JPS6218520A - Ultrasonic optical modulator - Google Patents

Ultrasonic optical modulator

Info

Publication number
JPS6218520A
JPS6218520A JP15886485A JP15886485A JPS6218520A JP S6218520 A JPS6218520 A JP S6218520A JP 15886485 A JP15886485 A JP 15886485A JP 15886485 A JP15886485 A JP 15886485A JP S6218520 A JPS6218520 A JP S6218520A
Authority
JP
Japan
Prior art keywords
ultrasonic
wave
transducer
optical medium
ultrasonic optical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15886485A
Other languages
Japanese (ja)
Inventor
Takeo Yokoyama
横山 武男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SWCC Corp
Original Assignee
Showa Electric Wire and Cable Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Electric Wire and Cable Co filed Critical Showa Electric Wire and Cable Co
Priority to JP15886485A priority Critical patent/JPS6218520A/en
Publication of JPS6218520A publication Critical patent/JPS6218520A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a non-dispersive ultrasonic optical modulator which has excellent characteristics of the phases of ultrasonic waves and can be easily manufactured at an inexpensive cost by installing on a main boundary surface an ultrasonic wave irregularly reflecting area reflecting irregularly the spurious of the ultrasonic wave radiated from a transducer. CONSTITUTION:The titled modulator is equipped with ultrasonic wave irregularly reflecting areas 14 and 15 on the main boundary surfaces 12 and 13. The spurious S of a longitudinal wave 8 made incident on the main boundary surfaces 12 and 13 from an input transducer 10 at an angle almost parallel in said surfaces is subjected to the mode conversion from a longitudinal wave to a transversal one, or from transversal to longitudinal, and is irregularly reflected as a transversal or longitudinal wave. Accordingly, the spurious wave vanishes in the ultrasonic wave irregularly reflecting areas 14 and 15 and is removed.

Description

【発明の詳細な説明】 [発明の技術分野] 本発明は、超音波光変調器に間し、特に、特性が良く、
製造が容易で、コストが低置な超音波光変調器に係わる
[Detailed Description of the Invention] [Technical Field of the Invention] The present invention relates to an ultrasonic optical modulator, and particularly to an ultrasonic optical modulator having good characteristics and
The present invention relates to an ultrasonic optical modulator that is easy to manufacture and inexpensive.

[発明の技術的背景] 第6図(a)、(b)に示すように、透明媒体40中を
進行する音波41(速度V、波長入)にレーザ光42を
入射させると回折光43が得られる。回折されるレーザ
光43の強度は音波410強度によって変化する。した
がって、音波41の印加振幅を変化させれば回折される
レーザ光43の強度を変調させることができる。そのよ
うな超音波光変調器の光学構成を第7図に示す。同図に
おいて、超音波光透明媒体40の一端に配置されたトラ
ンスジューサ44の電極45には駆動源46により高周
波信号が印加され超音波を超音波光媒体40に進行させ
る。該媒体に放射された超音波にレーザビーム光41を
入射させて回折ビーム光43を得る。なお、図中47.
49はアバ−チア、48.50は人、出力レンズ、51
は超音波光媒体40の他端に設けられた超音波吸収材で
ある。 ところで、高特性の超音波光変調器を得るため
の大きな要素の一つは超音波光媒体中を第6図(a)、
(b)に示すように位相の揃った強い超音波が伝搬する
ことである。
[Technical Background of the Invention] As shown in FIGS. 6(a) and (b), when a laser beam 42 is incident on a sound wave 41 (velocity V, wavelength included) traveling in a transparent medium 40, diffracted light 43 is generated. can get. The intensity of the diffracted laser beam 43 changes depending on the intensity of the sound wave 410. Therefore, by changing the applied amplitude of the sound wave 41, the intensity of the diffracted laser beam 43 can be modulated. The optical configuration of such an ultrasonic optical modulator is shown in FIG. In the same figure, a high frequency signal is applied by a drive source 46 to an electrode 45 of a transducer 44 disposed at one end of an ultrasonic optical transparent medium 40 to cause the ultrasonic waves to proceed to the ultrasonic optical medium 40 . A laser beam 41 is made incident on the ultrasonic wave emitted to the medium to obtain a diffracted beam 43. In addition, 47.
49 is Avachia, 48.50 is a person, output lens, 51
is an ultrasonic absorbing material provided at the other end of the ultrasonic optical medium 40. By the way, one of the major factors for obtaining a high-performance ultrasonic optical modulator is to move the ultrasonic optical medium into the ultrasonic optical medium as shown in FIG. 6(a).
As shown in (b), strong ultrasonic waves with the same phase propagate.

このため従来から、第8図に示すようにトランスジュー
サ44から超音波光媒体40中に放射された、一般には
縦波の超音波41のうち位相の揃った音波す、C,d部
のみで光音響相互作用を起こさせ、サイドローブとして
斜行する音波&、 8部で光音響相互作用を起こさせな
いで、かつ音波a、b、c、d、eを超音波光媒体40
の斜面52で反射させ超音波光媒体40の他の面53に
設けた吸収材51により吸収し、戻りの音波を発生させ
ないようにしている。
For this reason, conventionally, as shown in FIG. 8, of the ultrasonic waves 41, which are generally longitudinal waves, emitted from the transducer 44 into the ultrasonic optical medium 40, only the phase C and d portions of the ultrasonic waves are emitted into the ultrasonic optical medium 40. Sound waves a, b, c, d, and e are transmitted to the ultrasonic optical medium 40 without causing photoacoustic interaction and causing acoustic interaction and obliquely traveling as side lobes.
The waves are reflected by the slope 52 of the ultrasonic optical medium 40 and absorbed by the absorbing material 51 provided on the other surface 53 of the ultrasonic optical medium 40, thereby preventing generation of return sound waves.

[背景技術の問題点] このような超音波光変調器は、位相の揃った音波す、c
、dを発生させるためには超音波光媒体が厚くなり、か
つ1個づつ製造するためコストが高くなるという難点が
ある。
[Problems with the background art] Such an ultrasonic optical modulator uses phase-aligned sound waves, c
, d requires the ultrasonic optical medium to be thick, and the cost is high because it is manufactured one by one.

[発明の目的] 本発明は上記従来の難点に鑑みなされたもので、特性が
良く、製造が容易で、コストが低置な超音波光変調器を
提供することである。
[Object of the Invention] The present invention has been made in view of the above-mentioned conventional difficulties, and it is an object of the present invention to provide an ultrasonic optical modulator that has good characteristics, is easy to manufacture, and is inexpensive.

[発明の概要] このような目的を達成するために本発明の超音波光変調
器によれば、超音波光媒体の一つの面に配置されたトラ
ンスジューサにより該媒体に放射された超音波に光を入
射させて回折光を得る超音波光変調器において、前記超
音波光媒体の前記一つの面に直交する主境界面の少なく
とも一部に前記トランスジューサから放射された超音波
のスプリアスを前記主境界面において乱反射させる超音
波乱反射領域を設けたものである。
[Summary of the Invention] In order to achieve the above object, the ultrasonic optical modulator of the present invention uses an ultrasonic wave emitted to an ultrasonic optical medium by a transducer placed on one surface of the medium. In an ultrasonic optical modulator that obtains diffracted light by making the ultrasonic optical medium incident on at least a part of a main boundary surface perpendicular to the one surface of the ultrasonic optical medium, a spurious wave of the ultrasonic wave emitted from the transducer is transmitted to at least a part of the main boundary surface that is perpendicular to the one surface of the ultrasonic optical medium. This is provided with an ultrasonic diffused reflection area that causes diffused reflection on the surface.

[発明の実施例] 以下、本発明の好ましい実施例を図面により説明する。[Embodiments of the invention] Preferred embodiments of the present invention will be described below with reference to the drawings.

本発明の超音波光変調器は、第1〜2図に示すように、
例えばモリブテン酸鉛、酸化テルル等の単結晶や重フリ
ントガラス製の超音波光媒体1の一つの面2にトランス
ジューサ10が配置されている。トランスジューサ10
は、例えば、リチウムナイオベート単結晶でできている
。このトランスジュー・す10により媒体lに放射され
た超音波に光41を入射させて回折光43を得る超音波
光変調器の光学構成は第7図に示すものと同様であるの
で、その説明は省略する。
As shown in FIGS. 1 and 2, the ultrasonic optical modulator of the present invention has the following features:
A transducer 10 is arranged on one surface 2 of an ultrasonic optical medium 1 made of, for example, a single crystal of lead molybstate, tellurium oxide, etc. or heavy flint glass. transducer 10
is made of, for example, lithium niobate single crystal. The optical configuration of the ultrasonic optical modulator that makes the light 41 incident on the ultrasonic wave radiated to the medium 1 by the transducer 10 to obtain the diffracted light 43 is the same as that shown in FIG. is omitted.

第3図に示すように、超音波光媒体1の一つの面2に直
交する主境界面12.13の少なくとも一部、図示の例
では殆ど全面に、トランスジューサ10から放射された
縦波8の超音波のスプリアスSを主境界面において乱反
射させる超音波乱反射領域14、!5を設けたものであ
る。超音波乱反射領域14.15の面の粗さは伝搬超音
波の波長λのλ/20乃至λ/5である。面の粗さが伝
1114音波の波長入のλ/20より細かいとき、λ/
5より粗いときは所望の乱反射をしないので、何れも好
ましくない。
As shown in FIG. 3, the longitudinal waves 8 emitted from the transducer 10 cover at least a portion of the main boundary surface 12, 13 perpendicular to one surface 2 of the ultrasonic optical medium 1, almost the entire surface in the illustrated example. Ultrasonic diffused reflection region 14 that diffusely reflects the spurious ultrasonic waves S at the main boundary surface! 5. The roughness of the surface of the ultrasonic diffuse reflection region 14.15 is λ/20 to λ/5 of the wavelength λ of the propagating ultrasonic wave. When the surface roughness is finer than λ/20 of the wavelength of the transmitted 1114 sound wave, λ/
If it is coarser than 5, the desired diffused reflection will not occur, so any of these is not preferable.

トランスジューサ10の厚さは超音波光媒体1の厚さと
同幅(1,で示す)であり、かつ前記主境界面】2.1
3と直交(、?Rて示す)している。
The thickness of the transducer 10 is the same width (indicated by 1) as the thickness of the ultrasonic optical medium 1, and the main boundary surface]2.1
It is orthogonal to 3 (indicated by ?R).

但し、トランスジューサ10の電極く図示せず)は超音
波光媒体1の厚さと同幅(to)にする必要はない。ま
た、超音波光媒体1の厚さは伝搬超音波の波長λの50
λ乃至lOλである。光ビームは通常1 mm程度であ
り、超音波光媒体lの厚さが伝搬超音波の波、長久の5
0人より厚くなると、材料が無駄になり、10λより薄
くなると、光ビームを通過できなくなる。
However, the electrodes of the transducer 10 (not shown) need not have the same width as the thickness of the ultrasound optical medium 1. Moreover, the thickness of the ultrasonic optical medium 1 is 50 mm of the wavelength λ of the propagating ultrasonic wave.
λ to lOλ. The light beam is usually about 1 mm thick, and the thickness of the ultrasonic optical medium is about 5 mm thick compared to the propagating ultrasonic wave.
If it is thicker than 0, material is wasted, and if it is thinner than 10λ, the light beam cannot pass through it.

このように構成された超音波光変調器によれば、超音波
光媒体1の一つの面2に配置されたトランスジューサ1
0からその面に90’で放射された縦波7は超音波光媒
体1中を伝播してゆく(なお、トランスジューサ10か
らその面に90°で放射される波は、縦波70代わりに
横波を用いてもよい)。この縦波7を超音波光媒体1の
他面に設けた超音波吸収材16において吸収させてもよ
い。
According to the ultrasonic optical modulator configured in this way, the transducer 1 disposed on one surface 2 of the ultrasonic optical medium 1
The longitudinal wave 7 emitted from the transducer 10 to the surface at 90° propagates in the ultrasonic optical medium 1 (the wave emitted from the transducer 10 to the surface at 90° is a transverse wave instead of the longitudinal wave 70). ). This longitudinal wave 7 may be absorbed by an ultrasonic absorbing material 16 provided on the other surface of the ultrasonic optical medium 1.

前述のように本発明による超音波光変調器はトランスジ
ューサ10が超音波光媒体1の厚さと同幅(to)であ
るので、トランスジューサ10は0モード以外のモート
波を発信しない機能を実質的に帯有するから、ノンディ
スパーシブモート超音波光変調器の構成を容易にする。
As described above, in the ultrasonic optical modulator according to the present invention, since the transducer 10 has the same width (to) as the thickness of the ultrasonic optical medium 1, the transducer 10 substantially has the function of not emitting mote waves other than the 0 mode. This facilitates the construction of a non-dispersive mode ultrasonic light modulator.

但し、第3図に示すように、殆ど主境界面12.13に
平行に近い波8が発生し、スプリアスSとなる。即ち、
トランスジューサ10から放射された縦波8の超音波の
スプリアスSは主境界面12.13において縦波−横波
変換され、あるいは縦波−縦波変換され横波あるいは縦
波として乱反射される。乱反射部を代表的に11で示す
However, as shown in FIG. 3, waves 8 almost parallel to the main boundary surfaces 12 and 13 are generated, resulting in spurious waves S. That is,
The ultrasonic spurious S of the longitudinal wave 8 emitted from the transducer 10 is subjected to longitudinal wave-to-transverse wave conversion or longitudinal wave-to-longitudinal wave conversion at the main boundary surface 12.13, and is diffusely reflected as a transverse wave or a longitudinal wave. The diffused reflection portion is typically indicated by 11.

この様子を第5図により説明する。This situation will be explained with reference to FIG.

固体媒体Iと流体媒体■との境界面5に縦波8がαの角
度で入射すると、反射波は縦波8aの他に横波9も現わ
れる。縦波の反射角αは入射角αに等しいが、横波の反
射角βはこれと異なる。これらの反射における反射角相
互の関係は、Sinα/Sinβ=Cpl/Csl となる。なお、Cplは媒体I中の縦波の伝播速度、C
slは媒体I中の横波の伝播速度である。
When a longitudinal wave 8 is incident on the interface 5 between the solid medium I and the fluid medium 2 at an angle α, a transverse wave 9 appears in addition to the longitudinal wave 8a as reflected waves. The reflection angle α of longitudinal waves is equal to the incidence angle α, but the reflection angle β of transverse waves is different. The relationship between the reflection angles in these reflections is Sinα/Sinβ=Cpl/Csl. Note that Cpl is the propagation velocity of longitudinal waves in medium I, C
sl is the propagation velocity of the transverse wave in medium I.

人削縦彼8と反射縦波8aの振幅の割合は媒体Iのポア
ソン比をパラメータとして入射角αに依存。
The ratio of the amplitude of the artificial longitudinal wave 8 and the reflected longitudinal wave 8a depends on the angle of incidence α using the Poisson's ratio of the medium I as a parameter.

本発明では主境界面12.13の少なくとも一部、図示
の例では殆ど全面に、超音波乱反射領域14.15を設
けたので、人カドランスジューサ10から放射され主境
界面12.13に平行に近い角度で入射した縦波8のス
プリアス波は第5図で説明したように少なくともその一
部が縦波−横波のモード変換され、あるいは縦波−縦波
変換され横波あるいは縦波として乱反射されるから、ス
プリアス波はこの超音波乱反射領域14.15で消滅し
、取り除かれる。さらに、主境界面12.13の超音波
乱反射領域14.15上にエポキシ樹脂等の超音波吸収
材を接着すれば、このスプリアス波が主境界面12.1
3において吸収され、スプリアス波の除去効果が向上す
る。
In the present invention, the ultrasonic diffused reflection area 14.15 is provided on at least a part of the main boundary surface 12.13, and in the illustrated example, on almost the entire surface, so that the ultrasonic wave is radiated from the human quadrangle juicer 10 parallel to the main boundary surface 12.13. As explained in Fig. 5, the spurious wave of the longitudinal wave 8 which is incident at an angle close to , is at least partially converted into a mode between a longitudinal wave and a transverse wave, or is converted into a longitudinal wave and a longitudinal wave, and is diffusely reflected as a transverse wave or a longitudinal wave. Therefore, the spurious waves disappear and are removed in this ultrasonic diffuse reflection region 14,15. Furthermore, if an ultrasonic absorbing material such as epoxy resin is bonded onto the ultrasonic diffuse reflection region 14.15 of the main interface 12.13, this spurious wave will be absorbed by the main interface 12.1.
3, which improves the spurious wave removal effect.

なお、トランスジューサ10が2つの平行な主境界面1
2.13と直交しているので、トランスジューサ10か
ら放射された直進波縦波7が主境界面12.13間にお
いて直進する。
Note that the transducer 10 connects two parallel main interfaces 1
2.13, the rectilinear longitudinal wave 7 emitted from the transducer 10 travels straight between the main boundary surfaces 12 and 13.

このような超音波光変調器を製造するに当たっては、第
5図に示すように、予め設計した形状寸法の4角形を形
成した超音波光媒体lのブロック40を準備する。一つ
の面2に錫電極41を蒸着て付ける。その上に、トラン
スジューサストリップ43を配置する。これをスライシ
ングマシンで切断し、トランスジューサ10を備えた各
ユニツ1−45を得る。各ユニット45の主境界面に粗
面加工を施して超音波乱反射領域14.15を形成する
(第3図)。
In manufacturing such an ultrasonic optical modulator, as shown in FIG. 5, a block 40 of an ultrasonic optical medium l having a rectangular shape with pre-designed dimensions is prepared. A tin electrode 41 is attached to one surface 2 by vapor deposition. A transducer strip 43 is placed above it. This is cut by a slicing machine to obtain each unit 1-45 provided with the transducer 10. The main boundary surface of each unit 45 is roughened to form ultrasonic diffuse reflection regions 14 and 15 (FIG. 3).

このような製造技法によれば、予め設計した形状寸法の
多角形を形成した超音波光媒体のブロックに、トランス
ジューサストリップを設けた状態で、全体を各ユニット
に切断するので、得られた各ユニットに超音波が不揃い
となることはなく、高品質の超音波光変調器が得られる
。また、トランスジューサは超音波光媒体の厚さと同幅
で切断されるから、ノンディスパーシブモード超音波光
変調器の構成を容易にする。
According to this manufacturing technique, a block of ultrasonic optical medium formed into a polygon with a pre-designed shape and size is cut into units with a transducer strip provided thereon, so that each of the obtained units Therefore, the ultrasonic waves will not be irregular, and a high-quality ultrasonic optical modulator can be obtained. Furthermore, since the transducer is cut to have the same width as the thickness of the ultrasonic optical medium, it is easy to construct a non-dispersive mode ultrasonic optical modulator.

[発明の効果] 以上の実施例からも明らかなように本発明によれば、超
音波光媒体の一つの面に配置されたトランスジューサに
より該媒体に放射された超音波に光を入射させて回折光
を得る場合に、超音波光媒体の一つの面に直交する主境
界面の少なくとも一部に前記トランスジューサから放射
された超音波のスプリアスを主境界面において乱反射さ
せる超音波乱反射領域を設けたので、超音波の位相が揃
って特性が良く、製造が容易で、コストが低置なノンデ
ィスパーシブ超音波光変調器が得られる。
[Effects of the Invention] As is clear from the above embodiments, according to the present invention, light is incident on an ultrasonic wave emitted by a transducer placed on one surface of an ultrasonic optical medium to the medium, and diffracted. When obtaining light, an ultrasonic diffuse reflection area is provided on at least a part of the main boundary surface perpendicular to one surface of the ultrasonic optical medium to diffusely reflect the spurious waves of the ultrasound emitted from the transducer at the main boundary surface. , a non-dispersive ultrasonic optical modulator can be obtained that has good characteristics due to the uniform phase of ultrasonic waves, is easy to manufacture, and is inexpensive.

また、超音波光媒体の厚さを薄くすることができ材料が
節約される。さらに、製造が容易で、高品質の超音波光
変調器が提供される。
Also, the thickness of the ultrasonic optical medium can be reduced, which saves material. Furthermore, an ultrasonic light modulator that is easy to manufacture and of high quality is provided.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明による超音波光変調器に適用される超音
波光媒体の平面図、第2図は同超音波光媒体の側面図、
第3図は同超音波光媒体の拡大側面図、第4図は同超音
波光媒体の動作説明図、第5図は同超音波光媒体を製造
する際の説明図、第6図は超音波光変調器の原理を示す
説明図、第7図は一般的な超音波光変調器の光学構成図
、第8図は従来の超音波光変調器における超音波光媒体
の側面図である。 1・・・超音波光媒体 2・・・一つの面 7・・・超音波(縦波) S・・・スプリアス 10・・・トランスジューサ 12.13・・・主境界面 14.15・・・超音波乱反射領域 43・・・回折光 代理人 弁理士   守 谷 −雄 第6図
FIG. 1 is a plan view of an ultrasonic optical medium applied to an ultrasonic optical modulator according to the present invention, and FIG. 2 is a side view of the same ultrasonic optical medium.
Fig. 3 is an enlarged side view of the ultrasonic optical medium, Fig. 4 is an explanatory diagram of the operation of the ultrasonic optical medium, Fig. 5 is an explanatory diagram of the manufacturing of the ultrasonic optical medium, and Fig. 6 is an An explanatory diagram showing the principle of an ultrasound optical modulator, FIG. 7 is an optical configuration diagram of a general ultrasound optical modulator, and FIG. 8 is a side view of an ultrasound optical medium in a conventional ultrasound optical modulator. 1... Ultrasonic optical medium 2... One surface 7... Ultrasonic wave (longitudinal wave) S... Spurious 10... Transducer 12.13... Main boundary surface 14.15... Ultrasonic diffused reflection area 43...Diffracted light agent Patent attorney Moritani-Yuu Figure 6

Claims (1)

【特許請求の範囲】 1、超音波光媒体の一つの面に配置されたトランスジュ
ーサにより該媒体に放射された超音波に光を入射させて
回折光を得る超音波光変調器において、前記超音波光媒
体の前記一つの面に直交する主境界面の少なくとも一部
に前記トランスジューサから放射された超音波のスプリ
アスを前記主境界面において乱反射させる超音波乱反射
領域を設けたことを特徴とする超音波光変調器。 2、前記トランスジューサは超音波光媒体の厚さと同幅
であり、かつ前記主境界面と直交している特許請求の範
囲第1項記載の超音波光変調器。 3、前記超音波光媒体の厚さは伝搬超音波の波長λの5
0λ乃至10λである特許請求の範囲第1項記載の超音
波光変調器。 4、前記超音波乱反射領域の面の粗さは伝搬超音波の波
長λのλ/20乃至λ/5である特許請求の範囲第1項
記載の超音波光変調器。
[Scope of Claims] 1. An ultrasonic optical modulator that obtains diffracted light by making light incident on an ultrasonic wave emitted to an ultrasonic optical medium by a transducer placed on one surface of the medium; Ultrasonic waves, characterized in that an ultrasonic diffused reflection area is provided on at least a part of the main boundary surface perpendicular to the one surface of the optical medium to diffusely reflect the spurious waves of the ultrasonic waves emitted from the transducer on the main boundary surface. light modulator. 2. The ultrasonic optical modulator according to claim 1, wherein the transducer has the same width as the thickness of the ultrasonic optical medium and is orthogonal to the main boundary surface. 3. The thickness of the ultrasonic optical medium is 5 times the wavelength λ of the propagating ultrasonic wave.
The ultrasonic light modulator according to claim 1, wherein the wavelength is 0λ to 10λ. 4. The ultrasonic optical modulator according to claim 1, wherein the surface roughness of the ultrasonic diffuse reflection region is λ/20 to λ/5 of the wavelength λ of the propagating ultrasonic wave.
JP15886485A 1985-07-17 1985-07-17 Ultrasonic optical modulator Pending JPS6218520A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15886485A JPS6218520A (en) 1985-07-17 1985-07-17 Ultrasonic optical modulator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15886485A JPS6218520A (en) 1985-07-17 1985-07-17 Ultrasonic optical modulator

Publications (1)

Publication Number Publication Date
JPS6218520A true JPS6218520A (en) 1987-01-27

Family

ID=15681065

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15886485A Pending JPS6218520A (en) 1985-07-17 1985-07-17 Ultrasonic optical modulator

Country Status (1)

Country Link
JP (1) JPS6218520A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02229780A (en) * 1989-03-02 1990-09-12 Nippon Kayaku Co Ltd Press-molded explosive
JPH02267182A (en) * 1989-04-10 1990-10-31 Nippon Kayaku Co Ltd Pressure-molded explosive

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02229780A (en) * 1989-03-02 1990-09-12 Nippon Kayaku Co Ltd Press-molded explosive
JP2609148B2 (en) * 1989-03-02 1997-05-14 日本化薬株式会社 Pressurized explosive
JPH02267182A (en) * 1989-04-10 1990-10-31 Nippon Kayaku Co Ltd Pressure-molded explosive

Similar Documents

Publication Publication Date Title
US20090284826A1 (en) Acousto-Optic Devices
US4759613A (en) Acousto-optic modulator
US3791715A (en) System for coupling light from a fiber optic waveguide into a thin film waveguide
JPS598802B2 (en) Optical waveguide coupling device and manufacturing method
GB1309048A (en) Light deflection system
JPS6218520A (en) Ultrasonic optical modulator
JPS6218521A (en) Ultrasonic optical modulator
JP3633045B2 (en) Wavelength filter
JP2001285012A (en) Surface acoustic wave filter
US4623853A (en) Surface acoustic wave dispersive delay lines having a laser irridated focus area for eliminating undesired saw concentrations
JPS6218812A (en) Ultrasonic solid delay line
JP3276088B2 (en) Waveguide type acousto-optic device
JPS6210411B2 (en)
JPS58156919A (en) Acoustooptic optical modulator
JPS609771Y2 (en) light modulation element
JPH0115167B2 (en)
JPS63147140A (en) Acoustooptic element
JPS61288511A (en) Ultrasonic wave solid-state delay line
JPH04103211A (en) Ultrasonic wave solid-state delay line
JPH01134984A (en) Semiconductor laser device
JPH10222284A (en) Touch type coordinate input device
JPH06250136A (en) Light frequency shifter
JPS62111513A (en) Surface acoustic wave resonator
JPH0338927U (en)
JPH04348607A (en) Surface wave device