JPH0417658B2 - - Google Patents

Info

Publication number
JPH0417658B2
JPH0417658B2 JP58039908A JP3990883A JPH0417658B2 JP H0417658 B2 JPH0417658 B2 JP H0417658B2 JP 58039908 A JP58039908 A JP 58039908A JP 3990883 A JP3990883 A JP 3990883A JP H0417658 B2 JPH0417658 B2 JP H0417658B2
Authority
JP
Japan
Prior art keywords
acoustic
transducer
acoustic impedance
ultrasonic transducer
radiation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58039908A
Other languages
Japanese (ja)
Other versions
JPS59166139A (en
Inventor
Nobushiro Shimura
Fumihiro Namiki
Atsuo Iida
Kenji Kawabe
Naritaka Nakao
Osamu Hayashi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP3990883A priority Critical patent/JPS59166139A/en
Priority to EP89123763A priority patent/EP0366161B1/en
Priority to DE8383308028T priority patent/DE3382209D1/en
Priority to EP83308028A priority patent/EP0113594B1/en
Priority to DE89123763T priority patent/DE3382720T2/en
Priority to US06/567,372 priority patent/US4552021A/en
Publication of JPS59166139A publication Critical patent/JPS59166139A/en
Publication of JPH0417658B2 publication Critical patent/JPH0417658B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Ultra Sonic Daignosis Equipment (AREA)
  • Transducers For Ultrasonic Waves (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Description

【発明の詳細な説明】 (A) 発明の技術分野 本発明は、超音波トランスデユーサ、特に例え
ば人体の超音波診断などに用いる超音波トランス
デユーサにおいて、被検体から反射されて戻つて
きた音波と当該音波がトランスデユーサ内部にお
いて再反射されて放射される音波との音圧比が例
えば−15dB以下である如き形で、被検体表面の
音響インピーダンスと被検体側からトランスデユ
ーサをみた音響インピーダンスとを実質上等しく
構成し、前記再反射を実質上なくした超音波トラ
ンスデユーサに関するものである。
[Detailed Description of the Invention] (A) Technical Field of the Invention The present invention is directed to an ultrasonic transducer, particularly an ultrasonic transducer used for ultrasonic diagnosis of the human body, in which a transducer that is reflected back from a subject is used. The sound pressure ratio between the sound wave and the sound wave emitted after being re-reflected inside the transducer is, for example, -15 dB or less, and the acoustic impedance of the surface of the test object and the sound seen from the test object side are The present invention relates to an ultrasonic transducer in which the impedance is substantially equal and the re-reflection is substantially eliminated.

(B) 技術の背景と問題点 従来から、圧電素子にて構成される超音波変換
子をそなえた超音波トランスデユーサにおいて
は、変換子の例えば放射側にλ/4の厚さの音響
整合層を配置し、放射された超音波を被検体に対
して効率よく挿入せしめ、また放射される超音波
パルスの継続時間を調整せしめるべくすることが
知られている(特公昭55−33020公報)。
(B) Technical background and problems Conventionally, in ultrasonic transducers equipped with ultrasonic transducers made of piezoelectric elements, acoustic matching with a thickness of λ/4 is used on the radiation side of the transducer. It is known to arrange layers to efficiently insert emitted ultrasonic waves into a subject and to adjust the duration of emitted ultrasonic pulses (Japanese Patent Publication No. 55-33020). .

しかし、被検体側に放射されて反射して戻つて
きた音波がトランスデユーサ内部で再反射されて
被検体側に再放射されることが生じる。再放射さ
れた音は検体の組織から再びトランスデユーサに
受信されにせの像を作る。このような現象を多重
反射と呼ぶことにするが、当該多重反射を改善す
るものとして例えば特開昭54−21082号公報に示
されるものが提案されている。
However, the sound waves that are emitted toward the subject, reflected, and returned may be re-reflected inside the transducer and re-radiated toward the subject. The re-emitted sound is received by the transducer again from the tissue of the specimen and creates a false image. Such a phenomenon will be referred to as multiple reflection, and a method for improving the multiple reflection has been proposed, for example, in Japanese Patent Laid-Open No. 54-21082.

これは次の如き構成をもつている。即ち変換子
の放射側、即ち変換子と被検体との間に、音響イ
ンピーダンスが連続的に変化する連続変化層をも
うけ、当該連続変化層における上記被検体側表面
の音響インピーダンスを被検体の音響インピーダ
ンスと等しく選定し、かつ当該連続変化層におけ
る上記変換子側面の音響インピーダンスを変換子
の音響インピーダンスに等しく選定するようにさ
れている。
This has the following structure. In other words, a continuously variable layer in which the acoustic impedance changes continuously is provided on the radiation side of the transducer, that is, between the transducer and the subject, and the acoustic impedance of the subject side surface of the continuous variable layer is determined by the acoustic impedance of the subject. The acoustic impedance of the side surface of the transducer in the continuously variable layer is selected to be equal to the acoustic impedance of the transducer.

当該構成によつて上記多重反射を多少軽減する
ことは可能であるが、変換子の背面側の表面に一
般に音響ダンパ材が配置されることから、変換子
と音響ダンパ材との音響インピーダンスの違いに
起因する反射のために、十分な効果を上げ得な
い。
Although it is possible to reduce the above-mentioned multiple reflections to some extent with this configuration, since an acoustic damper material is generally placed on the back surface of the transducer, the difference in acoustic impedance between the transducer and the acoustic damper material may be affected. Due to the reflection caused by this, it cannot achieve sufficient effect.

(C) 発明の目的と構成 本発明は上記の点を解決することを目的として
おり、本発明の超音波トランスデユーサは、圧電
素子にて構成される超音波変換子をそなえると共
に、該超音波変換子の放射側に配置される放射側
音響整合層と上記超音波変換子の背面側に配置さ
れる背面側音響整合層との両者あるいはいずれか
一方をそなえ、かつ背面側の最外層に音響ダンパ
を有する超音波トランスデユーサにおいて、当該
トランスデユーサに放射側表面から当該トランス
デユーサ側を最外層の音響ダンパまでみた音響イ
ンピーダンスが、所望の周波数帯域において、上
記放射側表面に接触される音響媒体の音響インピ
ーダンスと実質上等しくなるよう構成されてなる
ことを特徴としている。以下図面を参照しつつ説
明する。
(C) Object and Structure of the Invention The present invention aims to solve the above points, and the ultrasonic transducer of the present invention includes an ultrasonic transducer made of a piezoelectric element, and A radiation-side acoustic matching layer disposed on the radiation side of the sonic transducer and/or a back-side acoustic matching layer disposed on the back side of the ultrasonic transducer, and the outermost layer on the back side. In an ultrasonic transducer having an acoustic damper, the acoustic impedance seen from the radiation side surface of the transducer to the outermost acoustic damper on the transducer side is in contact with the radiation side surface in a desired frequency band. The acoustic impedance of the acoustic medium is substantially equal to the acoustic impedance of the acoustic medium. This will be explained below with reference to the drawings.

(D) 発明の実施例 第1図は超音波トランスデユーサを用いて被検
体からのエコーを検出する態様を説明する説明
図、第2図および第3図は本発明が適用される原
理を説明する説明図、第4図ないし第8図は夫々
本発明の一実施例を示す。
(D) Embodiments of the Invention Fig. 1 is an explanatory diagram illustrating a mode of detecting echoes from a subject using an ultrasonic transducer, and Figs. 2 and 3 illustrate the principle to which the present invention is applied. The explanatory drawings and FIGS. 4 to 8 each show an embodiment of the present invention.

第1図において、1は変換子、2は放射側λ/
4の厚さの音響整合層、5は音響ダンパ、6は被
検体(音響媒体)、7は被検体内部の反射体、9
は超音波トランスデユーサを表わしている。
In Fig. 1, 1 is a converter, 2 is a radiation side λ/
4 is an acoustic matching layer with a thickness, 5 is an acoustic damper, 6 is a subject (acoustic medium), 7 is a reflector inside the subject, 9
represents an ultrasonic transducer.

変換子1からの超音波は整合層2を介して被検
体6内部に向つて放射され、反射体7によつて反
射された音波が整合層2を介して変換子1に受取
られ、時間差を求めて反射体1の存在を検出する
ようにされる。一方、変換子1から背面側に向う
超音波は好ましくは音響ダンパ5によつて吸収さ
れるようにされる。
The ultrasonic waves from the transducer 1 are emitted toward the inside of the object 6 via the matching layer 2, and the acoustic waves reflected by the reflector 7 are received by the transducer 1 via the matching layer 2, thereby reducing the time difference. The presence of the reflector 1 is detected. On the other hand, ultrasonic waves directed toward the back side from the transducer 1 are preferably absorbed by the acoustic damper 5.

上述の如く、特開昭54−21082号公報に開示さ
れるものは、第1図図示の放射側音響整合層2を
上述の連続変化層にて構成しているものと考えて
よい。この場合、検体6からの受信波に対し、当
該開示されるものにおいては、変換子1の放射側
表面(2との境界)からの反射を防ぐことは可能
であるが、音響ダンパ5と変換子1との境界から
の反射を防止することが出来ない。
As mentioned above, in the device disclosed in Japanese Patent Application Laid-Open No. 54-21082, the radiation-side acoustic matching layer 2 shown in FIG. 1 can be considered to be composed of the above-mentioned continuously variable layer. In this case, in the disclosed method, it is possible to prevent the reception wave from the specimen 6 from being reflected from the radiation side surface of the transducer 1 (boundary with the acoustic damper 5). It is not possible to prevent reflection from the boundary with Child 1.

音波の反射について第2図を参照して考察す
る。今第2図図示の如く、音響インピーダンスZ1
をもつ媒体と音響インピーダンスZ3をもつ媒体と
の間に、音波の波長λの1/4の厚さで音響インピ
ーダンスZ2をもつ平板を配置した状態を考える。
この状態で音響インピーダンスZ3をもつ媒体側か
ら平板を音波が透過することを考えるとき、平板
が音響インピーダンスZ3をもつ媒体を接している
面(図において鎖線にて示す)から矢印側にみた
入力音響インピーダンスZioは、 Zio=Z2 2/Z1 ……(1) で表わすことができ、音響インピーダンスZ3をも
つ媒体側に反射される音波の音圧は、 Zio=Z3 なる条件の下で最小となる。これは、インピーダ
ンスZ2とZ3との境界からの反射成分と、インピー
ダンスZ2とZ1との境界からの反射成分とが打消し
合う形となるからと考えてよい。
The reflection of sound waves will be discussed with reference to FIG. Now, as shown in Figure 2, the acoustic impedance Z 1
Consider a situation in which a flat plate with an acoustic impedance Z 2 and a thickness 1/4 of the wavelength λ of a sound wave is placed between a medium with an acoustic impedance Z 3 and a medium with an acoustic impedance Z 3 .
When considering that sound waves pass through a flat plate from the side of the medium with acoustic impedance Z 3 in this state, the plane where the flat plate is in contact with the medium with acoustic impedance Z 3 (indicated by the chain line in the figure) is viewed from the arrow side. The input acoustic impedance Z io can be expressed as Z io = Z 2 2 /Z 1 ...(1), and the sound pressure of the sound wave reflected to the medium side with acoustic impedance Z 3 is Z io = Z 3 Minimum under the condition that This may be because the reflected component from the boundary between impedances Z 2 and Z 3 and the reflected component from the boundary between impedances Z 2 and Z 1 cancel each other out.

このことを、第3図に示す如く、変換子1の放
射側に、音響インピーダンスがZT1,ZT2,……,
ZTNをもち夫々λ/4の厚みをもつN層の放射側
音響整合層と、変換子1の背面側に、音響インピ
ーダンスがZB1,ZB2,……,ZBMをもち夫々λ/
4の厚みをもつM層の背面側音響整合層と、音響
インピーダンスZBをもつ音響ダンパ5をもつ超音
波トランスデユーサに適合せしめてみる。なお、
第3図図示の放射側表面層8が、音響インピーダ
ンスZTをもつ被検体6と接触すると考える。この
場合の入力インピーダンスZioは、 loZio=2Ni=0 (−1)(N-i)loZTi+2Mj=0 (−1)(N+j-1)loZBj+(−1)(M+N)loZB (但しZTi(i=0)=ZBj(j=0)=1 ……(3) と表わすことができ、音響インピーダンスZTをも
つ媒体側から入射される受信音波は、 loZio=loZT ……(4) なる関係が成立するときに、トランスデユーサか
ら反射される音波の音圧が最も小さくなる。
As shown in Fig. 3, the acoustic impedances on the radiation side of the transducer 1 are Z T1 , Z T2 , ...,
N radiation -side acoustic matching layers each having a thickness of λ/4 and having an acoustic impedance of Z B1 , Z B2 , ..., Z BM on the back side of the transducer 1, each having a thickness of λ/4.
This example is adapted to an ultrasonic transducer having an M-layer rear side acoustic matching layer having a thickness of 4, and an acoustic damper 5 having an acoustic impedance ZB . In addition,
Consider that the radiation-side surface layer 8 shown in FIG. 3 is in contact with a subject 6 having an acoustic impedance Z T . In this case, the input impedance Z io is: l o Z io =2 Ni=0 (-1) (Ni) l o Z Ti +2 Mj=0 (-1) (N+j-1) l o Z Bj + (-1) (M+N) l o Z B (however, it can be expressed as Z Ti(i=0) =Z Bj(j=0) =1 ...(3), and the acoustic impedance Z T For received sound waves incident from the medium side with , the sound pressure of the sound waves reflected from the transducer becomes the lowest when the following relationship holds: l o Z io = l o Z T (4).

第4図aは本発明の一実施例を示し、図中の符
号1,2,5は第1図に対応し、3は放射側の
λ/4の厚さの音響整合層、4は背面側のλ/4
の厚さの音響整合層を表わしている。図示の場
合、放射側に2枚、背面側に1枚の整合層をもう
けた場合に対応している。この場合、各λ/4整
合層1,2,3,4,5の夫々の音響インピーダ
ンスを順に、34×106,8.5×106,2×106,12.8
×106,7.5×106(各単位Kg/s.m2)としたとき、
3.5±0.5MHzの帯域で従来のトランスデユーサ
(第1図図示のもの)にくらべて約20dB程度反射
の少ないトランスデユーサが得られた。
FIG. 4a shows an embodiment of the present invention, where symbols 1, 2, and 5 correspond to those in FIG. 1, 3 is an acoustic matching layer with a thickness of λ/4 on the radiation side, and 4 is a rear surface side λ/4
represents an acoustic matching layer with a thickness of . In the illustrated case, two matching layers are provided on the radiation side and one matching layer is provided on the back side. In this case, the acoustic impedance of each λ/4 matching layer 1, 2, 3, 4, and 5 is 34×10 6 , 8.5×10 6 , 2×10 6 , 12.8
×10 6 , 7.5×10 6 (each unit Kg/sm 2 ),
A transducer with approximately 20 dB less reflection than the conventional transducer (shown in Figure 1) in the 3.5±0.5 MHz band was obtained.

この時の、測定系の概略を第4図bに、また得
られた反射波のスペクトルを第4図c,dに示
す。測定系は、トランスデユーサaに対向させた
完全反射体bを、水c中に設置し、図示しない送
信回路によりトランスデユーサを駆動し、1回目
の反射波及び2回目の反射波を受信し、受信
波を図示しない受信回路を経由してスペクトル解
析器で各々の受信波のスペクトルを得る様に構成
してある。この測定系を用い、従来のトランスデ
ユーサについて測定した1回目の受信波、2回
目の受信波を第4図cに、同様に、本発明によ
る前記トランスデユーサの1回目の受信波、2
回目の受信波を第4図dに示す、本発明による
ものの場合2回目の受信波のレベルが大きく低下
している。第5図aは本発明の一実施例を示し、
図中の符号1,2,5は第1図に対応している。
この場合、λ/4整合層2,5の夫々の音響イン
ピーダンスを順に3.8×106,11.5×106(単位Kg/s.
m2)としたトランスデユーサは、第5図bに示し
た如く送受信スペクトルと1回目多重反射スペク
トルとの比は所望周波数帯域において−15dB以
下であり、所望の条件を満足する。
An outline of the measurement system at this time is shown in FIG. 4b, and the spectra of the reflected waves obtained are shown in FIGS. 4c and d. In the measurement system, a perfect reflector b facing a transducer a is placed in water c, the transducer is driven by a transmission circuit (not shown), and the first reflected wave and second reflected wave are received. However, the received waves are configured to pass through a receiving circuit (not shown) and a spectrum analyzer obtains the spectrum of each received wave. Using this measurement system, the first received wave and the second received wave measured for the conventional transducer are shown in FIG.
The second received wave is shown in FIG. 4d, and in the case of the one according to the present invention, the level of the second received wave is greatly reduced. FIG. 5a shows an embodiment of the present invention,
Reference numerals 1, 2, and 5 in the figure correspond to those in FIG.
In this case, the acoustic impedances of the λ/4 matching layers 2 and 5 are 3.8×10 6 and 11.5×10 6 (unit: Kg/s).
m 2 ), the ratio of the transmission/reception spectrum to the first multiple reflection spectrum is -15 dB or less in the desired frequency band, as shown in FIG. 5b, and satisfies the desired conditions.

第6図aは本発明の一実施例を示し、図中の符
号1,2,4,5は第4図に対応している。この
場合、整合層2,4,5の夫々の音響インピーダ
ンスを順に3.8×106,9.4×106,7.5×106(単位
Kg/s.m2)としたトランスデユーサは第6図bに
示した如く送受信スペクトルと1回目多重反射ス
ペクトルとの比は所望周波数帯域において−
15dB以下であり、所望の条件を満足する。
FIG. 6a shows one embodiment of the present invention, and the symbols 1, 2, 4, and 5 in the figure correspond to those in FIG. In this case, the acoustic impedances of matching layers 2, 4, and 5 are set to 3.8×10 6 , 9.4×10 6 , and 7.5×10 6 (unit:
Kg/sm 2 ), the ratio of the transmitting/receiving spectrum to the first multiple reflection spectrum is - in the desired frequency band, as shown in Figure 6b.
It is 15dB or less and satisfies the desired conditions.

第7図aは本発明の一実施例を示し、図中の符
号1,2,3,5は第4図に対応している。この
場合、整合層2,3,5の夫々の音響インピーダ
ンスを順に8.4×106,2.0×106,21.8×106(単位
Kg/s.m2)としたトランスデユーサは第7図bに
示した如く送受信スペクトルと1回目多重反射ス
ペクトルとの比は所望周波数帯域において−
15dB以下であり、所望の条件を満足する。
FIG. 7a shows one embodiment of the present invention, and the symbols 1, 2, 3, and 5 in the figure correspond to those in FIG. In this case, the acoustic impedances of matching layers 2, 3, and 5 are 8.4×10 6 , 2.0×10 6 , and 21.8×10 6 (unit:
Kg/sm 2 ), the ratio of the transmitting/receiving spectrum to the first multiple reflection spectrum is - in the desired frequency band, as shown in Figure 7b.
It is 15dB or less and satisfies the desired conditions.

第8図aは本発明の更に他の一実施例を示し、
図中の符号1,4,5は第4図に対応し、10は
本明細書にいう連続変化層を表わしている。この
場合、連続変化層10の音響インピーダンスを被
検体の音響インピーダンスZTから変換子1の音響
インピーダンスまで連続的に変化するように選
び、層4,5の夫々の音響インピーダンスを順に
3.0×106,7.5×106(単位Kg/s.m2)としたトラン
スデユーサは第8図bに示した如く送受信スペク
トルと1回目多重反射スペクトルとの比は所望周
波数帯域において−15dB以下であり、所望の条
件を満足する。
FIG. 8a shows still another embodiment of the present invention,
Reference numerals 1, 4, and 5 in the figure correspond to those in FIG. 4, and 10 represents a continuous change layer as referred to in this specification. In this case, the acoustic impedance of the continuously variable layer 10 is selected to vary continuously from the acoustic impedance Z T of the subject to the acoustic impedance of the transducer 1, and the acoustic impedance of each layer 4 and 5 is sequentially changed.
3.0×10 6 and 7.5×10 6 (unit: Kg/sm 2 ), the ratio of the transmitting/receiving spectrum to the first multiple reflection spectrum is −15 dB or less in the desired frequency band, as shown in Figure 8b. Yes, and satisfies the desired conditions.

上記各音響インピーダンスをもつ媒体は、次の
如きものの中から選択することができる。
The medium having each of the above acoustic impedances can be selected from the following.

A 音響インピーダンスが2.0×106ないし3.2×
106〔Kg/s.m2〕の範囲では、ポリウレタン、ナ
イロン、エポキシ等(商標名)の合成樹脂に該
当するものが存在する。
A Acoustic impedance is 2.0× 106 or 3.2×
In the range of 10 6 [Kg/sm 2 ], there are synthetic resins such as polyurethane, nylon, and epoxy (trade name).

B 音響インピーダンスが10.0×106ないし13.5×
106〔Kg/s.m2〕の範囲では、ガラス、水晶、石
英等に該当するものが存在する。
B Acoustic impedance is 10.0× 106 to 13.5×
In the range of 10 6 [Kg/sm 2 ], there are substances that correspond to glass, crystal, quartz, etc.

C 音響インピーダンスが3.3×106ないし10.0×
106〔Kg/s.m2〕の範囲では、一般に単一の組成
物で適合するものが少ない。したがつて、上記
エポキシやポリウレタン等の合成樹脂に、アル
ミニウムや鉄等の金属粉を混入せしめた材料を
用いるようにする。このようにすれば、金属粉
の量を増減することによつて、音響インピーダ
ンスを最大20×106〔Kg/s.m2〕程度まで調整す
ることが可能となる。特に上記エポキシ樹脂に
金属粉を混入したものはそれ自体が良好な接着
性をもつているために、上記ガラスを用いる場
合に必要とする接着剤が不要となり、接着層に
よる特性劣化を防止することができる。
C Acoustic impedance is 3.3× 106 or 10.0×
In the range of 10 6 [Kg/sm 2 ], there are generally few single compositions that are suitable. Therefore, a material in which metal powder such as aluminum or iron is mixed into the synthetic resin such as epoxy or polyurethane is used. In this way, by increasing or decreasing the amount of metal powder, it becomes possible to adjust the acoustic impedance up to about 20×10 6 [Kg/sm 2 ]. In particular, the epoxy resin mixed with metal powder itself has good adhesive properties, so the adhesive required when using the glass is unnecessary, and property deterioration due to the adhesive layer can be prevented. I can do it.

なお上述の超音波トランスデユーサ自体による
反射がどの程度以下であれば許容できるかについ
てチエツクしてみた。心臓の各組織からの反射レ
ベルを第9図に示す。図に示した様に体表20mmぐ
らいまでに強い反射を示す組織○イがあり、この組
織からの反射波が、従来の反射の多いトランスデ
ユーサを使うと、超音波トランスデユーサで再度
反射し、再び組織○イで反射され超音波トランスデ
ユーサで受信され、これが、多重反射○イ′として
現われ、体表下40mmぐらいにある中隔○ロの像は多
重反射像のオーバーラツプにより著しく劣化する
ことが判つた。強い反射を示す組織○イは反射レベ
ルが−25dB程度で、中隔○ロは−60dB程度であ
る。超音波トランスデユーサの反射率をαdBとす
れば、中隔○ロのレベルが組織○イの多重反射レベル
より大きいためには (−25)×2+α<−60 が成立すればよく、反射率は−10dBより低いこ
とが条件となる。このように−15dB以下の反射
率を有するトランスデユーサを用いると、多重反
射の影響がない十分鮮明な像が得られることが確
められた。従来の振動子は−6〜10dB程度の反
射率であり、これでは良い画像は望めなかつたわ
けである。
In addition, we checked to what extent the reflection from the above-mentioned ultrasonic transducer itself can be tolerated. Figure 9 shows the reflection levels from each tissue of the heart. As shown in the figure, there is a tissue ○a that exhibits strong reflection up to about 20mm from the body surface, and if a conventional transducer with a lot of reflection is used, the reflected waves from this tissue will be reflected again by the ultrasonic transducer. Then, it is reflected again by the tissue ○a and received by the ultrasound transducer, and this appears as multiple reflections ○a′, and the image of the septum ○ro, located about 40 mm below the body surface, is significantly degraded due to the overlap of the multiple reflection images. It turned out that it would. Tissue ○B, which exhibits strong reflection, has a reflection level of about -25 dB, and septum ○B has a reflection level of about -60 dB. If the reflectance of the ultrasonic transducer is αdB, in order for the level of septum XX to be higher than the multiple reflection level of tissue XX, it is sufficient that (-25)×2+α<-60 holds, and the reflectance is must be lower than -10dB. In this way, it was confirmed that by using a transducer with a reflectance of -15 dB or less, a sufficiently clear image without the effects of multiple reflections could be obtained. Conventional transducers have a reflectance of about -6 to 10 dB, which means that good images cannot be obtained.

(E) 発明の効果 以上説明した如く、本発明によれば、多重反射
による影響を実質上なくすることができる。
(E) Effects of the Invention As explained above, according to the present invention, the influence of multiple reflections can be substantially eliminated.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は超音波トランスデユーサを用いて被検
体からのエコーを検出する態様を説明する説明
図、第2図および第3図は本発明が適用される原
理を説明する説明図、第4図aは本発明の一実施
例であつて、第4図b、第4図c、および第4図
dは、第4図aに示す実施例に関連する説明図、
第5図aは本発明の他の一実施例であつて、第5
図bは第5図aに示す実施例に関連する説明図、
第6図aは本発明の他の一実施例であつて第6図
bは第6図aに示す実施例に関連する説明図、第
7図aは本発明の他の一実施例であつて第7図b
は第7図aに示す実施例に関連する説明図、第8
図aは本発明の他の一実施例であつて、第8図b
は第8図aに示す実施例に関連する説明図を示
す。また第9図は心臓部位における反射の状態の
一例を示す。 図中、1は変換子、2,3は夫々放射側音響整
合層、4は背面側音響整合層、5は音響ダンパ、
6は被検体(音響媒体)、7は反射体、9はトラ
ンスデユーサを表わす。
FIG. 1 is an explanatory diagram illustrating how an echo from a subject is detected using an ultrasonic transducer; FIGS. 2 and 3 are explanatory diagrams illustrating the principle to which the present invention is applied; Figure a shows one embodiment of the present invention, and Figures 4b, 4c, and 4d are explanatory diagrams related to the embodiment shown in Figure 4a,
FIG. 5a shows another embodiment of the present invention.
FIG. 5b is an explanatory diagram related to the embodiment shown in FIG. 5a,
FIG. 6a is another embodiment of the present invention, FIG. 6b is an explanatory diagram related to the embodiment shown in FIG. 6a, and FIG. 7a is another embodiment of the present invention. Figure 7b
is an explanatory diagram related to the embodiment shown in FIG. 7a, and FIG.
Figure a shows another embodiment of the present invention, and Figure 8b
shows an explanatory diagram related to the embodiment shown in FIG. 8a. Further, FIG. 9 shows an example of the state of reflection in the heart region. In the figure, 1 is a transducer, 2 and 3 are radiation-side acoustic matching layers, 4 is a rear-side acoustic matching layer, 5 is an acoustic damper,
6 represents a subject (acoustic medium), 7 represents a reflector, and 9 represents a transducer.

Claims (1)

【特許請求の範囲】[Claims] 1 圧電素子にて構成される超音波変換子をそな
えると共に、該超音波変換子の放射側に配置され
る放射側音響整合層と上記超音波変換子の背面側
に配置される背面側音響整合層との両者あるいは
いずれか一方をそなえ、かつ背面側の最外層に音
響ダンパを有する超音波トランスデユーサにおい
て、当該トランスデユーサの放射側表面から当該
トランスデユーサ側を最外層の音響ダンパまでみ
た音響インピーダンスが、所望の周波数帯域にお
いて、上記放射側表面に接触される音響媒体の音
響インピーダンスと実質上等しくなるよう構成さ
れてなることを特徴とする超音波トランスデユー
サ。
1. Equipped with an ultrasonic transducer composed of a piezoelectric element, a radiation-side acoustic matching layer disposed on the radiation side of the ultrasonic transducer, and a back-side acoustic matching layer disposed on the back side of the ultrasonic transducer. In an ultrasonic transducer that has both or one of the following layers and an acoustic damper on the outermost layer on the back side, from the radiation side surface of the transducer to the acoustic damper on the outermost layer. An ultrasonic transducer characterized in that the viewed acoustic impedance is substantially equal to the acoustic impedance of an acoustic medium that is brought into contact with the radiation side surface in a desired frequency band.
JP3990883A 1982-12-30 1983-03-10 Ultrasonic transducer Granted JPS59166139A (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP3990883A JPS59166139A (en) 1983-03-10 1983-03-10 Ultrasonic transducer
EP89123763A EP0366161B1 (en) 1982-12-30 1983-12-29 Electro-sound transducer, and a probe unit or ultrasonic diagnostic apparatus using such a transducer
DE8383308028T DE3382209D1 (en) 1982-12-30 1983-12-29 ULTRASONIC DIAGNOSTIC DEVICE WITH AN ELECTRO-ACOUSTIC CONVERTER.
EP83308028A EP0113594B1 (en) 1982-12-30 1983-12-29 Ultrasonic diagnostic apparatus using an electro-sound transducer
DE89123763T DE3382720T2 (en) 1982-12-30 1983-12-29 Electroacoustic transducer and a probe or diagnostic ultrasound device with such a transducer.
US06/567,372 US4552021A (en) 1982-12-30 1983-12-30 Electro-sound transducer eliminating acoustic multi-reflection, and ultrasonic diagnostic apparatus applying it

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3990883A JPS59166139A (en) 1983-03-10 1983-03-10 Ultrasonic transducer

Publications (2)

Publication Number Publication Date
JPS59166139A JPS59166139A (en) 1984-09-19
JPH0417658B2 true JPH0417658B2 (en) 1992-03-26

Family

ID=12566051

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3990883A Granted JPS59166139A (en) 1982-12-30 1983-03-10 Ultrasonic transducer

Country Status (1)

Country Link
JP (1) JPS59166139A (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2551611B1 (en) * 1983-08-31 1986-10-24 Labo Electronique Physique NOVEL ULTRASONIC TRANSDUCER STRUCTURE AND ULTRASONIC ECHOGRAPHY MEDIA EXAMINATION APPARATUS COMPRISING SUCH A STRUCTURE
JPS61201599A (en) * 1985-03-05 1986-09-06 Tokyo Keiki Co Ltd Acoustic transducer
JPH08140973A (en) * 1994-11-25 1996-06-04 Toshiba Ceramics Co Ltd Ultrasonic wave generator
JP4731145B2 (en) * 2004-09-21 2011-07-20 リコーエレメックス株式会社 Ultrasonic sensor and ultrasonic flow meter
KR101173277B1 (en) 2010-03-15 2012-08-13 주식회사 휴먼스캔 Ultrasound probe using rear acoustic matching layer

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS527237A (en) * 1975-06-26 1977-01-20 Minolta Camera Co Ltd Light amount control device in the flash shooting
JPS5421082A (en) * 1977-07-18 1979-02-16 Aloka Co Ltd Ultrasonic wave diagnosing probe

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS527237A (en) * 1975-06-26 1977-01-20 Minolta Camera Co Ltd Light amount control device in the flash shooting
JPS5421082A (en) * 1977-07-18 1979-02-16 Aloka Co Ltd Ultrasonic wave diagnosing probe

Also Published As

Publication number Publication date
JPS59166139A (en) 1984-09-19

Similar Documents

Publication Publication Date Title
US4356422A (en) Acoustic transducer
US6049159A (en) Wideband acoustic transducer
US4571520A (en) Ultrasonic probe having a backing member of microballoons in urethane rubber or thermosetting resin
US20030032884A1 (en) Ultrasound transducer for improving resolution in imaging system
EP0366161B1 (en) Electro-sound transducer, and a probe unit or ultrasonic diagnostic apparatus using such a transducer
US5438999A (en) Ultrasonic transducer
JPH0417658B2 (en)
EP0750469B1 (en) Low profile intravascular ultrasound imaging transducer
JPH03133300A (en) Composite piezoelectric ultrasonic wave probe
US10134973B2 (en) Ultrasonic transducer and manufacture method thereof
US4494091A (en) Damping package for surface acoustic wave devices
JP2804561B2 (en) Ultrasonic probe
JPH08612A (en) Ultrasonic wave probe
JPH0448039B2 (en)
JPH08275944A (en) Arrangement type ultrasonic probe
JPH0534880B2 (en)
JPS6110204Y2 (en)
JPS5925737A (en) Ultrasonic probe
JPH0117320B2 (en)
US4510470A (en) Electro-acoustic delay line operating in transmission
JPH0546218B2 (en)
JPS61201599A (en) Acoustic transducer
Karrer Phased Array Acoustic Imaging Systems
JPS6373942A (en) Ultrasonic probe
JPS6412440B2 (en)