JP2512708B2 - Ultrasonic solid delay line - Google Patents

Ultrasonic solid delay line

Info

Publication number
JP2512708B2
JP2512708B2 JP60158865A JP15886585A JP2512708B2 JP 2512708 B2 JP2512708 B2 JP 2512708B2 JP 60158865 A JP60158865 A JP 60158865A JP 15886585 A JP15886585 A JP 15886585A JP 2512708 B2 JP2512708 B2 JP 2512708B2
Authority
JP
Japan
Prior art keywords
longitudinal wave
wave
ultrasonic
reflection
delay line
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60158865A
Other languages
Japanese (ja)
Other versions
JPS6218812A (en
Inventor
武男 横山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SWCC Corp
Original Assignee
Showa Electric Wire and Cable Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Electric Wire and Cable Co filed Critical Showa Electric Wire and Cable Co
Priority to JP60158865A priority Critical patent/JP2512708B2/en
Priority to US06/867,536 priority patent/US4684906A/en
Priority to DE86107623T priority patent/DE3689161T2/en
Priority to EP86107623A priority patent/EP0213288B1/en
Publication of JPS6218812A publication Critical patent/JPS6218812A/en
Application granted granted Critical
Publication of JP2512708B2 publication Critical patent/JP2512708B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Piezo-Electric Or Mechanical Vibrators, Or Delay Or Filter Circuits (AREA)

Description

【発明の詳細な説明】 [発明の技術分野] 本発明は、超音波固体遅延線に関し、特に、特性が良
く、製造が容易で、コストが低廉な中心周波数が極めて
高い、例えば100MHz程度の、高周波の超音波固体遅延線
に係わる。
Description: TECHNICAL FIELD OF THE INVENTION The present invention relates to an ultrasonic solid-state delay line, and in particular, it has excellent characteristics, is easy to manufacture, is inexpensive, and has a very high center frequency, for example, about 100 MHz. Related to high frequency ultrasonic solid delay line.

[発明の技術的背景] 従来から、低周波の超音波固体遅延線が知られている
(特公昭47-27574号、特公昭46-22818号公報、USP3,58
1,247)。これらの低周波の超音波固体遅延線では多角
形の多重反射面を形成し、第7図のように反射面30、31
に入力トランスジユーサ32と出力トランスジユーサ33と
を配置し、一般的には横波バルク波を用いて、そのスプ
リアスを前記反射面に直交する主境界面34、35に設けた
吸収材または乱反射面36、37により吸収あるいは乱反射
している。
[Technical Background of the Invention] Low-frequency ultrasonic solid-state delay lines have been conventionally known (Japanese Patent Publication No. 47-27574, Japanese Patent Publication No. 46-22818, USP 3,58).
1,247). These low-frequency ultrasonic solid delay lines form polygonal multiple reflection surfaces, and as shown in FIG.
An input transducer 32 and an output transducer 33 are arranged in the above, and generally, a transverse bulk wave is used, and its spurious is provided on the main boundary surfaces 34 and 35 which are orthogonal to the reflecting surface. It is absorbed or diffusely reflected by the surfaces 36 and 37.

ところで近時、例えば高品位テレビジヨンでは、例え
ば100MHzの中心周波数の極めて高い超音波固体遅延線が
要求されている。
By the way, recently, for example, in a high-definition television, an ultrasonic solid delay line having a center frequency of, for example, 100 MHz is extremely required.

このため、同じく横波バルク波を用いて、第8図のよ
うにそのサイドローブ等拡がった波38が反射してスプリ
アスにならないよう程度に遅延媒体Mの厚さtを入、出
力トランスジユーサ32、33に比べて厚くしていた。
For this reason, similarly, using the transverse bulk wave, the thickness t of the delay medium M is input to such an extent that the expanded wave 38 such as the side lobe is not reflected and spurious as shown in FIG. It was thicker than 33.

[背景技術の問題点] このような超音波固体遅延線は、第7〜8図のように
入、出力トランスジユーサ32、33に比べて厚い遅延媒体
Mの部分39によるスプリアスが発生しやすく、遅延媒体
の主境界面に入射する波は入射角が大きいため仮令第7
図のように吸収材を付着しても吸収効果が薄くそのまま
反射しやすく、また遅延媒体が厚くなり、かつ1個づつ
製造するためコストが高くなるという難点がある。
[Problems of the Background Art] Such an ultrasonic solid delay line is apt to generate spurious due to the thicker portion 39 of the delay medium M than the input and output transducers 32 and 33 as shown in FIGS. Since the wave incident on the main interface of the delay medium has a large incident angle,
As shown in the figure, even if the absorber is attached, there is a problem that the absorption effect is thin and it is easy to reflect as it is, the delay medium is thick, and the cost is high because each delay medium is manufactured.

[発明の目的] 本発明は上記従来の難点に鑑みなされたもので、特性
が良く、製造が容易で、コストが低廉な中心周波数が極
めて高い100MHz程度の、高周波のノンデイスパーシブな
超音波固体遅延線を提供せんとするものである。
[Object of the Invention] The present invention has been made in view of the above-mentioned conventional drawbacks, and is a high-frequency non-dispersive ultrasonic wave with a high center frequency of about 100 MHz, which has good characteristics, is easy to manufacture, and is inexpensive. It is intended to provide a solid delay line.

[発明の概要] このような目的を達成するために本発明の超音波固体
遅延線によれば、超音波固体遅延媒体に多角形の多重反
射面を形成し、反射面の一部に縦波を放射する入力トラ
ンスジユーサと縦波が他の反射面において縦波−横波変
換および更に他の反射面において横波−縦波変換された
縦波を入射する出力トランスジユーサとをそれぞれ配置
し、入力トランスジユーサおよび出力トランスジユーサ
は超音波固体遅延媒体と同厚であり、かつ反射面に直交
する主境界面の少なくとも一部に入力トランスジユーサ
から放射され主境界面に平行に近い角度で入射した縦波
のスプリアスを主境界面において縦波−横波のモード変
換、あるいは縦波−縦波変換し横波あるいは縦波として
乱反射させる超音波乱反射領域を設けたものである。
[Summary of the Invention] In order to achieve such an object, according to the ultrasonic solid delay line of the present invention, a polygonal multiple reflection surface is formed on the ultrasonic solid delay medium, and a longitudinal wave is formed on a part of the reflection surface. An input transducer for radiating and an output transducer for which a longitudinal wave is longitudinal wave-transverse wave conversion on the other reflecting surface and an incident longitudinal wave is converted on the other side. The input transducer and the output transducer have the same thickness as the ultrasonic solid delay medium, and the angle radiated from the input transducer to at least a part of the main boundary surface orthogonal to the reflecting surface and parallel to the main boundary surface. In the main boundary surface, an ultrasonic diffused reflection area is provided in which longitudinal wave-transverse wave mode conversion or longitudinal wave-longitudinal wave conversion is performed and diffused and reflected as a transverse wave or a longitudinal wave.

[発明の実施例] 以下、本発明の好ましい実施例を図面により説明す
る。
Embodiments of the Invention Preferred embodiments of the present invention will be described below with reference to the drawings.

本発明の超音波固体遅延線は、第1〜2図に示すよう
に、ガラスのような超音波固体遅延媒体1には、6角形
の多重反射面2〜7が形成され、前記反射面の一部2、
4い、縦波8(点線で示す)を放射する入力トランスジ
ユーサ10と前記縦波が他の反射面5、7において縦波−
横波9(実線で示す)変換および横波−縦波変換された
縦波を入射する出力トランスジユーサ11とが配置されて
いる。なお、図示の例では多重反射面2〜7は5角形に
形成されているが、遅延線の遅延量に応じて他の多角形
とすることができる。
In the ultrasonic solid delay line of the present invention, hexagonal multiple reflection surfaces 2 to 7 are formed on an ultrasonic solid delay medium 1 such as glass as shown in FIGS. Part 2,
4. The input transducer 10 which radiates a longitudinal wave 8 (shown by a dotted line) and the longitudinal wave is reflected by the other reflecting surfaces 5 and 7 in the longitudinal wave-
An output transducer 11 for arranging a transverse wave 9 (shown by a solid line) conversion and a transverse wave-longitudinal wave converted longitudinal wave is incident. Although the multiple reflection surfaces 2 to 7 are formed in a pentagon in the illustrated example, they can be formed in other polygons according to the delay amount of the delay line.

反射面2〜7に直交する2つの平行な主境界面12、13
の少なくとも一部、図示の例では殆ど全面に、前記入力
トランスジユーサ10から放射された縦波のスプリアス16
(第3〜4図)を主境界面12、13において乱反射させる
超音波乱反射領域14、15が設けられている。
Two parallel main boundary surfaces 12 and 13 orthogonal to the reflecting surfaces 2 to 7
Of the longitudinal wave spurious radiation 16 radiated from the input transducer 10 over at least a part of it, and almost the entire surface in the illustrated example.
Ultrasonic diffused reflection areas 14 and 15 are provided for diffusely reflecting (FIGS. 3 to 4) on the main boundary surfaces 12 and 13.

入力トランスジユーサ10および出力トランスジユーサ
11は超音波固体遅延媒体の厚さと同幅(t0で示す)で
あり、かつ前記主境界面12、13と直交(∠Rで示す)し
ている。但し、トランスジユーサ10の電極(図示せず)
は超音波光媒体1の厚さと同幅(t0)にする必要はな
い。主境界面12、13の面の粗さは伝搬超音波の波長λの
λ/20乃至λ/5である。面の粗さが伝搬超音波の波長λ
のλ/20より細かいとき、λ/5より粗いときは所望の乱
反射をしないので、何れも好ましくない。
Input Transducer 10 and Output Transducer
Reference numeral 11 has the same width as the thickness of the ultrasonic solid delay medium (shown as t 0 ), and is orthogonal to the main boundary surfaces 12 and 13 (shown as ∠R). However, the electrode of the transducer 10 (not shown)
Does not have to have the same width (t 0 ) as the thickness of the ultrasonic optical medium 1. The roughness of the main boundary surfaces 12 and 13 is λ / 20 to λ / 5 of the wavelength λ of the propagating ultrasonic wave. Surface roughness is the wavelength λ of the propagating ultrasonic wave
When it is finer than λ / 20 and when it is rougher than λ / 5, desired diffuse reflection is not performed, and thus both are not preferable.

このように構成された超音波固体遅延線によれば、超
音波固体遅延媒体1の反射面2に配置された入力トラン
スジユーサ10からその面に90°で放射された縦波8は遅
延媒体1中を伝播してゆく。この縦波は他の反射面5に
おいて縦波−横波変換されて横波9として他の反射面6
へ曲げられて進行する。
According to the ultrasonic solid-state delay line configured as described above, the longitudinal wave 8 radiated at 90 ° from the input transducer 10 arranged on the reflecting surface 2 of the ultrasonic solid-state delay medium 1 is delayed by the delay medium. Propagate through 1. This longitudinal wave is subjected to longitudinal wave-transverse wave conversion on the other reflection surface 5 to form a transverse wave 9 on the other reflection surface 6.
It bends to and advances.

この様子を第5図により説明する。 This situation will be described with reference to FIG.

固体媒体Iと流体媒体IIとの境界面5に縦波8がαの
角度で入射すると、反射波は縦波8aの他に横波9も現わ
れる。縦波の反射角αは入射角αは等しいが、横波の反
射角βはこれと異なる。これらの反射における反射角相
互の関係は、 Sinα/Sinβ=CpI/CsI となる。なお、CpIは媒体I中の縦波の伝播速度、CsIは
媒体I中の横波の伝播速度である。
When the longitudinal wave 8 is incident on the boundary surface 5 between the solid medium I and the fluid medium II at an angle of α, a transverse wave 9 appears in addition to the longitudinal wave 8a. The reflection angle α of the longitudinal wave is equal to the incident angle α, but the reflection angle β of the transverse wave is different from this. The relationship between the reflection angles of these reflections is Sinα / Sinβ = CpI / CsI. Note that CpI is the propagation velocity of the longitudinal wave in the medium I, and CsI is the propagation velocity of the transverse wave in the medium I.

入射縦波8と反射縦波8aの振幅の割合は媒体Iのポア
ソン比をパラメータとして入射角αに依存し、反射縦波
8aの振幅が0(零)になる入射角がある。この反射縦波
8aの振幅が0になる入射角においては、入射縦波8は完
全に横波9への変換が起きる。例えば、媒体Iがポアソ
ン比約0.14の石英ガラス、流体媒体IIが空気の場合、入
射角αが約45°で反射縦波8aの振幅が0になり、入射縦
波8は完全に横波9への変換が起きる。この横波9の反
射角βは約30°となる。第1図の縦波の反射角α、横波
の反射角βは第5図のそれに対応している。
The ratio of the amplitudes of the incident longitudinal wave 8 and the reflected longitudinal wave 8a depends on the incident angle α with the Poisson's ratio of the medium I as a parameter.
There is an incident angle at which the amplitude of 8a becomes 0 (zero). This reflected longitudinal wave
At the incident angle where the amplitude of 8a becomes 0, the incident longitudinal wave 8 is completely converted into the transverse wave 9. For example, when the medium I is quartz glass with a Poisson's ratio of about 0.14 and the fluid medium II is air, the amplitude of the reflected longitudinal wave 8a becomes 0 at an incident angle α of about 45 °, and the incident longitudinal wave 8 becomes a transverse wave 9 completely. The conversion of The reflection angle β of this transverse wave 9 is about 30 °. The longitudinal wave reflection angle α and the transverse wave reflection angle β in FIG. 1 correspond to those in FIG.

この横波は反射面6において横波−横波の全反射を受
け、さらに他の反射面7において、上記変換とは逆の横
波−縦波変換された縦波は超音波固体遅延媒体1の反射
面4に配置された出力トランスジユーサ11にその面に90
°で入射する。
This transverse wave undergoes total reflection of transverse wave-transverse wave on the reflecting surface 6, and further, on the other reflecting surface 7, the longitudinal wave that is the transverse wave-longitudinal wave reverse to the above-mentioned conversion is reflected on the reflecting surface 4 of the ultrasonic solid delay medium 1. Output Transducer placed at 11 to 90 on its face
Incident at °.

前述のように本発明による超音波固体遅延線は入力ト
ランスジユーサ10および出力トランスジユーサ11が超音
波固体遅延媒体の厚さと同幅(t0)であるので、入、
出力トランスジユーサ10、11は0モード以外のモード波
を発信、受信しない機能を実質的に帯有するから、ノン
デイスパーシブモード遅延線の構成を容易にする。但
し、第3図に示すように、殆ど主境界面12、13に平行に
近い波が発生し、スプリアス16となる。従来技術では、
このスプリアスは前述のように第7〜8図の構成で防止
していたのであるが、本発明では主境界面12、13の少な
くとも一部、図示の例では殆ど全面に、超音波乱反射領
域14、15を設けたので、入力トランスジユーサ10から放
射され主境界面12、13に平行に近い角度で入射した縦波
8のスプリアス16は第5図で説明したように少なくとも
その一部が縦波−横波のモード変換され、あるいは縦波
−縦波変換され横波あるいは縦波として乱反射(第4図
において代表的に17で示す)されるから、スプリアス波
はこの超音波乱反射領域14、15で消滅し、取り除かれ
る。さらに、主境界面12、13の超音波乱反射領域14、15
上にエポキシ樹脂等の超音波吸収材を接着すれば、この
スプリアス波が主境界面12、13において吸収され、スプ
リアス波の除去効果が向上する。
As described above, the ultrasonic solid-state delay line according to the present invention has the input transducer 10 and the output transducer 11 having the same width (t 0 ) as the thickness of the ultrasonic solid-state delay medium.
The output transducers 10 and 11 substantially have a function of transmitting and receiving mode waves other than the 0 mode, which facilitates the construction of the non-dispersive mode delay line. However, as shown in FIG. 3, almost parallel waves are generated on the main boundary surfaces 12 and 13 and become spurious 16. In the prior art,
As described above, this spurious was prevented by the structure shown in FIGS. 7 to 8. However, in the present invention, at least a part of the main boundary surfaces 12 and 13, almost the entire surface in the illustrated example, the ultrasonic diffused reflection area 14 is formed. , 15 are provided, the spurious 16 of the longitudinal wave 8 radiated from the input transducer 10 and incident on the main boundary surfaces 12 and 13 at an angle close to parallel is at least partly vertical as described in FIG. Since the wave-transverse wave mode is converted or the longitudinal wave-longitudinal wave is converted and is diffusely reflected as a transverse wave or a longitudinal wave (represented by 17 in FIG. 4), spurious waves are generated in the ultrasonic irregular reflection regions 14 and 15. It disappears and is removed. Furthermore, the ultrasonic diffused reflection areas 14 and 15 of the main boundary surfaces 12 and 13 are
If an ultrasonic absorber such as an epoxy resin is adhered to the upper part, the spurious waves are absorbed at the main boundary surfaces 12 and 13, and the effect of removing the spurious waves is improved.

なお、入力トランスジユーサ10および出力トランスジ
ユーサ11が2つの平行な主境界面12、13と直交している
ので、入力トランスジユーサ10から放射された直進波が
主境界面12、13間において直進して出力トランスジユー
サ11に入射する。
Since the input transducer 10 and the output transducer 11 are orthogonal to the two parallel main boundary surfaces 12 and 13, the rectilinear wave radiated from the input transducer 10 is between the main boundary surfaces 12 and 13. Goes straight on and enters the output transducer 11.

このような超音波固体遅延線を製造するに当たって
は、第6図に示すように、予め設計した形状寸法の多角
形の多重反射面2〜7(第1図)を形成した超音波固体
遅延媒体1のブロツク40を準備する。反射面の一部2、
4に錫電極41、42を蒸着で付ける。その上に、入力トラ
ンスジユーサストリツプ43と出力トランスジユーサスト
リツプ44とを配置する。この状態で遅延時間を判定し、
反射面6を必要量だけ研磨する(主調整)。これをスラ
イシングマシンで切断し、入力トランスジユーサ10と出
力トランスジユーサ11とを備えた各ユニツト45を得る。
この際、遅延時間を測定し、必要ならば、反射面6を研
磨する(微調整)。各ユニツト45の主境界面に粗面加工
を施して超音波乱反射領域36、37を形成する(第4
図)。
In manufacturing such an ultrasonic solid delay line, as shown in FIG. 6, an ultrasonic solid delay medium having polygonal multiple reflection surfaces 2 to 7 (FIG. 1) of predesigned shape dimensions is formed. Prepare block 40 of 1. Part of the reflective surface 2,
The tin electrodes 41 and 42 are attached to 4 by vapor deposition. On top of that, an input transformer strip 43 and an output transformer strip 44 are arranged. Determine the delay time in this state,
The reflective surface 6 is polished by the required amount (main adjustment). This is cut with a slicing machine to obtain each unit 45 having an input transducer 10 and an output transducer 11.
At this time, the delay time is measured, and if necessary, the reflecting surface 6 is polished (fine adjustment). The main boundary surface of each unit 45 is roughened to form ultrasonic diffused reflection areas 36 and 37 (fourth).
Figure).

このような製造技法によれば、予め設計した形状寸法
の多角形の多重反射面を形成した超音波固体遅延媒体の
ブロツクに、入力トランスジユーサストリツプと出力ト
ランスジユーサストリツプを設けた状態で遅延時間を調
整した後、全体を各ユニツトに切断するので、得られた
各ユニツトに遅延時間が不揃いとなることはなく、高品
質の超音波固体遅延線が得られる。また、入力トランス
ジユーサおよび出力トランスジユーサは超音波固体遅延
媒体の厚さと同幅で切断されるからノンデイスパーシブ
モード遅延線の構成を容易にする。
According to such a manufacturing technique, a block of an ultrasonic solid delay medium having a polygonal multiple reflection surface of a predesigned geometrical dimension is provided with an input transducer strip and an output transducer strip. After adjusting the delay time in this state, the whole is cut into each unit, so that the delay time does not become uneven in each unit, and a high-quality ultrasonic solid delay line can be obtained. Further, since the input transducer and the output transducer are cut with the same width as the thickness of the ultrasonic solid delay medium, the construction of the non-dispersive mode delay line is facilitated.

[発明の効果] 以上の実施例からも明らかなように本発明によれば、
超音波固体遅延媒体に多角形の多重反射面を形成し、反
射面の一部に縦波を放射する入力トランスジユーサと縦
波が他の反射面において縦波−横波変換および更に他の
反射面において横波−縦波変換された縦波を入射する出
力トランスジユーサとをそれぞれ配置し、入力トランス
ジユーサおよび出力トランスジユーサは超音波固体遅延
媒体と同厚であり、かつ反射面に直交する主境界面の少
なくとも一部に入力トランスジユーサから放射され主境
界面に平行に近い角度で入射した縦波のスプリアスを主
境界面において縦波−横波のモード変換、あるいは縦波
−縦波変換し横波あるいは縦波として乱反射させる超音
波乱反射領域を設けたので、サイドローブ等拡がつた波
を完全に吸収でき直進波のみ使用でき特性が良く、中心
周波数が極めて高い、例えば100MHz程度の高周波のノン
デイスパーシブな超音波固体遅延線が得られる。さら
に、超音波固体遅延媒体の厚さを薄くすることができ材
料が節約される。また、製造が容易で、高品質の超音波
固体遅延線が提供される。
[Effects of the Invention] As is apparent from the above embodiments, according to the present invention,
An ultrasonic solid delay medium is formed with a polygonal multiple reflection surface, and an input transducer that emits a longitudinal wave on a part of the reflection surface and the longitudinal wave undergoes longitudinal wave-transverse wave conversion and other reflection on another reflection surface. And an output transducer for injecting a longitudinal wave that has undergone transverse-longitudinal wave conversion on the surface are respectively arranged, and the input transducer and the output transducer have the same thickness as the ultrasonic solid delay medium and are orthogonal to the reflecting surface. Longitudinal wave-transverse wave mode conversion, or longitudinal wave-longitudinal wave spurious wave, which is emitted from the input transducer to at least a part of the main boundary surface and is incident on the main boundary surface at an angle close to parallel to the main boundary surface. Since the ultrasonic diffused reflection area that converts and diffusely reflects as a transverse wave or a longitudinal wave is provided, it is possible to completely absorb the waves that spread such as side lobes and use only straight waves, and the characteristics are excellent, and the center frequency is extremely high. , For example, 100MHz high frequency of about non disperser inclusive ultrasonic solid delay line is obtained. Further, the thickness of the ultrasonic solid delay medium can be reduced, saving material. Also, a high quality ultrasonic solid-state delay line that is easy to manufacture is provided.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明による超音波固体遅延線の平面図、第2
図は同遅延線の側面図、第3図は同遅延線の完成前の側
面図、第4図は同遅延線の完成後の側面図、第5図は同
遅延線の動作説明図、第6図は同遅延線を製造する際の
説明図、第7〜8図は従来の遅延線の側面図である。 1……超音波固体遅延媒体 2〜7……多重反射面 (2、4……多重反射面の一部 5……他の反射面 7……更に他の反射面) 8……縦波 9……横波 10……入力トランスジユーサ 11……出力トランスジユーサ 12、13……主境界面 14、15……超音波乱反射領域 16……スプリアス t0……同厚 ∠R……直交
FIG. 1 is a plan view of an ultrasonic solid-state delay line according to the present invention, and FIG.
FIG. 4 is a side view of the delay line, FIG. 3 is a side view of the delay line before completion, FIG. 4 is a side view of the delay line after completion, and FIG. FIG. 6 is an explanatory diagram for manufacturing the delay line, and FIGS. 7 to 8 are side views of a conventional delay line. 1 ... Ultrasonic solid delay medium 2-7 ... Multiple reflection surface (2, 4 ... Part of multiple reflection surface 5 ... Other reflection surface 7 ... Still other reflection surface) 8 ... Longitudinal wave 9 …… Transverse wave 10 …… Input transducer 11 …… Output transducer 12, 13 …… Main boundary surface 14, 15 …… Ultrasonic diffuse reflection area 16 …… Spurious t 0 …… Same thickness ∠R …… Orthogonal

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭58−191515(JP,A) 実開 昭51−48940(JP,U) 特公 昭46−22818(JP,B1) 特公 昭47−27574(JP,B1) 特公 昭45−41148(JP,B1) ─────────────────────────────────────────────────── ─── Continuation of the front page (56) References JP-A-58-191515 (JP, A) Sekikai-SHO 51-48940 (JP, U) JP-B 46-22818 (JP, B1) JP-B 47- 27574 (JP, B1) JP-B-45-41148 (JP, B1)

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】超音波固体遅延媒体(1)に多角形の多重
反射面(2〜7)を形成し、前記反射面の一部(2、
4)に縦波(8)を放射する入力トランスジユーサ(1
0)と前記縦波が他の反射面(5)において縦波−横波
変換および更に他の反射面(7)において横波−縦波変
換された縦波(8)を入射する出力トランスジユーサ
(11)とをそれぞれ配置し、前記入力トランスジユーサ
および出力トランスジユーサは前記超音波固体遅延媒体
と同厚(t0)であり、かつ前記反射面に直交する主境
界面(12、13)の少なくとも一部に前記入力トランスジ
ユーサから放射され前記主境界面に平行に近い角度で入
射した前記縦波のスプリアス(16)を前記主境界面にお
いて縦波−横波のモード変換、あるいは縦波−縦波変換
し横波あるいは縦波として乱反射させる超音波乱反射領
域(14、15)を設けたことを特徴とする超音波固体遅延
線。
1. An ultrasonic solid delay medium (1) is provided with polygonal multiple reflection surfaces (2-7), and a part of the reflection surfaces (2, 7) is formed.
4) Input transducer (1) that emits longitudinal wave (8)
0) and the longitudinal wave (8), which has been subjected to the longitudinal wave-transverse wave conversion at the other reflection surface (5) and the transverse wave-longitudinal wave conversion at the other reflection surface (7), and the longitudinal wave (8). 11) are arranged respectively, and the input transducer and the output transducer have the same thickness (t 0 ) as the ultrasonic solid delay medium, and the main boundary surface (12, 13) orthogonal to the reflection surface. Longitudinal wave-transverse wave mode conversion at the main boundary surface, or longitudinal wave spurious radiation (16) radiated from at least a part of the input transducer and incident on the main boundary surface at an angle close to parallel to the main boundary surface. An ultrasonic solid-state delay line provided with ultrasonic diffused reflection regions (14, 15) for longitudinal wave conversion and diffused reflection as a transverse wave or a longitudinal wave.
JP60158865A 1985-06-14 1985-07-17 Ultrasonic solid delay line Expired - Lifetime JP2512708B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP60158865A JP2512708B2 (en) 1985-07-17 1985-07-17 Ultrasonic solid delay line
US06/867,536 US4684906A (en) 1985-06-14 1986-05-28 Solid ultrasonic delay line
DE86107623T DE3689161T2 (en) 1985-06-14 1986-06-04 Ultrasound solid-state delay line.
EP86107623A EP0213288B1 (en) 1985-06-14 1986-06-04 Solid ultrasonic delay line

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60158865A JP2512708B2 (en) 1985-07-17 1985-07-17 Ultrasonic solid delay line

Publications (2)

Publication Number Publication Date
JPS6218812A JPS6218812A (en) 1987-01-27
JP2512708B2 true JP2512708B2 (en) 1996-07-03

Family

ID=15681088

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60158865A Expired - Lifetime JP2512708B2 (en) 1985-06-14 1985-07-17 Ultrasonic solid delay line

Country Status (1)

Country Link
JP (1) JP2512708B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004030721A (en) 2002-06-21 2004-01-29 Alps Electric Co Ltd Magnetic head and recording and reproducing device

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5440761Y2 (en) * 1974-10-11 1979-11-30
JPS58191515A (en) * 1982-04-30 1983-11-08 Showa Electric Wire & Cable Co Ltd Ultrasonic wave solid-state delay line

Also Published As

Publication number Publication date
JPS6218812A (en) 1987-01-27

Similar Documents

Publication Publication Date Title
JPS6250729A (en) Acoustooptic modulator
JP2512708B2 (en) Ultrasonic solid delay line
US10134973B2 (en) Ultrasonic transducer and manufacture method thereof
US4684906A (en) Solid ultrasonic delay line
JPH0758877B2 (en) Ultrasonic solid delay line
JPH0486013A (en) Ultrasonic solid-state delay line
JPH04103211A (en) Ultrasonic wave solid-state delay line
JP3003489B2 (en) Ultrasonic probe
JPS6218520A (en) Ultrasonic optical modulator
JP2001285012A (en) Surface acoustic wave filter
JPS5936019Y2 (en) ultrasonic solid state retarder
JP2804561B2 (en) Ultrasonic probe
JP2002152890A (en) Ultrasonic wave probe
JP3095055B2 (en) Electronic scanning probe for angle beam inspection
JPH075698Y2 (en) Ultrasonic delay line
JPS6133518B2 (en)
JPS5921545Y2 (en) surface wave filter
JPS6218521A (en) Ultrasonic optical modulator
JPS5843290Y2 (en) ultrasonic delay line
JPS6347078Y2 (en)
JPS61288512A (en) Ultrasonic wave solid-state delay line
JP2912639B2 (en) Ultrasonic angle beam probe
EP0088653B1 (en) Electroacoustical delay line
Penttinen et al. Surface wave generation by comb transducers
JPH0362414B2 (en)