Incident at 0°.

前述のように本発明による超音波固体遅延線は入力トラ
ンスジューサ10および出力トランスジューサ11が超
音波固体遅延媒体と同厚(t、)であるので、人、出力
トランスジューサ10.11は0モード以外のモード波
を発信、受信しない機能を実質的に帯有するから、ノン
ディスパーシブモー)” 遅延線の構成を容易にする。
As mentioned above, the ultrasonic solid-state delay line according to the present invention has the input transducer 10 and the output transducer 11 having the same thickness (t, ) as the ultrasonic solid-state delay medium, so that the output transducer 10 and 11 can operate in modes other than 0 mode. Since it essentially has the function of not transmitting or receiving waves, it is easy to configure a delay line (non-dispersive mode).

但し、第3図に示すように、殆ど主境界面12.13に
平行に近い波が発生し、スプリアス16となる。従来技
術では、このスプリアスは前述のように第7〜8図の構
成で防止していたのであるが、本発明では主境界面12
.13の少なくとも一部、図示の例では殆ど全面に、超
音波吸収tオ14.15を設けたので、入カドランスジ
ューサ10から放射され主境界面12.13に平行に近
い角度で入射した縦波8のスプリアスは第5図で説明し
たように少なくともその一部が縦波−横波のモード変換
され大きい角度変更された横波9となり(第4図)、主
境界面12.13、即ち超音波吸収材14.15に小角
度βで入射されるから、スプリアス波はこの超音波吸収
tオ14.15で大きな吸収効果で吸収され、取り除か
れる。なお、このスプリアス波が主境界面12.13に
おいて一回の反射で取り除かれない場合でも、主境界面
12.13において数回の反射を繰り返すことにより取
り除かれる。
However, as shown in FIG. 3, waves almost parallel to the main boundary surfaces 12 and 13 are generated, resulting in spurious waves 16. In the prior art, this spurious was prevented by the configuration shown in FIGS. 7 and 8 as described above, but in the present invention, the main boundary surface 12
.. Since the ultrasonic absorber 14.15 is provided on at least a part of 13, almost the entire surface in the illustrated example, the vertical wave emitted from the input transducer 10 and incident at an angle close to parallel to the main boundary surface 12.13 As explained in Fig. 5, at least a part of the spurious wave 8 is converted into a longitudinal wave-transverse wave mode and becomes a transverse wave 9 with a large angle change (Fig. 4), and the spurious wave 8 becomes a transverse wave 9 with a large angle change (Fig. 4), and the main boundary surface 12. Since the spurious wave is incident on the absorber 14.15 at a small angle β, the spurious wave is absorbed by the ultrasonic absorber 14.15 with a large absorption effect and removed. Note that even if this spurious wave is not removed by one reflection at the main boundary surface 12.13, it is removed by repeating several reflections at the main boundary surface 12.13.

また、主境界面12.13は平滑化されているため、こ
の縦波−横波変換が円滑に行なわれるものである。
Moreover, since the main boundary surfaces 12 and 13 are smoothed, this longitudinal wave-transverse wave conversion is performed smoothly.

なお、入力トランスジューサ10および出力トランスジ
ューサ11が2つの平行な主境界面12.13と直交し
ているので、入力トランスジューサ10から放射された
直進波が主境界面12.13間において直進し・で出力
トランスジューサ11に入射する。
Note that since the input transducer 10 and the output transducer 11 are perpendicular to the two parallel main boundary surfaces 12.13, the rectilinear wave radiated from the input transducer 10 travels straight between the main boundary surfaces 12.13 and is output. incident on the transducer 11.

このような超音波固体遅延線を製造するに当たっては、
第6図に示すように、予め設計した形状寸法の多角形の
多重反射面2〜7(第1図)1i:形成した超音波固体
遅延媒体lのブ[lツク4oを準備する。反射面の一部
2.4に錫電極41,42を蒸着で付ける。その上に、
入力トランスジューサストリップ43と出力トランスジ
ューサストリップ44とを配置する。この状態で遅延時
間を測定し、反射面6を必要量だけ研磨する(主調!り
In manufacturing such an ultrasonic solid delay line,
As shown in FIG. 6, a polygonal multiple reflection surface 2 to 7 (FIG. 1) 1i of a previously designed shape and size: a block 4o of the formed ultrasonic solid retardation medium 1 is prepared. Tin electrodes 41 and 42 are attached to a portion 2.4 of the reflective surface by vapor deposition. in addition,
An input transducer strip 43 and an output transducer strip 44 are arranged. In this state, the delay time is measured, and the reflective surface 6 is polished by the required amount (main key!).

これをスライシングマシンで切断し、入力トランスジュ
ーサ10と出力トランスジューサ11とを備えた各ユニ
ット45を得る。この際、遅延時間を測定し、必要なら
ば反射面6を研旺する(微調整)。各ユニット・15の
主境界面に超音波吸収材36.37(第1↓図)として
エポキシP4脂を接着する。
This is cut by a slicing machine to obtain each unit 45 including an input transducer 10 and an output transducer 11. At this time, the delay time is measured, and if necessary, the reflective surface 6 is refined (fine adjustment). Epoxy P4 resin is adhered to the main boundary surface of each unit 15 as an ultrasonic absorbing material 36, 37 (Fig. 1↓).

このような製造技法によれば、予め設計した形状寸法の
多角形の多重反射面を形成した超音波固体遅延媒体のブ
ロックに、入力トランスジューサストリップと出力トラ
ンスジューサストリップを設けた状態で遅延時間を調整
した後、全体を各ユニットに切断するので、得られた各
ユニットに遅延時、間が不揃いとなることはなく、高品
質の超音波固体遅延線が得られる。また、入力トランス
ジューサおよび出力トランスジューサは超音波固体遅延
媒体と同厚で切断されるから、ノンディスパーシブモー
ド遅延線の構成を容易にする。
According to this manufacturing technique, an input transducer strip and an output transducer strip are provided in a block of ultrasonic solid delay medium formed with a polygonal multi-reflection surface of a pre-designed geometry, and the delay time is adjusted. After that, the whole is cut into units, so that the delay times of the obtained units will not be uneven, and a high-quality ultrasonic solid-state delay line can be obtained. Additionally, the input and output transducers are cut to the same thickness as the ultrasonic solid state delay medium, facilitating the construction of non-dispersive mode delay lines.

さらに、このブロックをウェハソーイングマシンのよう
なスライシングマシンで切断すれば、主境界面12.1
3は平滑化されることになる。
Furthermore, if this block is cut with a slicing machine such as a wafer sawing machine, the main interface 12.1
3 will be smoothed.

[発明の効果] 以上の実施例からも明らかなように本発明によれば、超
音波固体遅延媒体に多角形の多重反射面を形成し、入カ
ドランスジューサから放射された縦波が縦波−横波変換
および横波−縦波変換されて出力トランスジューサに入
射されるようにすると共に、反射面に直交する主境界面
の少なくとも一部に入力トランスジューサから放射され
た前記縦波のスプリアスが前記主境界面において縦波−
横波変換された横波が入射される超音波吸収tオを設け
たので、サイトローブ等拡がった波を完全に吸収でき直
進波のみ使用でき特性が良く、中心周波数が極めて高い
loOMHz程度の、高周波のノンディスパーシブな超
音波固体遅延線が得られる。
[Effects of the Invention] As is clear from the above embodiments, according to the present invention, polygonal multiple reflection surfaces are formed in the ultrasonic solid delay medium, so that the longitudinal waves emitted from the input quadrature transducer become longitudinal waves. - transverse wave conversion and transverse wave-longitudinal wave conversion to be incident on the output transducer, and the spurious of the longitudinal wave radiated from the input transducer is transmitted to at least a part of the main boundary surface perpendicular to the reflecting surface at the main boundary. Longitudinal wave in the plane -
Since it is equipped with an ultrasonic absorber that receives transverse waves that have been converted into transverse waves, it can completely absorb spread waves such as site lobes, allowing only straight waves to be used, and has good characteristics. A non-dispersive ultrasonic solid state delay line is obtained.

超音波固体遅延媒体の厚さを薄くすることができ材料が
節約される。また、製造が容易で、高品質の超音波固体
遅延線が提供される。
The thickness of the ultrasonic solid retardation medium can be reduced and material is saved. Also, an ultrasonic solid state delay line that is easy to manufacture and of high quality is provided.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明によるMi音波固体遅延線の平面図、第
2図は同遅延線の側面図、第3図は同遅延線の完成前の
側面図、第4図は同遅延線の完成後の側面図、第5図は
同遅延線の動作説明図、第6の側面図、第5図は同遅延
線の動作説明図、第6図は同遅延線を製造する際の説明
図、第7〜8図は従来の遅延線の側面図である。 1・・・超音波固体遅延媒体 2〜7・・・多重反射面 8・・・縦波 9・・・横波 10・・・入力トランスジューサ 11・・・出力トランスジューサ 12.13・・・主境界面 14.15・・・超音波吸収材
Figure 1 is a plan view of the Mi sonic solid-state delay line according to the present invention, Figure 2 is a side view of the delay line, Figure 3 is a side view of the delay line before completion, and Figure 4 is the completed delay line. The later side view, FIG. 5 is an explanatory diagram of the operation of the same delay line, the sixth side view, FIG. 5 is an explanatory diagram of the operation of the same delay line, and FIG. 6 is an explanatory diagram when manufacturing the delay line, 7-8 are side views of conventional delay lines. 1... Ultrasonic solid delay medium 2 to 7... Multiple reflection surface 8... Longitudinal wave 9... Transverse wave 10... Input transducer 11... Output transducer 12.13... Main boundary surface 14.15...Ultrasonic absorbing material

Claims (1)

【特許請求の範囲】 1、超音波固体遅延媒体に多角形の多重反射面を形成し
、前記反射面の一部に縦波を放射する入力トランスジュ
ーサと前記縦波が他の反射面において縦波−横波変換お
よび横波−縦波変換された縦波を入射する出力トランス
ジューサとを配置し、前記反射面に直交する主境界面の
少なくとも一部に前記入力トランスジューサから放射さ
れた前記縦波のスプリアスが前記主境界面において縦波
−横波変換された横波が入射される超音波吸収材を設け
たことを特徴とする超音波固体遅延線。 2、前記入力トランスジューサおよび出力トランスジュ
ーサは超音波固体遅延媒体と同厚であり、かつ前記主境
界面と直交している特許請求の範囲第1項記載の超音波
固体遅延線。 3、前記主境界面は平滑化されている特許請求の範囲第
1項記載の超音波固体遅延線。
[Claims] 1. An input transducer which forms a polygonal multiple reflection surface on an ultrasonic solid delay medium and emits a longitudinal wave on a part of the reflection surface, and the longitudinal wave emits a longitudinal wave on another reflection surface. - an output transducer that receives longitudinal waves that have been subjected to transverse wave conversion and transverse wave-longitudinal wave conversion; An ultrasonic solid delay line characterized in that an ultrasonic absorbing material is provided on the main boundary surface into which a longitudinal wave-transverse wave converted transverse wave is incident. 2. The ultrasonic solid delay line according to claim 1, wherein the input transducer and the output transducer have the same thickness as the ultrasonic solid delay medium and are orthogonal to the main boundary surface. 3. The ultrasonic solid delay line according to claim 1, wherein the main boundary surface is smoothed.
JP60130379A 1985-06-14 1985-06-14 Ultrasonic solid delay line Expired - Lifetime JPH0758877B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP60130379A JPH0758877B2 (en) 1985-06-14 1985-06-14 Ultrasonic solid delay line
US06/867,536 US4684906A (en) 1985-06-14 1986-05-28 Solid ultrasonic delay line
EP86107623A EP0213288B1 (en) 1985-06-14 1986-06-04 Solid ultrasonic delay line
DE86107623T DE3689161T2 (en) 1985-06-14 1986-06-04 Ultrasound solid-state delay line.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60130379A JPH0758877B2 (en) 1985-06-14 1985-06-14 Ultrasonic solid delay line

Publications (2)

Publication Number Publication Date
JPS61288511A true JPS61288511A (en) 1986-12-18
JPH0758877B2 JPH0758877B2 (en) 1995-06-21

Family

ID=15032931

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60130379A Expired - Lifetime JPH0758877B2 (en) 1985-06-14 1985-06-14 Ultrasonic solid delay line

Country Status (1)

Country Link
JP (1) JPH0758877B2 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4984342A (en) * 1972-12-19 1974-08-13
JPS5148940U (en) * 1974-10-11 1976-04-13
JPS5219942A (en) * 1975-08-07 1977-02-15 Fujitsu Ltd Pulse width change circuit

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4984342A (en) * 1972-12-19 1974-08-13
JPS5148940U (en) * 1974-10-11 1976-04-13
JPS5219942A (en) * 1975-08-07 1977-02-15 Fujitsu Ltd Pulse width change circuit

Also Published As

Publication number Publication date
JPH0758877B2 (en) 1995-06-21

Similar Documents

Publication Publication Date Title
JPS61288511A (en) Ultrasonic wave solid-state delay line
US10134973B2 (en) Ultrasonic transducer and manufacture method thereof
US4684906A (en) Solid ultrasonic delay line
JP2512708B2 (en) Ultrasonic solid delay line
JPH0449948B2 (en)
US3593213A (en) Ultrasonic delay line and method of manufacturing an ultrasonic delay line
US4821004A (en) Method for the elimination of spurious echos in electro-acoustic delay lines using bulk waves and delay line applying this method
JPH04103211A (en) Ultrasonic wave solid-state delay line
JPH0486013A (en) Ultrasonic solid-state delay line
US4510470A (en) Electro-acoustic delay line operating in transmission
Gibson Solid ultrasonic delay lines
US5173667A (en) Acoustic wave transmission media delay line having internally disposed absorber channels
JPS5936019Y2 (en) ultrasonic solid state retarder
JPS6218520A (en) Ultrasonic optical modulator
JPH0417658B2 (en)
JPH0323697Y2 (en)
US4034317A (en) Ultrasonic delay lines and method of making the same
JPS61288512A (en) Ultrasonic wave solid-state delay line
JPH03262316A (en) Ultrasonic wave solid-state delay line
JPH07178082A (en) Ultrasonic detection probe
JP2804561B2 (en) Ultrasonic probe
JPH0117320B2 (en)
JPH0115167B2 (en)
JPH11146492A (en) Ultrasonic probe
JPS61292550A (en) Array type ultrasonic probe